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4 Lorentz transformations

There are good experimental reasons to believe that laws of Nature are iden-

tical in all inertial frames; for our purposes this means that theories that we

consider should be invariant under Lorentz transformations. A Lorentz trans-

formation of coordinates and other four-vector is described by a four-by-four

matrix Λµν such that four-vectors in two frames are related by

xµ1 = Λ
µ
νx
ν. (4.1)

Scalar products of four-vectors are invariant under Lorentz transformations,

e.g.

gµνx
µ
1 y
ν
1 = gµνx

µy ν, (4.2)

provided that yµ1 = Λ
µ
νy
ν, and x1 and x are related by Eq. (4.1).

The matrix Λµν obeys the following equation

gµνΛ
µ
ρΛ
ν
σ = gρσ. (4.3)

From this equation, matrix of an inverse Lorentz transformation can be de-

duced. It reads

Λ̄µν = Λ
µ
ν , (4.4)

so that

xµ = Λ̄µν x
ν
1 = Λ

µ
ν x

ν
1 . (4.5)

We will use the above formulas in what follows.

We will now discuss how Lorentz transformations affect quantum fields.

We have said in the previous lecture(s) that the field φ is the scalar field; this

means that the field is the same in all reference frames. Mathematically, this

means

φ1(x1) = φ(Λ
−1x1), (4.6)

provided that x1 and x are related by a Lorentz transformation

xµ1 = Λ
µ
ν x
ν. (4.7)

Eq. (4.6) will be sufficient to specify transformation properties of the

classical field. Since in the quantum theory the field is an operator, the Lorentz

invariance of the theory implies that matrix elements of the field operator
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computed in different reference frames are the same. Quantum states in

different frames are related by transformations, e.g.

|α1⟩ = U(Λ)|α⟩, ⟨α1| = ⟨α|U−1(Λ), (4.8)

where U(Λ) “represents” the action of Lorentz transformation on the state.

Then, we require

⟨α1|φ(x1)|β1⟩ = ⟨α|φ(x)|β⟩. (4.9)

We re-write the left-hand side of this equation by expressing |β1⟩ and |α1⟩
through |α⟩ and |β⟩ and find

⟨α|U−1φ(x1)U|β⟩ = ⟨α|φ(x)|β⟩. (4.10)

Since this result should be valid for all external states, we obtain

U−1φ(Λx)U = φ(x), (4.11)

or, equivalently,

φ(Λx) = Uφ(x)U−1. (4.12)

To understand consequences of the above equation, we write an expansion

of the field φ in terms of creation and annihilation operators and obtain

U(Λ)φ(x)U−1(Λ) =

∫
d3p⃗

(2π)3
√
2Ep⃗

[
Uap⃗U

−1e−ipµx
µ

+ Ua+p⃗ U
−1e ipµx

µ]
,

φ(Λx) = φ(x1) =

∫
d3p⃗1

(2π)3
√
2Ep⃗1

[
ap⃗1e

−ip1,µxµ1 + a+p⃗1e
ip1,µx

µ
1

]
,

(4.13)

where x1 = Λx and p⃗1 is a dummy integration variable. To force the two equa-

tions look similar to each other, we inspect phases of exponential functions

in the second equation. We find

p1,µx
µ
1 = p1,µΛ

µ
νx
ν = p1,µΛ̄

µ
ν x

ν = xν Λ̄
ν
µp
µ
1 = xνp

ν, (4.14)

where we introduced a four-vector

pµ = Λ̄µνp
ν
1 . (4.15)

The matrix Λ̄ is the matrix of the inverse Lorentz transformation.

2



We can interpret the above equation as the integration-variable transfor-

mation. Since this equation represents a Lorentz transformation of a four-

vector pµ1 and since d
3p⃗/(2Ep⃗) is Lorentz-invariant, we easily find

d3p⃗1

(2π)3
√
2Ep⃗1

=
d3p⃗

(2π)3
√
2Ep⃗

√
Ep⃗1
Ep⃗
. (4.16)

Hence, we can write

φ(x1) =

∫
d3p⃗

(2π)3
√
Ep⃗

√
EΛp⃗
Ep⃗

[
aΛp⃗e

−ipx + a+Λp⃗e
ipx

]
, (4.17)

Requiring that Eq. (4.12) holds, we find the transformation rules for creation

and annihilation operators

U(Λ)ap⃗U
−1(Λ) =

√
EΛp⃗
Ep⃗

aΛp⃗, U(Λ)a+p⃗ U
−1(Λ) =

√
EΛp⃗
Ep⃗

a+Λp⃗. (4.18)

To understand what these equations imply, consider single particle state

|p⃗⟩. Such a state is constructed by acting on the vacuum state with the
relevant creation operator

|p⃗⟩ = (2Ep⃗)1/2a+p⃗ |0⟩. (4.19)

Note that we use relativistically-invariant normalization of the state |p⃗⟩.
Then Lorentz transformation of this state leads to

U(Λ)|p⃗⟩ = (2Ep⃗)1/2
√
EΛp⃗
Ep⃗

a+Λp⃗|0⟩ = |Λp⃗⟩, (4.20)

which is a quantum state with the boosted momentum. Note that we assumed

that the vacuum state is invariant under Lorentz transformations

U(Λ)|0⟩ = |0⟩. (4.21)

To move further, we recall that Lorentz transformations form what mathe-

maticians call a “group”. This means that a product of two Lorentz transfor-

mations is a Lorentz transformation and that for every transformation there
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is an inverse one. As with most of the continuous groups, any Lorentz trans-

formations can be constructed from infinitesimal transformations by applying

them multiple times. Consider a matrix of Lorentz transformations Λµν. A

“small” Lorentz transformation is written as

Λµν = g
µ
ν + ω

µ
ν. (4.22)

Constraints on ωµν follows from Eq. (4.3). Working to first order in ω, we

find that ωµν is anti-symmetric,

ωµν = −ωνµ. (4.23)

In the four-dimensional space, an anti-symmetric rank-two tensor has six in-

dependent components. These components can be thought of as indepen-

dent Lorentz transformation that leave scalar products of two four-vectors

x0y 0 − x⃗ · y⃗ invariant; the independent transformations are – three Lorentz-
boosts (one in each directions) and three rotations (one around each of the

three coordinate axes).

To find explicit expressions for the tensor ωµν, we start with rotations. Ro-

tations do not change time-like components, so we assume that, for rotations,

ω0i vanishes. For spatial components, we write

ωi j = −ϵi jknkθ, (4.24)

where n⃗ is the unit vector that describes the direction of the rotation axis and

θ is the infinitesimal rotation angle of the reference frame.

Lorentz-boosts are described by the components of the matrix ωµν where

either µ or ν equals to zero. If the Lorentz transformation describes a boost to

a reference system that moves with a small velocity βn⃗ relative to an original

system, we find1

ωi0 = niβ. (4.25)

We have already seen that Lorentz symmetry has important consequences

for the scalar field and its representation in terms of creation and annihilation

operators. We have seen that in this case Lorentz transformations are repre-

sented by unitary operators acting in the Hilbert space of the theory. These

operators should furnish representation of the Lorentz group, i.e.

U(Λ1Λ2) = U(Λ1)U(Λ2), U(1̂) = Î, (4.26)

1Note that if a particle was at rest in the original system, it will be moving with the

velocity −βn⃗ in the new one.
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where I is the identity operator and

U(Λ−1) = U−1(Λ). (4.27)

Consider an infinitesimal transformation parameterized by a matrix ω.

Then

U(1 + ω) ≈ Î +
i

2
ωµνM

µν, (4.28)

where Mµν are generators of the Lorentz algebra. What exactly these objects

are depends on the space where operators U act or, in other words, they de-

pend on the representation of the group and/or algebra that we are interested

in.

We will start by dealing with these operators as abstract objects and find

their transformation properties which are representation-independent. To do

so, consider

U−1(Λ)U(Λ′)U(Λ) = U(Λ−1Λ′Λ). (4.29)

We then consider the transformation Λ′ to be infinitesimal and write

Λ′ = 1 + ω′. (4.30)

Then

U−1(Λ)

(
I +

i

2
ωµνM

µν

)
U(Λ) = U(Λ−1(1 + ω)Λ). (4.31)

It is straightforward to obtain(
Λ−1(1 + ω)Λ

)µ
ν
= gµν + Λ

αµΛρνωαρ. (4.32)

Writing U(gµν + Λ
αµΛρνωαρ) in terms of algebra generators, we find that

generators of Lorentz algebra should transform in the following way

U−1(Λ) Mµν U(Λ) = ΛµρΛ
ν
αM

ρα. (4.33)

By extrapolation, we can say that the above transformation applies to tensor

operators of any rank. Hence, for example, the operator of four-momentum

P µ = (H, P⃗ ) gets transformed as follows

U(Λ−1)P µU(Λ) = ΛµνP
ν, (4.34)
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which is what one expects from a four-vector operator.

As a further consequence of the fact that Lorentz transformations form a

group, one can show that generators of Lorentz algebra satisfy commutation

relations. Consider Eq. (4.33) and take the Lorentz transformation in that

equation to be infinitesimal. Then we write

U(Λ) = I +
i

2
ωµνM

µν, U(Λ−1) = I −
i

2
ωµνM

µν,

Λµν = g
µ
ν + ω

µ
ν,

(4.35)

and obtain

[Mµν,Mρσ] = i [gµσMρν + gνσMµρ − gµρMσν − gνρMµσ] . (4.36)

Although these commutation relations look complicated, we know that we

should be able to identify three generators of rotations and three generators

of Lorentz boosts. One can check that by using

J i =
1

2
ϵi jkMjk , (4.37)

and

K i = M0i , (4.38)

instead of Mµν, one obtains the following commutation relations

[Ji , Jj ] = i ϵi jkJk , [Ki , Kj ] = −i ϵi jkJk , [Ji , Kj ] = i ϵi jmKm. (4.39)

We note that the commutation relations for Ji are identical to that of the

angular momentum operator in Quantum Mechanics.

A similar exercise applied to Eq. (4.34) allows us to find commutation

relations of the generators of Lorentz group with the Hamiltonian and three

momenta operators. The generic form reads

[P µ,Mρσ] = i (gµσP ρ − gµρP σ) . (4.40)

Using J i and K i to parameterize generators Mµν, we find

[J i , H] = 0, [Ji , Pj ] = i ϵi jkPk , [Ki , H] = iPi , [Ki , Pj ] = iδi jH. (4.41)
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Finally, we also know that

[Pi , Pj ] = 0, [Pi , H] = 0. (4.42)

Together, the above commutation relations describe the Lie algebra of Poin-

care’ group.

We will now describe transformation properties of fields that we use to

construct Lagrangians in Quantum Field Theories. We have already talked

about the scalar field φ. According to the previous discussion the transforma-

tion rule reads

U−1(Λ) φ(x) U(Λ) = φ(Λ−1x). (4.43)

A transformation rule for a vector field V µ(x) is similar

U−1(Λ) V µ(x) U(Λ) = φ(Λ−1x) = Λµν V
ν(Λ−1x). (4.44)

The generalization to the case of tensor fields of an arbitrary rank are clear.

We have seen that Lorentz group contains rotations as eligible transfor-

mations and we know from Quantum Mechanics that representations of the

rotation group involve objects with either integer or half-integer total angular

momentum. We have so far discussed objects that transform as scalars, vec-

tors, etc. which, from rotations point of view, corresponds to integer spins. To

see how objects with half-integer spin appear in a relativistic Quantum Field

Theory, we go back to the commutation relations in Eq. (4.39) and try to

analyze them. Our goal should be to determine the minimal set of generators

that can be diagonalized simultaneously; we will then use this information to

determine eligible states and their quantum numbers.

To simplify the commutation relations in Eq. (4.39) it is convenient to

introduce new operators

I±m =
1

2
(Jm ± iKm) . (4.45)

It is easy to check that commutation relations of these operators decouple

[I+i , I
+
j ] = i ϵi jk I

+
k , [I−i , I

−
j ] = i ϵi jk I

−
k , [I+i , I

−
j ] = 0. (4.46)

Since the above commutation relations are just two identical copies of the

commutation relations for the angular momentum operators in quantum me-

chanics, we can easily understand how to classify them.
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Indeed, the Hilbert state is then constructed out of states that are direct

products of eigenstates of I+ and I− operators

|ψ⟩ = |ψ+⟩ ⊗ |ψ−⟩. (4.47)

The states ψ± are eigenstates of the following operators

(I±)2 =

3∑
i=1

(I±i )
2, I±3 , (4.48)

so that

(I±)2|ψ±⟩ = j±(j± + 1)|ψ±⟩, I±3 |ψ±⟩ = m±|ψ±⟩, (4.49)

with −j± ≤ m± ≤ jpm and j± = 0, 1/2, 1, 3/2, ....
Terms with j± = 0 are the scalar fields that we already discussed. Next

possibility is to take j+ = 1/2 and j− = 0 or vice versa. Consider, for de-

finiteness, j+ = 1/2 and j− = 0. The Hilbert space is two dimensional; the

generators can be chosen to be Pauli matrices

I+i =
1

2
(Ji + iKi) =

1

2
σi , I−i =

1

2
(Ji − iKi) = 0. (4.50)

We solve this system to find

Ji =
1

2
σi , Ki = −

i

2
σi . (4.51)

For j− = 0 and j+ = 1/2 the situation is similar but we will need generators

to be

Ji =
1

2
σi Ki =

i

2
σi . (4.52)

Each of the two representations (1/2, 0) and (0, 1/2) can be described

by a two-component spinor, as we do in Quantum Mechanics. We can also

combine the two two-component spinors into a four-component object

ψ =

(
ψ+
ψ−

)
, (4.53)

which will simultaneously furnish (1/2, 0), (0, 1/2) and (1/2, 1/2) represen-

tations of the Lorentz group. Group generators are then represented by four-

by-four matrices

Ji =
1

2

(
σi 0

0 σi

)
, Ki =

i

2

(
−σi 0
0 σi

)
. (4.54)
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As we will see later on, in Nature all representations (1/2, 0), (0, 1/2) and

(1/2, 1/2) are realized in the spectrum of elementary particles. However, the

first representation we will need is (1/2, 1/2) and we will use it to describe an

electron. This is somewhat peculiar since, as we know from Quantum Mecha-

nics, an electron has spin 1/2 and, therefore, is described by a two component

spinor. Hilbert space of (1/2, 1/2) representation are four-component spinors,

as follows from the above discussion, so it appear that we have two degrees

of freedom too much. The reason we still need (1/2, 1/2) representation to

describe an electron is parity. If we perform a parity transformation, J⃗ → J⃗

and K⃗ → −K⃗. This implies that I+ → I− and vice versa. A parity-invariant

theory therefore cannot be based on either (1/2, 0) or (0, 1/2) representation

and requires both.

Now, to describe an electron we need an equation. This equation was

guessed by Dirac and we will try to guess it as well. Suppose we take a

four-component spinor

Ψ =

(
ψ

χ

)
, (4.55)

to describe an electron in its rest frame. Since we need two and not four

component, an equation that should define an admissible solution for an elec-

tron can be thought of as projection on two relevant degrees of freedom.

According to our discussion about parity, such an equation should state that

for a physical electron ψ = χ. We then write an equation for the electron in

its rest frame which makes this statement manifest. The equation reads

1

2

(
1− γ0

)
Ψ = 0, (4.56)

where γ0 is a four-by-four matrix defined as

γ0 =

(
0 1

1 0

)
. (4.57)

Since we have an equation for the electron at rest, we can obtain an

equation for the electron in an arbitrary frame by performing a boost. A

boost is described by an operator

U = e−i n⃗·K⃗η, (4.58)
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where η is the so-called rapidity and n⃗ is the direction of the boost. Rapidity

is defined as

cosh η =
E

m
, (4.59)

where E is the energy of the electron in the new frame. The transformed

equation reads

U(γ0 − 1)U−1Ψ(p⃗), (4.60)

where

Ψ(p) = UΨ. (4.61)

One can show that

Uγ0U−1 =
γµpµ
m

, (4.62)

where γ0 is given above and

γ i =

(
0 σi
−σi 0

)
. (4.63)

The matrices γ0, γ1, .. are known as Dirac matrices (in the Weyl representa-

tion). The spinor Ψ(p) is the Dirac spinor and the resulting equation

(γµpµ −m)Ψ(p) = 0, (4.64)

is the Dirac equation. In the position space, the Dirac equation reads

(i∂µγ
µ −m)Ψ(x) = 0. (4.65)

The transformation rules for the Dirac field Ψ(x) reads

U−1(Λ) Ψ(x) U(Λ) = Λ̂1/2 Ψ(Λ
−1x), (4.66)

where

Λ̂1/2 = e
−iK⃗·η⃗−i J⃗·ϕ⃗. (4.67)

This transformation rule has important consequences for using Dirac fields

to construct quantities which transform in a particular way under Lorentz

transformations. The simplest quantity that we may want to construct is the

the scalar “field”. A natural thing to try would be Ψ+(x)Ψ(x) where the sum
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over spinor indices is assumed. Under Lorentz transformation conjugate field

Ψ+ transforms as follows

U−1(Λ)Ψ+(x)U(Λ) = Ψ+(Λ−1x)Λ+1/2. (4.68)

The important point is that

Λ+1/2 = e
−iK⃗·η⃗+i J⃗·ϕ⃗, (4.69)

so that

Λ+1/2 ̸= Λ
−1
1/2. (4.70)

This means that Ψ+(x)Ψ(x) is not transformed in the right way.

To construct a proper conjugate field, we can use the matrix γ0. Indeed,

consider

U−1(Λ)Ψ+(x)γ0U(Λ) = Ψ
+(Λ−1x)Λ+1/2γ0. (4.71)

Using explicit representation of the matrix γ0 and boost operators Ki , it is

easy to see that2

Λ+1/2γ0 = e
−iK⃗·η⃗+i J⃗·ϕ⃗γ0 = γ0e

−iK⃗·η⃗−i J⃗·ϕ⃗ = γ0Λ
−1
1/2. (4.72)

Writing Ψ+γ0 = Ψ̄, we obtain

U−1(Λ)Ψ̄(x)U(Λ) = Ψ̄(x)Λ−11/2. (4.73)

Therefore, we find

U−1Ψ̄(x)Ψ(x)U = Ψ̄(Λ−1x)Ψ(Λ−1x), (4.74)

which is indeed a transformation rule of a scalar field.

Similarly, we can take Ψ̄(x)γµΨ(x). In this case, the transformation rule

is

U−1Ψ̄(x)γµΨ(x)U = Ψ̄(Λ−1x)Λ−11/2 γ
µΛ1/2Ψ(Λ

−1x). (4.75)

One can show that

Λ−11/2 γ
µΛ1/2 = Λ

µ
νγ
ν (4.76)

2The reason for this is that [J⃗, γ0] = 0 and {K⃗, γ0} = 0, as can be verified using the
explicit form of these operators.
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which implies that the transformation rules of Ψ̄γµΨ are the same as of a

vector field.

This understanding allows us to write Lorentz-invariant action for fermi-

ons. A Lorentz-invariant action with the smallest number of fermion fields

and derivatives reads

S =

∫
d4xΨ̄ (∂µγ

µ −m)Ψ. (4.77)

Variation of this action w.r.t. to the field Ψ̄ gives the Dirac equation.
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