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6 Quantization of a Dirac field

As we explained earlier, the Lagrange density in case of the fermion field ψ

reads

L = ψ̄ (iγµ∂µ −m)ψ. (6.1)

We would like to quantize this theory by repeating what we did for the scalar

field, namely write down canonical commutation relations, solve them by ex-

pressing ψ in terms of creation and annihilation operators and then proceed

with computing the Hamiltonian and determining the quantum states.

An important difference between fermions and bosons is that multi-fermionic

states should be antisymmetric under permutations of different particles. As

such states will be constructed by acting with creation operators on the va-

cuum, fermion creation and annihilation operators have to anticommute. By

analogy with the quantization of the scalar field, we expect that the Dirac field

ψ is a linear combination of various creation and annihilation operators and,

since such operators anticommute, we expect that Dirac fields anti-commute

as well.

To quantize the theory, we treat ψ̄ and ψ as independent degrees of

freedom and compute a canonical momentum of the field ψ. We find

πα =
δL

δ∂0ψα
= (ψ̄iγ0)α = iψ

+
α . (6.2)

We then require that the following anti-commutation relations hold

{ψβ(t, y⃗), πα(t, x⃗)} = iδ(3)(x⃗ − y⃗)⇒
{ψα(t, x⃗), ψ+β (t, y⃗)} = δαβ δ

(3)(x⃗ − y⃗),
(6.3)

and

{ψα(t, x⃗), ψβ(t, y⃗)} = {ψ+α (t, x⃗), ψ+β (t, y⃗)} = 0. (6.4)

To proceed further, we compute the Hamiltonian density. We write

H =
4∑
α=1

πα∂0ψα − L = iψ+∂0ψ − ψ̄
(
iγ0∂0 + i γ⃗ · ∇⃗ −m

)
ψ, (6.5)

and obtain

H = ψ̄
(
−i γ⃗ · ∇⃗+m

)
ψ. (6.6)
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The Hamiltonian is obtained by integrating H over d3x⃗

H =

∫
d3x⃗ H =

∫
d3x⃗ ψ̄

(
−i γ⃗ · ∇⃗+m

)
ψ. (6.7)

To (eventually) diagonalize the Hamiltonian operator, we write Ψ and

Ψ̄ as a linear combination of creation and annihilation operators. Similar to

the case of the complex scalar field, the field Ψ is a linear combination of

particular annihilation operators multiplied with positive energy solutions and

different creation operators multiplied with negative energy solutions

ψ(t, x⃗) =

2∑
s=1

∫
d3p⃗

(2π)3
√
2Ep⃗

[
ap⃗,su(p, s)e

−ipµxµ + b+p⃗,sv(p, s)e
ipµxµ

]
. (6.8)

The conjugate field reads

ψ+(t, x⃗) =

2∑
s=1

∫
d3p⃗

(2π)3
√
2Ep⃗

[
a+p⃗,su

+(p, s)e ipµx
µ

+ bp⃗,sv
+(p, s)e−ipµx

µ]
.

(6.9)

To satisfy simple anti-commutation relations, we assume that

{ap⃗1,s1, ap⃗2,s2} = {bp⃗1,s1, bp⃗2,s2} = {ap⃗1,s1, bp⃗2,s2} = {ap⃗1,s1, b+p⃗2,s2} = 0. (6.10)

Further relations of a similar type are obtained by writing down conjugate

versions of these anticommutation relations. It is easy to see that the above

anticommutation relations ensure that, at equal times, any ψ anticommutes

with any ψ and any ψ+ anticommutes with any ψ+. We then need to compute

an anticommutator of ψ and ψ+. We write

{
ψα(t, x⃗1), ψ

+
β (t, x⃗2)

}
=

∑
s1,s2

∫
d3p⃗1d

3p⃗2

(2π)6
√
2Ep12Ep2

[
uα(p1, s1)u

+
β (p2, s2)e

−ip1x1+ip2x2
{
ap⃗1,s1, a

+
p⃗2,s2

}
+vα(p1, s1)v

+
β (p2, s2)e

ip1x1−ip2x2
{
b+p⃗1,s1, bp⃗2,s2

}]
.

(6.11)

Given what we know about creation and annihilation operators for the scalar

field, a natural choice for the anticommutators is{
ap⃗1,s1, a

+
p⃗2,s2

}
=

{
bp⃗1,s1, b

+
p⃗2,s2

}
= (2π)3δ(3)(p⃗1 − p⃗2)δs1s2. (6.12)
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We will now show that these anticommutation relations give the desired an-

ticommutation relation of ψ and ψ+.

We use Eq. (6.12) in Eq. (6.11) and find

{
ψα(t, x⃗1), ψ

+
β (t, x⃗2)

}
=

∑
s

∫
d3p⃗

(2π)32Ep

[
uα(p, s)u

+
β (p, s)e

i p⃗(x⃗1−x⃗2)

+ vα(p, s)v
+
β (p, s)e

−i p⃗(x⃗1−x⃗2)

]
.

(6.13)

To simplify Eq. (6.12) we need to sum over polarizations. To do this, we can

use the density matrices for positive and negative energy solutions that we

computed earlier. We find∑
s

uα(p, s)u
+
β (p, s) =

(
(pµγ

µ +m)γ0
)
αβ∑

s

vα(p, s)v
+
β (p, s) =

(
(pµγ

µ −m)γ0
)
αβ
.

(6.14)

Substituting these results into Eq. (6.13) and changing p⃗ → −p⃗ in the second
term, we obtain{
ψα(t, x⃗1), ψ

+
β (t, x⃗2)

}
=

∫
d3p⃗

(2π)32Ep
2Epδαβe

i p⃗(x⃗1−x⃗2) = δαβδ
(3)(x⃗1 − x⃗2),

(6.15)

as desired.

As the next step, we express the Hamiltonian operator in terms of creation

and annihilation operators. This is done in a relatively straightforward way;

the following equations are helpful

(γ⃗ · p⃗ +m)u(p) = p0γ0u(p), (−γ⃗ · p⃗ +m)v(p) = −p0γ0v(p), (6.16)

as well as

ū(p⃗, s1)γ0v(−p⃗, s2) = 0, v̄(p⃗, s1)γ0u(−p⃗, s2) = 0,
ū(p⃗, s1)γ0u(p⃗, s2) = 2Epδs1,s2, v̄(p⃗, s1)γ0v(p⃗, s2) = 2Epδs1,s2.

(6.17)
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Using these equations, one can show that

H =
∑
s

∫
d3p⃗

(2π)3
Ep⃗

[
a+p⃗,sap⃗,s − bp⃗,sb

+
p⃗,s

]
=

∑
s

∫
d3p⃗

(2π)3
Ep⃗

[
a+p⃗,sap⃗,s + b

+
p⃗,sbp⃗,s

]
,

(6.18)

where in the last step we neglected the infinite vacuum energy.

The eigenstates of the Hamiltonian are constructed by acting with creation

operators a+p⃗,s and b
+
p⃗,s on the vacuum state of the theory. Both “a”- and “b”

particles with equal momentum have the same energy and the same mass.

We will see later that particles created by a+ operators describe electrons and

particle created with b-operators describe positrons, i.e. “electrons with the

positive electric charge”. The label s in both cases describes the polarization

state of the created fermion; this label assumes two values as electrons and

positrons are spin 1/2 particles.

Similar to what we did for the scalar field, we will study the various Green’s

functions of the Dirac equation. Consider ⟨0|ψα(x)ψ̄β(y)|0⟩. Using the fact
that annihilation operators annihilate the vacuum state, we find

⟨0|ψα(x)ψ̄β(y)|0⟩ =
∑
s1,s2

∫
d3p⃗1 d

3p⃗2

(2π)6
√
2Ep12Ep2

⟨0|ap⃗1,s1a+p⃗2,s2|0⟩×

uα(p⃗1, s1)ūβ(p⃗2, s2)e
−ip1x+ip2y .

(6.19)

We use

⟨0|ap⃗1,s1a+p⃗2,s2|0⟩ = (2π)
3δs1s2δ

(3)(p⃗1 − p⃗2) (6.20)

and results for the density matrix to find

⟨0|ψα(x)ψ̄β(y)|0⟩ =
∫

d3p⃗

(2π)32Ep
(pµγ

µ +m)αβe
−ip(x−y). (6.21)

We can write

⟨0|ψα(x)ψ̄β(y)|0⟩ = (i∂x µγµ +m)αβ
∫

d3p⃗

(2π)32Ep
e−ip(x−y), (6.22)

where we indicated that the derivative w.r.t. xµ is taken.
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A similar computation gives

⟨0|ψ̄β(y)ψα(x)|0⟩ = −(i∂µγµ +m)αβ
∫

d3p⃗

(2π)32Ep
e+ip(x−y). (6.23)

We can use these results to construct various Green’s functions for the Di-

rac equation; in doing so, we benefit from our knowledge of Green’s functions

calculated for the Klein-Gordon equation. Consider a Feynman propagator for

fermion fields. It is defined as follows

⟨0|Tψα(x)ψ̄β(y)|0⟩ = θ(x0−y0)⟨0|ψα(x)ψ̄β(y)|0⟩−θ(y0−x0)⟨0|ψ̄β(y)ψα(x)|0⟩.
(6.24)

Note the relative minus sign between the two terms. This sign is part of a

definition of the T -product for fermion fields; it is related to the fact that

fermion fields anticommute and, to determine whether a particular term enters

with a plus or a minus sign, we need to count the number of permutations

that are required to bring the ordering of fermion fields back to the original

ordering.

We use our previous results to write

⟨0|Tψα(x)ψ̄β(y)|0⟩ = θ(x0 − y0)(i∂µγµ +m)αβ
∫

d3p⃗

(2π)32Ep
e−ip(x−y)

+ θ(y0 − x0)(i∂µγµ +m)αβ
∫

d3p⃗

(2π)32Ep
e+ip(x−y)

= (i∂µγ
µ +m)αβ

[
θ(x0 − y0)

∫
d3p⃗

(2π)32Ep
e−ip(x−y)

+ θ(y0 − x0)
∫

d3p⃗

(2π)32Ep
e+ip(x−y)

]

− iδ(x0 − y0)γ0αβ
[∫

d3p⃗

(2π)32Ep
e−ip(x−y) −

∫
d3p⃗

(2π)32Ep
e+ip(x−y)

]
.

(6.25)

By replacing p⃗ → −p⃗, we can easily see that the term proportional to δ(x0−
−y0) vanishes and the two terms that multiply (i∂µγµ +m)αβ combine into
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the Feynman Greens’s function of a scalar field Eq. (??). We obtain

⟨0|Tψα(x)ψ̄β(y)|0⟩ = (i∂µγµ +m)αβ
∫
d4p

(2π)4
i

p2 −m2 + i ϵe
−ip(x−y)

=

∫
d4p

(2π)4
(pµγ

µ +m)αβ
p2 −m2 + i ϵ e

−ip(x−y).

(6.26)

The above equation gives us the Feynman Green’s function for the Dirac

fermion.
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