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3 The Klein-Gordon field in space time

We have seen earlier that quantized scalar field can be written as

φ(t, x⃗) =

∫
d3p⃗

(2π)3
√
2ωp⃗

[
ape

−iωpt+i p⃗x⃗ + a+p e
iωpt−i p⃗x⃗

]
. (3.1)

We will now discuss an alternative way to describe the time-dependence of

the field φ.

To this end, we recall that the Hamiltonian H and the creation and anni-

hilation operators satisfy the following commutation relations

[H, ap⃗] = −ωp⃗ap⃗, [H, a+p⃗ ] = ωp⃗a
+
p⃗ . (3.2)

Consider the last equation and write it as

Ha+p = a
+
p (H + ωp). (3.3)

It follows that

H2a+p = Ha
+
p (H + ωp) = a

+
p (H + ωp)

2, (3.4)

and, consequently,

Hna+p = a
+
p (H + ωp)

n, (3.5)

for all values of n. A similar equation for ap reads

Hnap = ap(H − ωp)n. (3.6)

Then,

e iHtφ(0, x⃗)e−Ht =

∫
d3p⃗

(2π)3
√
2ωp

∞∑
n=0

(i t)n

n!

[
Hnape

i p⃗x⃗ +Hna+p e
−i p⃗x⃗] e−Ht

=

∫
d3p⃗

(2π)3
√
2ωp

∞∑
n=0

(i t)n

n!

[
ap(H − ωp)ne i p⃗x⃗ + a+p (H + ωp)e−i p⃗x⃗

]
e−Ht

=

∫
d3p⃗

(2π)3
√
2ωp

[
ape

−iωt+i p⃗x⃗e iHt + a+p e
iωpt−i p⃗x⃗e iHt

]
e−Ht = φ(t, x⃗).

(3.7)
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Hence,

φ(t, x⃗) = e iHtφ(0, x⃗)e−iHt . (3.8)

Similarly, it is straightforward to check that

e−i P⃗ ·x⃗φ(t, 0)e i P⃗ ·x⃗ = φ(t, x⃗), (3.9)

where P⃗ is an operator of total momentum defined in Eq. (??). Combining

the above equations, we can write

φ(xµ) = e iPµx
µ

φ(0)e−iPµx
µ

, (3.10)

where xµ = (t, x⃗) and

P µ = (H, P⃗ ) (3.11)

is a four-vector composed of operators of the total energy (H) and the three

momentum (P⃗ ).

Using Eq. (3.8), we compute the time derivative of the field φ. We find

i
∂φ(t, x⃗)

∂t
= [φ(t, x⃗), H] (3.12)

Similarly,

i
∂π(t, x⃗)

∂t
= [π(t, x⃗), H]. (3.13)

To compute the commutator in Eq. (3.13), we use the fact that the

Hamiltonian H is time-independent. For this reason we can write it using

operators π and φ at the time t. The Hamiltonian reads

H =
1

2

∫
d3y⃗

(
π2(t, y⃗) +

(
∇⃗yφ(t, y⃗)

)2
+m2φ(t, y⃗)2

)
. (3.14)

Then, using equal-time commutation relations

[π(t, x⃗), φ(t, y⃗)] = −iδ(3)(x⃗ − y⃗),
[π(t, x⃗), π(t, y⃗)] = 0,

[φ(t, x⃗), φ(t, y⃗)] = 0,

(3.15)

we obtain

[π(t, x⃗), H] = −i
(
−∇⃗2φ(t, x⃗) +m2φ(t, x⃗)

)
. (3.16)
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Next, using π = ∂φ/∂t, we derive[
∂2

∂t2
− ∇⃗2 +m2

]
φ(t, x⃗) = 0. (3.17)

This is the Klein-Gordon equation but this time for an operator φ.

In variance with Quantum Mechanics where Schrödinger equation is the

main object to study, in Quantum Field Theory we almost never solve the

Schrödinger equation and typically work with either Green’s functions or so-

mewhat related objects called scattering amplitudes. To introduce the idea

of Green’s functions, consider the following object

D(x − y) = ⟨0|φ(x)φ(y)|0⟩. (3.18)

When the field φ(y) acts on the vacuum state |0⟩, it creates a state build
of particles. When we compute the scalar product of the state φ(y)|0⟩ with
⟨0|φ(x), we calculate the probability amplitude that some of the created par-
ticles arrive at the point x and are absorbed back into the vacuum.

To calculate D(x − y) we use the representation of the quantum field

φ(x) =

∫
d3p⃗

(2π)3
√
2Ep⃗

(
ap⃗e

−ipµxµ + a+p⃗ e
ipµxµ

)
, (3.19)

and find

D(x − y) =
∫

d3q⃗

(2π)3
√
2Eq⃗

d3p⃗

(2π)3
√
2Ep⃗
e−ipµx

µ+iqµyµ⟨0|ap⃗a+q⃗ |0⟩. (3.20)

Since

⟨0|ap⃗a+q⃗ |0⟩ = (2π)
3δ(3)(p⃗ − q⃗), (3.21)

we integrate over q⃗ and find

⟨0|φ(x)φ(y)|0⟩ =
∫

d3p⃗

(2π)3 2Ep⃗
e−ipµ(x

µ−yµ). (3.22)

To compute this integral, we consider two cases (x − y)2 > 0 and (x −
y)2 < 0. In the first case, we can use the fact that the integral in Eq. (3.34)

is Lorentz-invariant and choose a frame where x − y = (τ, 0⃗). Then we find

⟨0|φ(x)φ(y)|0⟩ =
1

4π2

∞∫
m

dEp

√
E2p −m2 e−iEpτ . (3.23)
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The function depends on the ratio of the particle’s Compton wavelength

λ = 1/m and the interval τ . Although the integral in the above equation is

too difficult to compute, we can obtain its value at large times, i.e. τ ≫ λ or
mτ ≫ 1. We find

lim
τm→∞

⟨0|φ(x)φ(y)|0⟩ ≈
√
2me−3iπ/4Γ(3/2)

4π2τ3/2
e−imτ , τ =

√
(x − y)2. (3.24)

It follows that the probability amplitude for a particle to reach a faraway point

decreases like a power of τ .

The second case is when (x−y)2 < 0. Then, we choose a reference frame
where (x − y) = (0, r⃗). In the limit mr ≫ 1, correlator evaluates to

lim
rm→∞

⟨0|φ(x)φ(y)|0⟩ ≈
√
2mΓ(3/2)

4π2r 3/2
e−mr . (3.25)

Hence, in this case, the correlator is exponentially suppressed for interval va-

lues that exceed the Compton wave length of the particle. Nevertheless, it

should be stressed that in this case points x and y are spatially separated

which means that in order to be created at the point x and be absorbed at

the point y , a particle has to travel faster than light which cannot happen in

classical physics. However, this is not a problem in Quantum Mechanics and

in Quantum Field Theory where interpretation in terms of traveling times and

trajectories does not exist. What we need to check though is that measure-

ments of the field at points y and x do not influence each other provided that

the two points are separated by a space-like interval.

As we know from Quantum Mechanics, whether observables described

by two operators can simultaneously be measured depends on whether they

commute. Hence, we need to compute the commutator of φ(x) and φ(y).

We find

[φ(x), φ(y)] =∫
d3p⃗1d

3p⃗2

(2π)3
√
2Ep1(2π)

3
√
2Ep2

(
[ap⃗1, a

+
p⃗2
]e−ip1xe ip2y + [a+p⃗1, ap⃗2]e

ip1xe−ip2y
)

=

∫
d3p⃗1

(2π)32Ep⃗1
(2π)3δ(3)(p⃗1 − p⃗2)

(
e−ip1(x−y) − e ip1(x−y)

)
= D(x − y)−D(y − x).

(3.26)
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It follows from our previous discussion that for space-like separation D(x−y)
only depends on r =

√
|(x − y)2|. Then D(x − y) − D(y − x) = 0. On the

contrary, for time-like separation, D(x − y) depends on the sign of τ . Then
D(x−y) ∼ e−imτ whereas D(y−x) ∼ e imτ so that D(x−y)−D(y−x) ̸= 0.
Hence,

[φ(x), φ(y)](x−y)2<0 = 0, (3.27)

which is the necessary requirement for the causality of the theory.

We can now introduce the concept of a “propagator”. We consider

⟨0|[φ(x), φ(y)]|0⟩ = D(x − y)−D(y − x). (3.28)

Using the representation for D(x − y) derived above, we obtain

⟨0|[φ(x), φ(y)]|0⟩ =
∫

d3p⃗

(2π)32Ep⃗

(
e−ip(x−y) − e ip(x−y)

)
=

∫
d3p⃗

(2π)3

(
1

2Ep⃗
e−ip(x−y) +

1

(−2Ep⃗)
e−i(−Ep(x−y)0+p⃗(x⃗−y⃗))

)
.

(3.29)

We can now change the integration variable p⃗ → −p⃗ in the second term in
the sum. Then we find

⟨0|[φ(x), φ(y)]|0⟩ =
∫
d3p⃗

(2π)3

 1
2p0
e−ip(x−y)

∣∣∣∣∣
p0=Ep⃗

+
1

2p0
e−ip(x−y)

∣∣∣∣∣
p0=−Ep⃗

 .
(3.30)

We can represent this quantity as an integral over d4p = dp0 d
3p⃗ along a

particular integration contour. Consider

G(x − y) =
∫
d4p

(2π)4
i

p2 −m2 e
−ip(x−y). (3.31)

This integral is poorly defined because there are two poles on the real axis,

at p0 = ±
√
p⃗2 +m2. To define G we have to provide a prescription for going

around these poles in p0 complex plane. Suppose we specify the contour by

adding a small imaginary part to the denominator of 1/(p2 −m2). There are
different ways to do that; for example

1

p2 −m2 →
1

p2 −m2 + i ϵ sgn(p0)
. (3.32)
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In this formula ϵ is an infinitesimal positive quantity that we are supposed to

take to zero at the end of the calculation.

We would like to compute G by integrating over p0 first with the help of

Cauchy’s theorem. To use the theorem, we need to consider p0 integration

as the integration in the complex plane and we need to determine poles of

the integrand. The poles are found by solving the equation

p2 −m2 + i ϵ sgn(p0) = p20 − (p⃗2 +m2) + i ϵ sgn(p0) = 0. (3.33)

It is easy to see that this equation has two solutions,

p0 = ±
√
p⃗2 +m2 − i ϵ, (3.34)

which means that both poles lie below the real axis.

To compute G using Cauchy’s theorem, we would like to close the inte-

gration contour by integrating over infinitely remote half-circle. Whether this

half-circle should lie in the upper or in the lower complex half-plane, depends

on the sign of (x0 − y0). If (x0 − y0) > 0, we have to close the integration
contour in the lower half-plane and in this case the residues at the two poles

in Eq. (3.34) contribute. However, if (x0 − y0) < 0, we have to close the
integration contour in the upper half plane in which case the two poles do

not contribute as they are outside of the integration contour. Computing the

residues we find

GR(x − y) = θ(x0 − y0)
∫
d3p⃗

(2π)3

e−ip(x−y)2p0

∣∣∣∣∣
p0→Ep⃗

+
e−ip(x−y)

2p0

∣∣∣∣∣
p0→−Ep⃗


= θ(x0 − y0)⟨0|[φ(x), φ(y)]|0⟩.

(3.35)

From the integral representation in Eq. (3.31) it follows that GR(x − y)
is the Green’s function of the Klein-Gordon equation. Indeed,

(∂µ∂
µ+m2)GR(x−y) =

∫
d4p

(2π)4
i(−p2 +m2)

p2 −m2 + i ϵ sgn(p0)
e−ip(x−y) = −iδ(4)(x−y).

(3.36)

Such a Green’s function is called retarded, because it vanishes for (x−y)0 < 0.
If we solve the inhomogeneous Klein-Gordon equation

(∂µ∂
µ +m2)φ(x) = j(x), (3.37)
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using the retarded Green’s function, we obtain the result

φ(x) = i

∫
d4y GR(x − y) j(y). (3.38)

An important feature of this solution is that φ(x0, x⃗) depends on the values

of the source j(y0, y⃗) at earlier times y0 < x0. Although this feature of the

solution is appealing, we will see that in Quantum Field Theory a different

type of Green’s function is required.

To introduce it, we will again consider the Green’s function defined by

Eq. (3.31), but we will shift p0 poles away from the real axis in the following

way

GF (x − y) =
∫
d4p

(2π)4
i

p2 −m2 + i ϵe
−ip(x−y). (3.39)

This is also a Green’s function of the Klein-Gordon equation; it is called the

Feynman propagator. To understand what it does, we again compute the

integral over p0 using Cauchy’s theorem. The poles are

p0 = ±
√
p⃗2 +m2 ∓ i ϵ. (3.40)

For (x − y)0 > 0, we need to close the contour in the complex lower half-
plane; for (x − y)0 < 0 we should close the contour in the upper half-plane.
In the first case the pole at p0 =

√
p⃗2 +m2 contributes and in the second

case the pole at p0 = −
√
p⃗2 +m2. We find

GF (x − y) = θ(x0 − y0)
∫
d3p⃗

(2π)3
1

2Ep
e−ip(x−y)

+ θ(y0 − x0)
∫
d3p⃗

(2π)3
1

2Ep
e−ip(x−y)

∣∣∣∣∣
p0→−Ep⃗

.

(3.41)

We transform the last term by writing

e−ip(x−y)

∣∣∣∣∣
p0→−Ep⃗

= e
−ip(y−x)
p0→Ep⃗,p⃗→−p⃗ . (3.42)

Hence,

GF (x − y) = θ(x0 − y0)⟨0|φ(x)φ(y)|0⟩+ θ(y0 − x0)⟨0|φ(y)φ(x)|0⟩
= ⟨0|Tφ(x)φ(y)|0⟩,

(3.43)

where we introduced the time-order product of two operators

Tφ(x)φ(y) = θ(x0 − y0)φ(x)φ(y) + θ(y0 − x0)φ(y)φ(x). (3.44)
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