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7 Symmetries in Quantum Field Theory

7.1 Continuous symmetries in Quantum Field Theory

Symmetries in physics play an important role as they, among other things,

allow us to find “integrals of motion”, i.e. quantities that in a closed dyna-

mical system cannot change with time. Plenty of such quantities are known

from classical mechanics and electrodynamics, i.e. energy, momentum, angu-

lar momentum, electric charge and, perhaps, a few others. In this lecture we

will discuss how to understand and use symmetries in a quantum field theory.

We can start this discussion by simply extrapolating what one usually does

in mechanics to a field theory. Indeed, in mechanics, we derive integrals of

motion by requiring that the action remains invariant under redefinition of

canonical coordinates and the time variable. In case of field theory, fields play

the role of a canonical coordinate in mechanics, and xµ the role of the time

variable.

We consider a field theory characterized by the action

S =

∫
d4xL(φ, ∂µφ). (7.1)

and imagine performing a field transformation

φ(x) = f (φ̃(x)), (7.2)

where f is a function of a new field φ̃. In general, after a transformation in

Eq. (7.5) we will find

L(φ(x), ∂µφ(x)) = L1(φ̃(x), ∂µφ̃(x)), (7.3)

with no obvious relation between L and L1. If we then use L1 to derive
equations of motion for the field φ̃, they will be different from the equations

of motion for the field φ and this will be the end of the story.

However, imagine a situation where

L1(φ̃, ∂µφ̃) = L(φ̃, ∂µφ̃) + ∂µKµ(x). (7.4)

Since addition of the total derivative to a Lagrange density does not change

equations of motion, equations of motion for the fields φ and φ̃ are the same;

transformations that satisfy these conditions are called symmetries.
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Suppose we found a field transformation that satisfies Eq. (7.4). To work

out its consequences, we consider an infinitesimal version of the transforma-

tion and write

φ = φ̃+ λ∆φ̃+O(λ2). (7.5)

Substituting this expression into L and expanding in λ, we obtain

L(φ, ∂µφ) = L(φ̃+ ∆φ̃, ∂µφ̃+ ∂µ∆φ̃)

= L(φ̃, ∂µφ̃) + λ
δL
δφ̃
∆φ̃+ λ

δL
δ[∂µφ̃]

∂µ∆φ̃+O(λ2).
(7.6)

Rewriting derivative in the third term on the r.h.s. we obtain

L(φ, ∂µφ) = L(φ̃, ∂µφ̃)

+ λ∆φ̃

[
δL
δφ̃
− ∂µ

(
δL

δ[∂µφ̃]

)]
+ λ∂µ

[
δL

δ[∂µφ̃]
∆φ̃

]
+O(λ2).

(7.7)

The second term on the r.h.s. vanishes if the field φ̃ satisfies equations of

motion. Since, according to Eq. (7.4), the difference between L computed
with φ and φ̃ fields is ∂µK

µ, we obtain

∂µK
µ = λ∂µ

[
δL

δ[∂µφ̃]
∆φ̃

]
. (7.8)

From the above equation it follows that

∂µJ
µ = 0, (7.9)

where

Jµ =
δL

δ[∂µφ]
∆φ̃−Kµ. (7.10)

The relation between the symmetry of the Lagrangian and the existence of the

conserved current Eqs. (7.9,7.10) is the essence of the so-called Noether’s

theorem. The conserved current Jµ is often referred to as the Noether’s

current.

To see how this works, consider the Lagrangian of a free massless scalar

field

L =
1

2
∂µφ ∂

µφ. (7.11)
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In this case, a transformation φ = φ̃ + a, where a is a constant, leaves L
unchanged, so Kµ = 0. The field ∆φ is just 1 and we find

Jµ = ∂µφ. (7.12)

The current conservation

∂µJ
µ = ∂µ∂

µφ = 0 (7.13)

is the Klein-Gordon equation for the massless field.

As another example, consider the theory of two identical, interacting scalar

fields

L(φ1, φ2) =
∂µφ1 ∂

µφ1
2

+
∂µφ2 ∂

µφ2
2

−
m2 (φ21 + φ

2
2)

2
− V (φ21 + φ22), (7.14)

where V is an arbitrary function that only depends on φ21 + φ
2
2.

The Lagrangian density in Eq. (7.14) does not change if, instead of φ1,2
we use two other fields φ̃1,2 defined as follows

φ1 = cos θ φ̃1 + sin θ φ̃2,

φ2 = − sin θ φ̃1 + cos θ φ̃2.
(7.15)

The infinitesimal version of these transformations reads

φ1 = φ̃1 + θφ̃2, φ2 = φ̃2 − θφ̃1, (7.16)

so that

∆φ̃1 = φ̃2, ∆φ̃2 = −φ̃1. (7.17)

Since the Lagrangian is invariant, Kµ = 0 and the conserved current reads

Jµ =

2∑
i=1

δL
δ∂µφi

∆φi = (∂
µφ1)φ2 − (∂µφ2)φ1. (7.18)

It is instructive to re-derive this result using somewhat different notations.

Suppose that instead of φ1,2 we introduce two complex fields

φ =
φ1 + iφ2√
2

, φ∗ =
φ1 − iφ2√
2

. (7.19)
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The Lagrangian density in Eq. (7.14) becomes

L = ∂µφ∂µφ∗ −m2φφ∗ − V (φφ∗). (7.20)

The Lagrangian depends on the product of φ and φ∗. For this reason it is

invariant under the following transformation

φ = e iλφ̃, φ∗ = e−iλφ̃∗. (7.21)

The infinitesimal transformations lead to

∆φ̃ = i φ̃, ∆φ̃∗ = −i φ̃∗. (7.22)

We use these formulas to write the conserved current

Jµ = φ∗(∂µφ)− (∂µφ∗) φ. (7.23)

Finally, consider the transformation which, at first sight, has nothing to

do with the transformation of fields discussed above. Namely, we will perform

a coordinate transformation

xµ = xµ1 + λa
µ, (7.24)

where aµ is a constant four-vector. Although this transformation does not

appear to be a field transformation, fields do change under this transformation

as well. We write

φ(x) = φ(x1 + λa) = φ̃(x1). (7.25)

We then find

φ(x) = φ̃(x)− λaµ∂µφ̃(x), (7.26)

so that

∆φ̃(x) = −aµ∂µφ̃. (7.27)

Also, according to Eq. (7.25) the following equation is valid

L(φ(x), ∂µφ(x)) = L(φ̃(x1), ∂µφ̃(x1)) (7.28)

Although this equation appears to tell us that the Lagrangian written with

old and new fields are equal and, therefore Kµ = 0, it is to be noted that
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the two Lagrangians are computed at different space time points. However,

to make use of Eq. (7.4), we need to write them at the same point. Since

L(x1) = L(x − λa) = L(x)− λaµ∂µL, (7.29)

we conclude that

Kµ = −aµ∂µL. (7.30)

Finally, we use Eq. (7.10) and find the conserved current

Jµ = −aν
δL
δ∂µφ

∂νφ+ a
µL. (7.31)

Since aµ is an arbitrary vector, we can introduce a rank-two tensor T µν

T µν =
δL
δ ∂µφ

∂νφ− gµνL. (7.32)

This (symmetric) tensor is conserved

∂µT
µν = 0. (7.33)

To understand the implications of the fact that a conserved current exists,

we define the quantity that we will call the charge

Q(t) =

∫
d3x⃗ J0(t, x⃗). (7.34)

In principle Q(t) should be considered time-dependent. To check if this is

indeed the case, we compute the time-derivative of Q(t) and use Eq. (7.4).

We then find

dQ(t)

dt
=

∫
d3x⃗

∂J0(t, x⃗)

∂t
. = −

∫
d3x⃗ ∇⃗ · J⃗ = −

∮
|x⃗ |=∞

d2S⃗ · J⃗ = 0, (7.35)

where we have assumed that J⃗ vanishes at spatial infinity which is a stan-

dard assumption. Hence, the “charge” Q(t) is time-independent and remains

constant for fields φ which satisfy equations of motion.

The above discussion applies to classical field theory and we need to un-

derstand how it changes in the quantum case. To make things simple, we

5



consider the theory defined by Eq. (7.14). This theory is complicated since

it contains arbitrary interactions and self-interactions of fields. However, the

quantization of this theory proceeds in exactly the same way as for the free

theory, namely, we compute the canonical momentum and require that an

equal time commutator is canonical. We then find

π1 = ∂0φ1, π2 = ∂0φ2, (7.36)

and

[πi(t, x⃗), φj(t, y⃗)] = −iδi jδ(3)(x⃗ − y⃗). (7.37)

The charge Q is constructed from the time derivative of the Noether’s current

given in Eq. (7.18). We find

Q(t) =

∫
d3x⃗ (φ1(t, x⃗)π2(t, x⃗)− φ2(t, x⃗)π1(t, x⃗)) . (7.38)

To understand whether this operator depends on time or not, we need to

compute its commutator with the Hamiltonian. The Hamiltonian reads

H =

∫
d3x⃗

[
π21
2
+
π22
2
+ (∇⃗φ1)2 + (∇⃗φ2)2 + V (φ21 + φ22)

]
. (7.39)

It is easy to see that H and Q commute so that Q is indeed time independent.

It is instructive to compute a commutator of Q and the fields φ1,2. Then,

[Q,φ1(t, x⃗)] = −
∫
d3x⃗1φ2(t, x⃗1)[π1(t, x⃗1), φ1(t, x⃗)] = −iφ2(t, x⃗),

[Q,φ2(t, x⃗)] = iφ1(t, x⃗).

(7.40)

It is then easy to see that

e iQθφ1e
−iQθ = cos θ φ1 + sin θ φ2,

e iQθφ2e
−iQθ = − sin θ φ1 + cos θ φ2,

(7.41)

Hence, the charge Q is the generator of the symmetry transformations of the

theory that we consider.

To see this more clearly, consider a theory of N fields φi defined by the

Lagrangian which is symmetric under a class of field transformations that

represent a symmetry (Lie) group G. The group is defined by its Lie algebra
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which, in turn, is entirely determined by algebra generators and the structure

constants [
T a, T b

]
= i f abcT c , (7.42)

Group elements are constructed by exponentiating the generators

U = e iTaθa . (7.43)

We assume that the group is unitary U+U = 1; this implies that generators are

Hermitian. We assume that fields in our theory transform in the fundamental

representation of the group

φi = Ui j φ̃j , i , j ∈ {1, .., N}, (7.44)

where N is the dimensionality of the representation.

To find conserved currents of this symmetry transformation, we consider

its infinitesimal version and obtain

φi = (1 + iTaθa)i j φ̃j = φ̃i + iθaT
a
ij φ̃j . (7.45)

Independent symmetry transformations correspond to independent symmetry

generators. The currents are then

Jaµ =
δL
δ∂µφi

T aijφj = (∂µφi)T
a
ijφj . (7.46)

We use these currents to define the time-independent charges

Qa =

∫
d3x⃗ πiT

a
ijφj . (7.47)

The (equal-time) quantization condition is

[πi(t, x⃗), φj(t, y⃗)] = −iδi jδ(3)(x⃗ − y⃗). (7.48)
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We now compute the commutator of the two charges

[Qa, Qb] =

∫
d3x⃗ d3y⃗ [πi(x)T

a
ijφj(x), πk(y)T

b
kmφm]

= T aijT
b
km

∫
d3x⃗ d3y⃗ (πk(y)[πi(x), φm]φj(x) + πi(x)[φj(x), πk(y)]φm)

= −iT aijT bkm
∫
d3x⃗ d3y⃗ δ(3)(x⃗ − y⃗) (πk(y)δimφj(x)− πi(x)δjkφm(y))

= i

∫
d3x⃗ πk(x)[T

a, T b]i jφj(x)

= −f abc
∫
d3x⃗ πk(x)T

cφj(x) = −f abcQc .

(7.49)

Hence,

[−iQa,−iQb] = i f abc(−iQc). (7.50)

We conclude that operators −iQa furnish a representation of the Lie algebra
of the symmetry group G in the Hilbert space of the theory.

7.2 Discrete symmetries in Quantum Field Theory

We will now turn our attention to the so-called discrete symmetries. These

symmetries are field transformations that do not have any continuous para-

meter that we called θ or λ in our previous examples. A good example is a

symmetry under parity transformation. Parity changes vectors, e.g. x⃗ , p⃗ etc.

into −x⃗ , −p⃗ and does not change pseudo-vectors such as angular momentum
or magnetic field. There are three main types of discrete transformations: pa-

rity, charge and time-inversion. We will discuss these transformations using

free Dirac theory.

In Quantum Field Theory, symmetry transformation are realized by unitary

operators that act on creation and annihilation operators. Consider the parity

transformation. We will define it by the following equations

Pap⃗,sP
−1 = ηaa−p⃗,s , P bp⃗,sP

−1 = ηab−p⃗,s , (7.51)

The square of the parity transformation is an identity transformation P 2 = 1.

This implies that P−1 = P and, also, that η2a = η
2
b = 1.
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We now use Eq. (7.51) to investigate how the fermion field ψ transforms

under parity. We find

Pψ(t, x⃗)P−1 =

∫
d3p⃗

(2π)3
√
2Ep⃗

[
ηaup⃗,sa−p⃗,se

−ipµxµ + η∗bvp⃗,sb
+
−p⃗,se

ipµxµ
]
.

(7.52)

We now change the integration variable p⃗ → −p⃗. This transformation does
not affect Ep⃗ but transforms

pµx
µ → pµx̃

µ, (7.53)

where x̃µ = (x0,−x⃗). We need to understand what happens to spinors. We
find

up⃗,s → u−p⃗,s =

( √
σ̄µpµξs√
σµpµξs

)
= γ0up⃗,s . (7.54)

The same applies to the negative energy solution except that

v−p⃗,s = −γ0vp⃗,s . (7.55)

Hence, we need to choose η∗b = −ηa to have a simple transformation rule.
We find

Pψ(t, x⃗)P−1 = ηa γ0 ψ(t,−x⃗), (7.56)

and we will use ηa = 1 in what follows. We will also need a transformation

for the conjugate field ψ̄. Using almost identical manipulations, we derive

P ψ̄(t, x⃗)P−1 = ψ̄(t,−x⃗)γ0. (7.57)

The next transformation is a charge-parity transformation. This transfor-

mation changes particles into anti-particles. We write

Cap⃗,sC
−1 = ηabp⃗,s , Cbp⃗,sC

−1 = ηbap⃗,s (7.58)

Again, applying this transformation twice, we get the same quantity back, so

C2 = 1, C−1 = C and η2a = η
2
b = 1.

We proceed with applying the charge-parity transformation to the fermion

field

Cψ(x)C−1 =

∫
d3p⃗

(2π)3
√
2Ep⃗

[
ηaup⃗,sbp⃗,se

−ipµxµ + η∗bvp⃗,sa
+
p⃗,se

ipµxµ
]
. (7.59)
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Since the transformed field depends on b and a+ it should be related to a

complex conjugate field ψ∗(t, x). We write

ψ∗(t, x⃗) =

∫
d3p⃗

(2π)3
√
2Ep⃗

[
v ∗p⃗,sbp⃗,se

−ipµxµ + u∗p⃗,sa
+
p⃗,se

ipµxµ
]
. (7.60)

We now need to find a way to to make up⃗,s out of v
∗
p⃗,s and vp⃗,s out of u

∗
p⃗,s .

To understand how to do this, consider

v ∗p⃗,s =

( √
pµσ∗µη

∗
s

−√pµσ̄µ∗η∗s .

)
(7.61)

We then recall that among the Pauli matrices, only σ2 is complex; therefore

σ∗i = (−1)δi2σi . (7.62)

Although this sign change seems to transform σµ and σ̄µ into something that

we have not see before, this is not quite the case. Indeed, consider

−iγ2v ∗p⃗,s = −i
(
0 σ2
−σ2 0

)( √
pµσ∗µη

∗
s

−
√
pµσ̄∗µη

∗
s .

)
= −i

(
−σ2
√
pµσ̄µ∗η

∗
s .

−σ2
√
pµσ∗µη

∗
s

)
=

(
−√pµσµ (−iσ2)η∗s .
−√pµσ̄µ (−iσ2)η∗s

)
.

(7.63)

where in the last step we have used the fact that σ2 anticommutes with σ1,3
and commutes with itself. We choose the following basis spinors

η1 =

(
1

0

)
, η2 =

(
0

−1

)
, ξ1 =

(
0

1

)
, ξ2 =

(
1

0

)
. (7.64)

Then, it follows from Eq. (7.63) that

−iγ2v ∗p⃗,s = −up⃗,s . (7.65)

Applying complex conjugation to both sides, we find

−iγ2vp⃗,s = −u∗p⃗,s . (7.66)

Using the fact that γ22 = −1, we obtain

vp⃗,s = iγ2 u
∗
p⃗,s . (7.67)
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Hence, choosing ηa = ηb = 1, we conclude that

Cψ(x)C−1 = iγ2ψ
∗(x). (7.68)

We can determine the transformation properties of the conjugate field follo-

wing the steps above. We find

Cψ̄(x)C−1 = −i ψ̄∗(x)γ2. (7.69)

Another important symmetry transformation is the time-reversal symme-

try, t → −t. It follows from equations of motion in classical mechanics

m
d2x

d2t
= F (x), (7.70)

that we can change t → −t without affecting the solutions. This means that
if x(t) is a solution, x(−t) is the solution as well. In fact, t → −t means that
p⃗ → −p⃗ and L⃗ = [r⃗ × p⃗]→ −L⃗ as well.
The situation is more tricky in quantum mechanics and in Quantum Field

Theory where the Schrödinger equation is linear in t. In Quantum Field Theo-

ry, we would like to have is an operator T that changes ψ(t, x⃗) into a quantity

related to ψ(−t, x⃗)
Tψ(t, x⃗)T ∼ ψ(−t, x⃗), (7.71)

where we made use of the expectation that T 2 = 1. On the other hand, the

time evolution of field operators can be made explicit

ψ(t, x⃗) = e iHtψ(x⃗)e−iHt , (7.72)

which implies that

Tψ(t, x⃗)T = Te iHtT (Tψ(x⃗)T ) Te−iHtT. (7.73)

Hence, to determine action of T operator on the field, we need to ensure that

Te iHtT = e−itH. (7.74)

There are two options to achieve this, either {T,H} = 0 or [T,H] = 0 but
Tc = c∗T even if c is an ordinary complex number. It turns out that the

second option is the only consistent choice.

11



We now compute Tψ(t, x⃗)T . We write

Tψ(t, x⃗)T =
∑
s

∫
d3p⃗

(2π)3
√
2Ep

(
u∗p⃗,sTap⃗,sTe

ipµxµ + v ∗p⃗,sTb
+
p⃗,sTe

−ipµxµ
)
.

(7.75)

We now write

Tap⃗,sT = a−p⃗,−s , T b+p⃗,sT = b
+
−p⃗,−s , (7.76)

because three momentum and angular momentum change signs under the

time inversion.

We obtain

Tψ(t, x⃗)T =
∑
s

∫
d3p⃗

(2π)3
√
2Ep

(
u∗p⃗,sa−p⃗,−s , e

ipµxµ + v ∗p⃗,sb
+
−p⃗,−sTe

−ipµxµ
)
.

(7.77)

We can now change p⃗ → −p⃗ and use the fact that

pµx
µ|p⃗→−p⃗ = −pµx̃µ, (7.78)

where x̃µ = (−t, x⃗). It follows from the above formula that to relate Tψ(t, x⃗)T
to ψ(−t, x⃗), we will need to find a way to map u∗−p⃗,s onto up⃗,s . One can show
that, for a particular choice of the two-dimensional spinors that are used to

define four-component spinors, the following equation holds

u∗−p⃗,s = γ
1γ3up⃗,−s . (7.79)

The same equation holds for v ∗−p⃗,s . We conclude that the time-reversal trans-

formation leads to

Tψ(t, x⃗)T = γ1γ3ψ(−t, x⃗),
T ψ̄(t, x⃗)T = ψ̄(−t, x⃗)γ3γ1.

(7.80)

The above symmetry transformations of fermion fields can be used to

determine transformation properties of more complex quantities constructed

out of fermion fields. These quantities are called currents and they appear

when we construct field theories, both free and interacting. For example,

consider the scalar current

Js(x) = ψ̄(x)ψ(x), (7.81)
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where the sum over spinor indices is assumed. To understand how Js(x) chan-

ges under parity, we write

PJs(x)P
−1 = P ψ̄(x)P−1 Pψ(x)P−1

= ψ̄(t,−x⃗)γ0γ0ψ(t,−x⃗) = Js(t,−x⃗),
(7.82)

since γ20 = 1.

Next, we consider how Js(x) changes under charge-parity transformation.

We write1

CJs(x)C
−1 = Cψ̄(x)C−1 Cψ(x)C−1 = ψ̄∗(x)γ2γ2ψ

∗(x)

= −ψT (x)γ0ψ∗(x) = ψ̄(x)ψ(x) = Js(x).
(7.83)

Finally, we consider the time-reversal symmetry. We find

TJs(t, x⃗)T
−1 = Js(−t⃗ , x⃗). (7.84)

Finally, we study the result of applying joint CPT transformation to Js . We

find

[CPT ]Js(x)[CPT ]
−1 = Js(−t,−x⃗). (7.85)

Another quantity is a vector current defined as

Jµ(x) = ψ̄(x)γµψ(x). (7.86)

For this object, we find

PJµ(x)P−1 = P ψ̄(x)P−1γµPψ(x)P−1

= ψ̄(t,−x⃗)γ0γµγ0ψ(t,−x⃗) = J̃µ(t,−x⃗).
(7.87)

The relationship between J̃µ and Jµ follows from

γ0γ0γ0 = γ0, γ0γ⃗γ0 = −γ⃗. (7.88)

Therefore,

J̃µ(t,−x⃗) = (J0(t,−x⃗),−J⃗(t,−x⃗)) (7.89)

which is exactly how the four-vector (e.g. xµ) transforms under parity trans-

formations.

1Note that in the step before the last one, we used the fact that ψ-fields anticommute.
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Next, consider the charge-parity transformation of the vector current. We

find

CJµ(x)C = ψ̄∗(x)γ2γ
µγ2ψ

∗(x)

= (−1)δµ2ψ̄∗(x)γµψ∗(x) = (−1)δµ2ψT (x)γ0γµψ∗(x)
= (−1)δµ2+1ψ∗(x)γµ,Tγ0ψ(x).

(7.90)

Now, using

γµ,T = (−1)1−δµ.0−δµ,2γµ, (7.91)

we obtain

CJµ(x)C = −Jµ(x). (7.92)

Finally,

TJµ(t, x⃗)T = T ψ̄(t, x⃗)TTγµψ(t, x⃗)T

= T ψ̄(t, x⃗)T (γµ)∗Tψ(t, x⃗)T

= (−1)δµ2ψ̄(−t, x⃗)γ3γ1γµγ1γ3ψ(−t, x⃗).
(7.93)

Since γ3γ1γµγ1γ3 = (−1)δ3µ+δ1µ, we find

TJµ(t, x⃗)T = (−1)δµ1+δµ,2+δµ,3Jµ(−t, x⃗) = −(−1)δµ0Jµ(−t, x⃗). (7.94)

Applying the combined CPT transformation, we find

[CPT ]Jµ(t, x⃗)[CPT ]−1 = −Jµ(−t,−x⃗). (7.95)

Next, consider the action of a free Dirac fermion

S =

∫
d4x

(
ψ̄(t, x⃗)i∂µγ

µψ(t, x)−m ψ̄(t, x⃗)ψ(t, x⃗)
)
, (7.96)

and apply the CPT transformation to it. We find

[CPT ]S[CPT ]−1 =

∫
d4x

(
[CPT ]ψ̄(t, x⃗)i∂µγ

µψ(t, x)[CPT ]−1

−mψ̄(−t,−x⃗)ψ(−t,−x⃗)
)
.

(7.97)

We now discuss the CPT-transformation for ψ̄i∂µγ
µψ. We can almost

read of the result from the known transformation properties of the vector
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current Jµ but there are two point that require care. The first point is the

explicit factor i in ψ̄i∂µγ
µψ which changes sign under T . The second point

is that, as a consequence of charge-parity, we have

Cψ̄γµ∂µψC → ψTγµ∂µψ
∗. (7.98)

Since ∂µ acts on ψ
∗ now (and not on ψ) and since we move ψ∗ to the left

of all γ matrices and other fields, the full transformation rule for the term

ψ̄(t, x⃗)i∂µγ
µψ(t, x) will look as follows

[CPT ]−1ψ̄(t, x⃗)∂µγ
µψ(t, x)[CPT ]−1

= (−i)(−1)
(
∂µψ̄(−t,−x⃗)

)
γµψ(−t,−x⃗).

(7.99)

Putting this term back into Eq. (7.97) and integrating by parts to put the

partial derivative back on ψ, we find

[CPT ]S[CPT ]−1 =

∫
d4x

(
− ψ̄(−t,−x⃗)i∂µγµψ(−t,−x⃗).

−mψ̄(−t,−x⃗)ψ(−t,−x⃗)
)
.

(7.100)

We now change t → −t, x → −x⃗ in Eq. (7.97), use the fact that ∂µ → −∂µ
after this transformation and obtain

[CPT ] S [CPT ]−1 = S, (7.101)

so the Dirac action is invariant under the CPT transformation.

Let us consider a more complex theory where a fermion field couples to a

boson field. A possible example is

S = SD + Ss + Sint, (7.102)

where SD is the action of the Dirac field that we just explored,

Ss =

∫
d4x

(
1

2
(∂µφ ∂

µφ)−
m2

2
φ2

)
, (7.103)

and

Sint = g

∫
d4x φ(x)ψ̄(x)ψ(x). (7.104)
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One can easily convince oneself that for the scalar field φ the following

transformation rules hold

Pφ(t, x⃗)P = φ(t,−x⃗), Cφ(t, x⃗)C = φ(t, x⃗), Tφ(t, x⃗)T = φ(−t, x⃗).
(7.105)

Using these results, as well as transformation rules for fermion fields, it is easy

to see that Ss and Sint are invariant under the CPT-transformation. In fact,

there is a very general statement known as the CPT theorem which states

that a Quantum Field Theory which is Lorentz invariant and where usual

relations between spin and statistics holds, is described by an action that is

invariant under a simultaneous application of C, P and T transformations.
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