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2 The scalar field

We consider a real-valued field φ(t, x⃗) = φ(x), where xµ = (ct, x⃗). In what

follows, I will choose units where ℏ = c = 1, so from now on ℏ and c will
appear rarely if at all.

To describe relativistic particles, this field should satisfy the Klein-Gordon

equation [
∂µ∂µ +m

2
]
φ(x) = 0. (2.1)

We interpret this equation as a classical equation of motion for the field φ.

Any classical equation of motion can be derived from a variation of the

action S =
∫
dt L. The Lagrange function L is an integral of the Lagrange

function density L =
∫
d3x⃗ L so that

S =

∫
d4x L. (2.2)

Since we would like S be Lorentz scalar and since the space-time volume

element d4x is invariant under Lorentz transformations, the Lagrange density

L should be invariant under Lorentz transformations as well. We will require
that L depends on φ and its first derivative ∂µφ and not on x itself. Hence,

S =

∫
d4x L(φ, ∂µφ). (2.3)

To find equations of motion, we consider a variation of S and find

∆S =

∫
d4x

[
δL
δφ(x)

∆φ(x) +
δL

δ[∂µφ(x)]
∂µ∆φ

]
. (2.4)

We integrate the last term by parts, neglect the surface terms and find

∆S =

∫
d4x

[
δL
δφ(x)

− ∂µ
δL

δ[∂µφ(x)]

]
∆φ(x). (2.5)

Equations of motion follow from the extremum of the action S. For this, we

need ∆S = 0 for any ∆φ(x). Hence, we find

∂µ
[

δL
δ[∂µφ(x)]

]
=

δL
δφ(x)

. (2.6)
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For a free scalar field, we would like this equation to be the Klein-Gordon

equation. This can be achieved if we choose

L =
1

2
∂µφ ∂µφ−

m2

2
φ2. (2.7)

Given the Lagrangian, we can construct a Hamiltonian. In classical mecha-

nics, a system described with the Lagrangian L = L(q̇, q), has the Hamiltonian

H =
∂L

∂q̇
p − L, (2.8)

where the canonical momentum p reads

p =
∂L

∂q̇
. (2.9)

In the current case, the Lagrangian is

L =

∫
d3x⃗ L. (2.10)

The canonical momentum

π(x) =
δL

δ[∂0φ(x)]
= ∂0φ(x). (2.11)

Hence,

H =

∫
d3x⃗

[
π2(x)

2
+
(∇⃗φ(x))2

2
+
m2φ2(x)

2

]
. (2.12)

We will now quantize this theory. To do this, we note that in quantum

mechanics the quantization rule amounts to declaring that the generalized

coordinate qi and the corresponding canonical momentum pj are described by

operators that satisfy equal-time commutation relations

[qi(t), pj(t)] = iδi j , [pi(t), pj(t)] = 0, [qi(t), qj(t)] = 0. (2.13)

For our system, the coordinate qi(t) is φ(t, x⃗) and the canonical momen-

tum pi(t) is π(t, x⃗) = ∂0φ(t, x⃗). Hence, we require

[φ(t, x⃗), π(t, y⃗)] = iδ(x⃗ − y⃗),
[φ(t, x⃗), φ(t, y⃗)] = 0, [π(t, x⃗), π(t, y⃗)] = 0.

(2.14)
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To describe the quantum system with the Hamiltonian in Eq. (2.12), we

need to solve the Schrödinger equation

H|ψ⟩ = E|ψ⟩. (2.15)

Since it is not quite obvious how to do this, we can take some guidance from

the fact that φ(t, x⃗) satisfies the Klein-Gordon equation. To construct its

solution, we write

φ(t, x⃗) =

∫
d3p⃗

(2π)3
φ(t, p⃗)e i p⃗·x⃗ , (2.16)

use this ansatz in the Klein-Gordon equation and find(
∂2

∂t2
+ ω2p

)
φ(t, p⃗) = 0, (2.17)

where ωp =
√
p⃗2 +m2. This is an equation of a harmonic oscillator with the

frequency ωp. The solutions to this equation are

φ(t, p⃗) = αp⃗e
−iωpt + βp⃗e

iωpt . (2.18)

Hence,

φ(t, x⃗) =

∫
d3p⃗

(2π)3
[
αp⃗e

−iωpt+i p⃗x⃗ + βp⃗e
iωpt+i p⃗x⃗

]
. (2.19)

However, since φ(t, x) is a real-valued field, the coefficients αp and βp are

not independent. In fact, from the reality condition φ(x)∗ = φ(x), it follows

that

βp⃗ = α
∗
−p⃗. (2.20)

Using this equation, we write

φ(t, x⃗) =

∫
d3p⃗

(2π)3
[
αp⃗e

−iωpt+i p⃗x⃗ + α∗p⃗e
iωpt−i p⃗x⃗

]
. (2.21)

The canonical momentum ∂tφ(t, x⃗) is then

π(t, x⃗) = −i
∫
d3p⃗

(2π)3
ωp⃗

[
αp⃗e

−iωpt+i p⃗x⃗ − α∗p⃗e iωpt−i p⃗x⃗
]
. (2.22)

To satisfy the commutation relations in Eq. (2.14), we need to promote

αp⃗ and α
∗
p⃗ to operators. These operators are identical to the creation and
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annihilation operators of the harmonic oscillator but they carry an additional

index p⃗ to indicate the dependence of the oscillator’s frequency on the mo-

mentum p⃗. Specifically, we choose αp⃗ → ap⃗/
√
2ωp⃗ and α

∗
p⃗ → a+p⃗ /

√
2ωp⃗, so

that

φ(t, x⃗) =

∫
d3p⃗

(2π)3
√
2ωp

[
ap⃗e

−iωpt+i p⃗x⃗ + a+p⃗ e
iωpt−i p⃗x⃗

]
,

π(t, x⃗) = −i
∫
d3p⃗

(2π)3

√
ωp⃗
2

[
ap⃗e

−iωpt+i p⃗x⃗ − a+p⃗ e
iωpt−i p⃗x⃗

]
.

(2.23)

The commutation relations in Eq. (2.14) are satisfied provided that we

choose

[ap⃗1, a
+
p⃗2
] = (2π)3δ(3)(p⃗1 − p⃗2), [ap⃗1, ap⃗2] = [a+p⃗1, a

+
p⃗2
] = 0. (2.24)

We will next express the Hamiltonian operator in Eq. (2.12) through the

creation and annihilation operators. This is straightforward but requires some

patience. Consider, as an example, a term proportional to m2. We find∫
d3x⃗ φ(t, x⃗)φ(t, x⃗) =

∫
d3p⃗1d

3p⃗2

(2π)3
√
2ω1
√
2ω2

[ (
ap⃗1ap⃗2e

−2iω1t+

a+p⃗1a
+
p⃗2
e2iω1t

)
δ(3)(p⃗1 + p⃗2) +

(
ap⃗1a

+
p⃗2
+ a+p⃗1ap⃗2

)
δ(3)(p⃗1 − p⃗2)

]

=

∫
d3p⃗

(2π)32ωp

[
ap⃗a−p⃗e

−2iωpt + a+p⃗ a
+
−p⃗e

2iωpt + ap⃗a
+
p⃗ + a

+
p⃗ ap⃗

]
.

(2.25)

In writing the above formula, we have been using the notation ω1,2 = ωp1,p2.

Similarly, we find∫
d3x⃗ π2(t, x⃗) =

∫
d3p⃗ ω2p
(2π)32ωp

[
−ap⃗a−p⃗e−2iωpt−a+p⃗ a

+
−p⃗e

2iωpt+ap⃗a
+
p⃗ +a

+
p⃗ ap⃗

]
,

(2.26)

and∫
d3x⃗ (∇⃗φ(t, x⃗))2 =

∫
d3p⃗ p⃗2

(2π)32ωp

[
ap⃗a−p⃗e

−2iωpt+a+p⃗ a
+
−p⃗e

2iωpt+ap⃗a
+
p⃗ +a

+
p⃗ ap⃗

]
,

(2.27)
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Combining the above equations, we obtain the following result for the Hamil-

tonian

H =

∫
d3p⃗

(2π)3
ωp
2

[
a+p ap + apa

+
p

]
=

∫
d3p⃗

(2π)3

[
ωp a

+
p ap +

ωp
2
(2π)3δ(3)(⃗0)

]
.

(2.28)

Since δ(3)(⃗0) =∞, the above result may look somewhat strange but it is
easy to understand why that term is there. Indeed, to properly interpret this

term, we write

(2π)3δ(3)(⃗0) =

∫
d3x e i p⃗x⃗ |p⃗=0 =

∫
d3x = V, (2.29)

where V is the space volume. Hence,

H = Evac +

∫
d3p⃗

(2π)3
ωp a

+
p ap, (2.30)

where the infinite but constant contribution to the energy operator is

Evac = V

∫
d3p⃗

(2π)3
ωp
2
. (2.31)

Note that this energy is infinite for two reasons. First, the volume V is infinitely

large; this infinity is understandable – if there is an underlying energy density

of the vacuum state, the total energy is proportional to the total volume

which, if the volume is large, becomes large.

However, also the energy density Evac/V is infinite

ρvac =
Evac
V
=

∫
d3p⃗

(2π)3
ωp
2
∼

∫
d3p⃗

√
p⃗2 +m2 ∼

Λ∫
dp p3 ∼ Λ4. (2.32)

In the above equation we introduce the upper cut-off for the integration over

energies Λ to exhibit the degree of divergence. There is an important story

behind this result and its connection to the so-called cosmological constant

problem which, unfortunately, I cannot discuss here.

To determine the energy levels of this quantum system, we define the

state with the lowest energy, the vacuum |0⟩. This state is annihilated by all
annihilation operators

ap⃗|0⟩ = 0. (2.33)
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From Eq. (2.30) it follows that this state is the eigenstate of the Hamiltonian

H and has infinite energy Evac. Since the absolute value of energy plays no

role as long as we do not consider the force of gravity, we can safely set Evac
to zero.1

To construct the excited states, we compute the commutator of an ope-

rator a⃗p with the Hamiltonian H. We find

[H, ak⃗ ] =

∫
d3p⃗

(2π)3
ωp [a

+
p ap, ak⃗ ]

= −
∫
d3p⃗

(2π)3
ωp (2π)

3δ(3)(p⃗ − k⃗)ap = −ωkak⃗ .
(2.34)

Hence,

[H, ak⃗ ] = −ωkak⃗ , [H, a
+

k⃗
] = ωka

+

k⃗
. (2.35)

Consider a state |k⃗⟩ = a+
k⃗
|0⟩. This state is also an eigenstate of the

Hamiltonian with the energy ωk since

H|k⃗⟩ = Ha+
k⃗
|0⟩ = [H, a+

k⃗
]|0⟩ = ωka+k⃗ |0⟩ = ωk |k⟩. (2.36)

Similarly,

H|k⃗1, k⃗2⟩ = Ha+k⃗1a
+

k⃗2
|0⟩ = [H, a+

k⃗1
]a+
k⃗2
|0⟩+ a+

k⃗1
Ha+
k⃗2
|0⟩

= (ωk1 + ωk2)|k⃗1, k⃗2⟩.
(2.37)

We will discuss later the construction of the energy-momentum tensor of

the scalar field. It follows from that construction that the three-momentum

operator of a scalar field reads

P⃗ = −
∫
d3x⃗ π(t, x⃗)∇⃗φ(t, x⃗) . (2.38)

A simple calculation, similar to what we have done for the Hamiltonian, gives2

P⃗ =
1

2

∫
d3p⃗

(2π)3
p⃗
(
a+p ap + apa⃗

+
p

)
=

∫
d3p⃗

(2π)3
a+p ap +

∫
d3p⃗p⃗δ(3)(⃗0). (2.39)

1Alternatively, we redefine the Hamiltonian H → H − Evac.
2In contrast to the calculation for H, in this case terms with two creation and annihilation

operators do not vanish right away. However, the integrand is an odd function of p⃗ and since

we integrate over all values of p⃗, the result vanishes.
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The last term integrates to zero since p⃗ is odd under parity and we conclude

P⃗ =

∫
d3p⃗

(2π)3
p⃗ a+p ap. (2.40)

Note that states |k⃗⟩, |k⃗1, k2⟩ etc. are eigenstates of the momentum operator
P⃗ . For example,

P⃗ |k⃗⟩ = k⃗ |k⃗⟩. (2.41)

Hence, the state |k⃗⟩ is the state with the three-momentum k⃗ and the energy
ωk⃗ =

√
k⃗2 +m2 which is a relativistic relation between particle’s energy, three

momentum and mass.

We conclude that this state describes a relativistic particle of mass m.

Such a particle is an excitation of the quantum field φ(x). A state |k⃗1, k⃗2⟩
describes two particles, with momenta k⃗1 and k⃗2 and energies ω1 and ω2
etc. Since the creation operators commute, this state is symmetric under the

permutation of two particles; for this reason these particles are bosons. The

Hilbert space of the theory contains states with arbitrary number of particles.

The quantum mechanical states are supposed to be normalized. We com-

pute

⟨k⃗2|k⃗1⟩ = ⟨0|ak⃗2a
+

k⃗1
|0⟩ = ⟨0|[ak⃗2, a

+

k⃗1
]|0⟩ = (2π)3δ(3)(k⃗2 − k⃗1). (2.42)

This normalization is possible but not optimal because it is not invariant

under Lorentz transformations. A Lorentz-invariant combination is the pro-

duct of energy and the three-momentum δ-function, i.e. 2Ek⃗1δ
(3)(k⃗1 − k⃗2).

Hence, we can choose to write states with an additional factor that involves

the square root of the energy

|k⃗⟩ = (2Ek⃗)
1/2a+

k⃗
|0⟩. (2.43)

Such states are then normalized as

⟨k⃗2|k⃗1⟩ = (2Ek⃗1)(2π)
3δ(3)(k⃗1 − k⃗2), (2.44)

and this normalization does not change when a Lorentz boost is performed.
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