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5 Solutions of the Dirac equation

In this lecture we will discuss solutions of the Dirac equation

(iγµ∂µ −m)Ψ = 0. (5.1)

The four matrices γ0, γ⃗ are the Dirac matrices. In the Weyl representation,

they read

γ0 =

(
0 1

1 0

)
, γ⃗ =

(
0 σ⃗

−σ⃗ 0

)
. (5.2)

Using these matrices, we write the Dirac equation as(
−m i(∂0 + σ⃗ · ∇⃗)

i(∂0 − σ⃗ · ∇⃗) −m

)(
ψ

χ

)
= 0. (5.3)

The spinors ψ and χ are two-component spinors; they are used to construct a

four-component spinor Ψ and are called the left- and the right-handed spinors.

They satisfy a system of differential equations

i
(
∂0 + σ⃗ · ∇⃗

)
χ = mψ.

i
(
∂0 − σ⃗ · ∇⃗

)
ψ = mχ.

(5.4)

These equations can be re-written using the following notation

σµ = (1, σ⃗), σ̄µ = (1,−σ⃗). (5.5)

Then, Eq. (5.4) becomes

iσµ∂µχ = mψ, i σ̄µ∂µψ = mχ. (5.6)

These equations have an interesting property – they decouple from each other

if m = 0. This implies that ψ and χ become independent in the massless limit.

To construct solutions of the Dirac equation, recall that any solution of

the Dirac equation must be also a solution of the Klein-Gordon equation. We

therefore write

Ψ = u(p)e−ipµx
µ

. (5.7)

The four-momentum pµ is such that p2 = m2. Also, pµ = (Ep⃗, p⃗) and Ep⃗ =√
p⃗2 +m2. The equation for u(p) follows from the Dirac equation. We find

(γµpµ −m) u(p) = 0. (5.8)
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As we already discussed, in the rest frame of p, the Dirac equation ensures

that two upper and two lower components of the spinor u(p) are the same.

We then write

urest =
√
m

(
ξs
ξs

)
, (5.9)

where ξ denotes a two-dimensional spinor which describes a particular polari-

zation of a fermion in the rest frame.

By choosing the spinor ξs to be normalized as ξ
+
s ξs = 1, we can ensure

that

ūrest(p)urest(p) = m(ξ
+
s ξs + ξ

+
s ξs) = 2m. (5.10)

To obtain the generic solution, we need to boost Ψ(x) to a reference

frame where the fermion’s momentum is pµ. For the spinor u(p) this implies

u(p, s) = e−iK⃗·η⃗urest(s). (5.11)

Using the definition of K⃗

K⃗ =

(
− i
2
σ⃗ 0

0 i
2
σ⃗

)
, (5.12)

we find

e−iK⃗η⃗ =

(
cosh η

2
− σ⃗ · n⃗ sinh η

2
0

0 cosh η
2
+ σ⃗ · n⃗ sinh η

2

)
, (5.13)

where n⃗ = η⃗/|η⃗| = p⃗/|p⃗|, cosh η = Ep/m and sinh η = |p⃗|/m.
To elucidate the structure of this matrix, we write it as

e−iK⃗η⃗ = cosh
η

2
1̂ + sinh

η

2

(
−σ⃗ · n⃗ 0

0 σ⃗ · n⃗

)
. (5.14)

We then use the fact that the following two-by-two matrices

P± =
1± n⃗ · σ⃗
2

(5.15)

are operators that project an arbitrary two-component spinors on states with

either +1/2 or −1/2 spin projection along the n⃗ axis. A simple algebra leads
to

u(p, s) =

( √
E + p P− +

√
E − p P+ 0

0
√
E + p P+ +

√
E − p P−

)(
ξs
ξs

)
.

(5.16)
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One can write this expression in a more compact form using the fact that√
E + pP− +

√
E − pP+ =

√
pµσµ√

E + pP+ +
√
E − pP− =

√
pµσ̄µ.

(5.17)

To prove this, we need to recognize that the expression on the right hand

side must be linear1 in σ⃗ and then compare the eigenvalues of the left hand

side and the right hand side.

We now take

u(p, s) =

( √
pµσµ ξs√
pµσ̄µ ξs

)
(5.18)

as expressions for spinors that provide solutions to the Dirac equation and

investigate their properties.

For example, we can check that these solutions remain properly normalized

after the boost. We start by writing

ū(p, s) =
(
ξ+s

√
pµσµ, ξ

+
s

√
pµσ̄µ

)
γ0 =

(
ξ+s

√
pµσ̄µ, ξ

+
s

√
pµσµ

)
. (5.19)

Then,

ū(p, s1) u(p, s2) = ξ
+
s1

(√
pµσ̄µ

√
pνσν +

√
pµσµ

√
pνσ̄ν

)
ξs2 (5.20)

To simplify products of square roots, we use Eq. (5.17). We then find√
pµσµ

√
pνσ̄ν +

√
pµσ̄µ

√
pνσν = 2

√
(E2 − p2) = 2m. (5.21)

Hence,

ū(p, s1) u(p, s2) = 2m δs1s2. (5.22)

Another important quantity that we require is the so-called density matrix.

It is defined as follows

ραβ =

2∑
s=1

uα(p, s) ūβ(p, s), (5.23)

where α and β are indices that denote components of the spinors. We use

explicit expressions for u and ū and write

ραβ =

2∑
s=1

( √
pµσµ ξs√
pµσ̄µ ξs

)
α

(
ξ+s
√
pνσ̄ν, ξ

+
s

√
pνσν

)
β

=

2∑
s=1

( √
pµσµ ξs ⊗ ξ+s

√
pνσ̄ν

√
pµσµ ξs ⊗ ξ+s

√
pνσν√

pµσ̄µ ξs ⊗ ξ+s
√
pνσ̄ν

√
pµσ̄µ ξs ⊗ ξ+s

√
pνσν

)
αβ

.

(5.24)

1Any function of n⃗ · σ⃗ is linear in this quantity as its square is one.
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This expression can be further simplified if we recognize that

2∑
s=1

ξ+s ξs = 1̂, (5.25)

where the matrix on the right-hand side is the two-by-two identity matrix.

Then, using
√
pµσµ

√
pνσ̄ν = m, we find

ραβ =

(
m pµσ

µ

pµσ̄
µ m

)
αβ

= (pµγ
µ +m)αβ. (5.26)

There exists another important class of solutions of the Dirac equation;

these are solutions with “negative” energies. To construct them, we write

Ψ(x) = v(p)e ipµx
µ
, with p0 > 0. The equation for v(p) becomes

(pµγ
µ +m) v(p) = 0. (5.27)

We construct v(p) following the same steps we used to construct u(p). In

fermion’s rest frame, we find

v(p, s) =
√
m

(
ηs
−ηs

)
, (5.28)

where ηs is a two-component spinor. Applying the boost operator, we find

v(p, s) =

( √
pµσµηs

−√pµσ̄µηs

)
. (5.29)

It is straightforward to show that

v̄(p, s1)v(p, s2) = −2mδs1s2, (5.30)

and that the density matrix for v spinors reads

ραβ =

2∑
s=1

vα(p, s)v̄β(p, s) = (pµγ
µ −m)αβ (5.31)

As the final comment, we note that spinors v(p) und u(p) are “orthogo-

nal” to each other

v̄(p, s1)u(p, s2) = 0. (5.32)
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We know that in the Weyl representation, two upper components of the

four-component spinor furnish (1/2, 0) (left, L) representation of the Lorentz

group and two lower components the (0, 1/2) (right, R) representation. We

can construct projection operators on these two representations by using the

matrix that is called γ5. It reads

γ5 =

(
1 0

0 −1

)
. (5.33)

The projection operators are written as

PL,R =
1± γ5
2

. (5.34)

The matrix γ5 is not fully independent of the other Dirac matrices. In fact,

we can write

γ5 = −iγ0γ1γ2γ3. (5.35)

The matrix γ5 anti-commutes with all Dirac matrices

γµγ5 + γ5γ
µ = 0, (5.36)

and its square is the identity matrix

γ25 = 1. (5.37)

As we said earlier, in the massless case, left- and right-handed two-component

fermions are independent and satisfy the following (Weyl) equations

pµσ̄
µψL = 0, pµσ

µψR = 0. (5.38)

Since for the massless fermion p0 = |p⃗|, we write

pµσ
µ = p0

(
1−

σ · p⃗
|p⃗|

)
, pµσ̄

µ = p0

(
1 +

σ · p⃗
|p⃗|

)
, (5.39)

and find
σ · p⃗
|p⃗| ψL = −ψL,

σ · p⃗
|p⃗| ψR = +ψR, (5.40)

Hence, Weyl equations simply state that right-handed fermions are always

polarized along the direction of their momentum and left-handed fermions
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– in the opposite direction. This quantity – the projection of particle’s spin

on the direction of its momentum – is called helicity. The four-component

massless spinors are then written as

u(p, L) =
√
2Ep

(
ξ−
0

)
, u(p,R) =

√
2Ep

(
0

ξ+

)
, (5.41)

where ξ± satisfy
σ⃗ · p⃗
|p⃗| ξ± = ±ξ±. (5.42)
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