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8 Perturbative expansion of the correlation functions

We consider a quantum field theory of a scalar field described by the following

Lagrangian

L =
1

2
∂µφ∂

µφ−
m2

2
φ2 −

λ

4!
φ4. (8.1)

The additional O(λ) term makes this theory extremely complicated. For ex-
ample, the equation of motion(

∂µ∂
µ +m2

)
φ = −

λ

3!
φ3, (8.2)

becomes non-linear and it is not known how to solve it exactly.

Nevertheless, we can quantize the theory following the same procedure

as before, i.e. by calculating the canonical momentum π = δL/δ(∂0φ) and
requiring that the standard commutation relation

[π(t, x⃗), φ(t, y⃗)] = −iδ(3)(x⃗ − y⃗), (8.3)

holds. We can also construct the Hamiltonian

H =

∫
d3x⃗

[
1

2
π2(t, x⃗) +

1

2
(∇⃗φ)2 +

m2

2
φ2 +

λ

4!
φ4

]
, (8.4)

but, again, it will not be possible to find exact eigenvalues and eigenstates of

this Hamiltonian. This is simply too complicated a problem.

All this is very similar to the case of an anharmonic oscillator in quantum

mechanics which is also not amenable to an exact treatment. In that case,

we develop perturbation theory for energies and wave functions. In quantum

field theory, we will develop perturbation theory for Green’s functions, i.e. the

vacuum expectation values of products of fields φ.

We will discuss the simplest Green’s function ⟨Ω|Tφ(x)φ(y)|Ω⟩ which
involves just two fields. Here |Ω⟩ is the exact ground state of the theory with
the Hamiltonian in Eq. (8.4). We expect that in the limit λ → 0, the exact
Green’s function becomes the Green’s function of a free theory

⟨Ω|Tφ(x)φ(y)|Ω⟩ → ⟨0|Tφ0(x)φ0(y)|0⟩ =
∫
d4p

(2π)4
ie−ip(x−y)

p2 −m2 + i0 . (8.5)

To construct perturbation theory in λ, we write

H = H0 +Hint, (8.6)
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where

H0 =

∫
d3x⃗

[
1

2
π2(t, x⃗) +

1

2
(∇⃗φ)2 +

m2

2
φ2

]
, Hint =

∫
d3x⃗
λ

4!
φ4. (8.7)

To construct the perturbation theory, we imagine that at t = t0, the field

operator is fixed to φ(t0, x⃗), and that it can be written as a linear combination

of creation and annihilation operators of a free theory

φ(t0, x⃗) =

∫
d3p⃗

(2π)3
√
2Ep⃗

[
ap⃗e

−ipµxµ0 + a+p⃗ e
ipµx

µ
0

]
, (8.8)

where x0 = (t0, x⃗). Eventually, we will see that the result for the Green’s

function will not depend on t0. We can also imagine that t0 is very large and

negative and that the interaction term decouples at such values of t, so that

we always start with a free theory.

The time evolution of the field φ is determined by the full Hamiltonian

φ(t, x⃗) = e iH(t−t0)φ(t0, x⃗)e
−iH(t−t0). (8.9)

We rewrite this expression as follows

φ(t, x⃗) = e iH(t−t0)e−iH0(t−t0)e iH0(t−t0)φ(t0, x⃗)e
−iH0(t−t0)e+iH0(t−t0)e−iH(t−t0).

(8.10)

We have introduced H0 into this formula and we imagine that, to compute

H0, we use creation and annihilation operators of a free theory. We then define

e iH0(t−t0)φ(t0, x⃗)e
−iH0(t−t0) = φI(t, x⃗). (8.11)

This field can be parameterized in terms of creation and annihilation operator

of a free theory. We find

φI(t, x⃗) =

∫
d3p⃗

(2π)3
√
2Ep⃗

[
ap⃗e

−ipµxµ + a+p⃗ e
ipµxµ

]
, (8.12)

where x = (t, x⃗).

Next, we define the unitray time-evolution operator U(t, t0) as

U(t, t0) = e
+iH0(t−t0)e−iH(t−t0), (8.13)
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so that

φ(t, x⃗) = U+(t, t0)φI(t, x⃗)U(t, t0). (8.14)

We will now derive a useful equation for the time-evolution operator. To

this end, we write

∂φ(t, x⃗)

∂t
= i [H,φ(t, x⃗)],

∂φI(t, x⃗)

∂t
= i [H0, φI(t, x⃗)]. (8.15)

Also, given the relation between φI and φ, we can write

H(φ, π) = U+(t, t0)H(φI, πI)U(t, t0). (8.16)

We now write

∂φI(t, x⃗)

∂t
=
∂

∂t

[
U(t, t0)φ(t, x⃗)U(t, t0)

+
]
=
∂U(t, t0)

∂t
φ(t, x⃗)U(t, t0)

+

+ U(t, t0)
∂φ(t, x⃗)

∂t
U(t, t0)

+ + U(t, t0)φ(t, x⃗)
∂U(t, t0)

+

∂t
.

(8.17)

We would like to turn φ-fields into φI-fields in this expression. To do that, we

write

∂U

∂t
φ(t, x⃗)U+ + U

∂φ(t, x⃗)

∂t
U+ + Uφ(t, x⃗)

∂U+

∂t

=
∂U

∂t
U+ (Uφ(t, x⃗)U+) + iU[H(φ, π), φ]U+ + (Uφ(t, x⃗)U+)U

∂U+

∂t

=
∂U

∂t
U+ φI + i [H(φI, πI), φI] + φIU

∂U+

∂t
.

(8.18)

To further simplify this expression, we make use of the fact that UU+ = 1,

so that
∂U

∂t
U+ + U

∂U+

∂t
= 0. (8.19)

Hence, combining this and the previous equation, we arrive at

∂φI(t, x⃗)

∂t
=

[
∂U

∂t
U+ + iH(φI, πI), φI

]
= [iH0(φI, πI), φI]. (8.20)

We conclude that

∂U

∂t
U+ + iH(φI, πI)− iH0(φI, πI) = 0. (8.21)
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Since

H = H0 +Hint, (8.22)

we obtain
∂U

∂t
U+ = −iHint(φI, πI). (8.23)

Multiplying both sides of this equation with U and using the uniitarity of

U-operator, we find

∂U(t, t0)

∂t
= −iHint (φI, πI)U(t, t0). (8.24)

The solution of this equation with the boundary condition U(t0, t0) = 1 reads

U(t, t0) = Te
−i

t∫
t0

dτ Hint(φI(τ),πI(τ))

, (8.25)

where T is the time-ordering operator. This operator implies that when the

exponential function is expanded in Taylor series and terms of these series are

written as multiple integrals over respective times, Hint(τ) with the largest τ

should be at the left-most position etc.

Eventually, we will need this operator to set up perturbative expansion

of Green’s functions. However, it is easy to see that U(t, t0) needs to be

generalized to enable that. Indeed, consider, a product of two fields φ(x)φ(y).

When we express them through fields φI(x) or φI(y) we find

φ(x)φ(y) = U+(x0, t0)φI(x)U(x0, t0)U
+(y0, t0)φI(y)U(y0, t0). (8.26)

We would like to introduce a new time evolution operator defined as follows

U(x0, y0) = U(x0, t0)U
+(y0, t0). (8.27)

Using the definition of the U-operators, we find

U(x0, y0) = e
iH0(x0−t0)e−iH(x0−y0)e−iH0(y0−t0). (8.28)

If y0 = t0, or x0 = t0, we either get the original U-operator or its conjugate

version.

It is easy to convince oneself that

U(t2, t1) = Te
−i
t2∫
t1

dτ Hint(φI(τ),πI(τ))

, (8.29)
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so that if t1 < t2 < t3

U(t3, t2)U(t2, t1) = U(t3, t1), (8.30)

and that

U(t3, t2)U
+(t3, t2) = 1. (8.31)

Next, we consider the two-point function ⟨Ω|Tφ(x)φ(y)|Ω⟩ and assume
that x0 > y0, for definiteness. Then

⟨Ω|Tφ(x)φ(y)|Ω⟩ = ⟨Ω|φ(x)φ(y)|Ω⟩
= ⟨Ω|U+(x0, t0)φI(x)U(x0, y0)φI(y)U(y0, t0)|Ω⟩.

(8.32)

Parts of this expression involve φI(x) etc. and we understand what to do

about them but there is also an exact vacuum state |Ω⟩ and we need to
connect it with the ground state of the free theory.

There is a trick that we use to do that. We take a state |0⟩ and consider
its time evolution in the full theory

|Ψ(t)⟩ = e−iHt |0⟩. (8.33)

Since |0⟩ is not an eigenstate of H, Ψ(t)⟩ is a linear combination of the exact
eigenstates of the Hamiltonian H. We find

|Ψ(t)⟩ =
∑
e−iEnt |n⟩⟨n|0⟩. (8.34)

We now use this equation for t = T + t0 and take the limit T → +∞(1− i ϵ)
with ϵ > 0. This limit projects the sum on the ground state |Ω⟩.1 We find

lim
t→T+t0

e−iHt |0⟩ = e−iE0(T+t0)|Ω⟩⟨Ω|0⟩. (8.35)

Solving this equation for |Ω⟩, we obtain

|Ω⟩ = lim
T→∞(1−iϵ)

e iE0(T+t0)e−iH(T+t0)|0⟩
⟨Ω|0⟩ . (8.36)

1It is important that ϵ > 0 and we assume that there is a gap between the energy of the

first excited state and the vacuum. This implies that the overlap between any excited state

and |0⟩ vanishes as T →∞ because e−ϵ(En−E0)T < e−ϵ(E1−E0)T → 0 as T → +∞.
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We would like to rewrite this formula using operator U(t2, t1). Since

U(t2, t1) = e
iH0(t2−t0)e−iH(t2−t1)e−iH0(t1−t0), (8.37)

and since H0|0⟩ = 0, we can write

e−iH(T+t0)|0⟩ = U(t0,−T )|0⟩, (8.38)

so that

|Ω⟩ = lim
T→∞(1−iϵ)

e iE0(T+t0)U(t0,−T )|0⟩
⟨Ω|0⟩ . (8.39)

We then perform a similar computation for ⟨Ω|. In this case, we take
t = t0 − T and write

⟨Ω| = lim
T→∞(1−iϵ)

⟨0|e iH(t0−T ) e iE0(t0−T )

⟨0|Ω⟩ . (8.40)

We can rewrite this formula as follows

⟨Ω| = lim
T→∞(1−iϵ)

⟨0|U(T, t0)
⟨0|Ω⟩e−iE0(T−t0) . (8.41)

We are now in position to assemble the Green’s function. Assuming that

x0 > y0, we write

⟨Ω|Tφ(x)φ(y)|Ω⟩ =

lim
T→∞(1−iϵ)

⟨0|U(T, t0)U+(x0, t0)φI(x)U(x0, y0)φI(y)U(y0, t0)U(t0,−T )|Ω⟩
⟨0|Ω⟩⟨Ω|0⟩e−iE02T .

(8.42)

We use U+(x0, t0) = U(t0, x0) and find

⟨Ω|Tφ(x)φ(y)|Ω⟩ =

lim
T→∞(1−iϵ)

⟨0|U(T, x0)φI(x)U(x0, y0)φI(y)U(y0, t0)U(t0,−T )|Ω⟩
⟨0|Ω⟩⟨Ω|0⟩e−iE02T .

(8.43)

We then realize that the operators in the numerator of this expression can be

written as

U(T, x0φI(x)U(x0, y0)φI(y)U(y0, t0)U(t0,−T )

= TφI(x)φI(y)U(T,−T ) = TφI(x)φI(y)e
−i

T∫
−T
dτ Hint(φI(τ),πI(τ))

.

(8.44)
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To understand what should be done with the denominator in Eq. (8.43),

we note that the vacuum state is supposed to be normalized. Then

1 = ⟨Ω|Ω⟩ =
⟨0|U(T, t0)U(t0,−T )|0⟩
⟨0|Ω⟩⟨Ω|0⟩e−iE02T . (8.45)

It follows that

⟨0|Ω⟩⟨Ω|0⟩e−iE02T = ⟨0|U(T, t0)U(t0,−T )|0⟩. (8.46)

Hence, we find

⟨Ω|Tφ(x)φ(y)|Ω⟩ = lim
T→∞(1−iϵ)

⟨0|TφI(x)φI(y)U(T,−T )|0⟩
⟨0|U(T,−T )|0⟩ , (8.47)

where the time evolution operator reads

U(T,−T ) = e
−i

T∫
−T
dτ Hint(φI(τ),πI(τ))

. (8.48)

Equation (8.47) is exact. However, its main virtue is that it allows us to

construct an expansion in powers of the self-coupling λ that appears only

in the interaction Hamiltonian Hint. Hence, the perturbative expansion arises

upon the expansion of the operator U(T,−T ) in series of λ.

We will discuss practical ways to visualize such an expansion in the next

lecture. However, it is clear that important building blocks of such an expan-

sion are Green’s functions with a large number of φI(x) fields

⟨0|TφI(x1)φI(x2)φI(x3)...φI(xN)|0⟩. (8.49)

We will have to understand how to compute such Green’s functions. Since

each of the fields φI(x) is a linear combination of creation and annihilation

operators and since annihilation operators annihilate the vacuum |0⟩, it is
clear how to compute the above Green’s function by a brute force – we

simply need to move all annihilation operators to the right since if we manage

to do that, all such contributions will vanish. An intelligent way to organize

such calculations is known as the Wick theorem which we will now discuss.

Suppose we introduce positive-energy and negative-energy parts of the

field φI(x)

φ(x) = φ+I (x) + φ
−
I (x), (8.50)
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where

φ+I (x) =

∫
d3p⃗

(2π)3
√
2Ep

ap⃗ e
−ipµxµ

φ−I (x) =

∫
d3p⃗

(2π)3
√
2Ep

a+p⃗ e
ipµxµ.

(8.51)

Thanks to the properties of creation and annihilation operators, we find

⟨0|φ−I (x) = 0, φ
+
I (x)|0⟩ = 0. (8.52)

Let us consider the Green’s function of two fields. We write

TφI(x)φI(y) = θ(x0 − y0)
(
φ+I (x)φ

+
I (y) + φ

−
I (x)φ

−
I (y)

+ φ−I (x)φ
+
I (y) + φ

+
I (x)φ

−
I (y)

)
+ ...

= θ(x0 − y0)
(
φ+I (x)φ

+
I (y) + φ

−
I (x)φ

−
I (y)

+ φ−I (x)φ
+
I (y) + φ

−
I (y)φ

+
I (x) + [φ

+
I (x), φ

−
I (y)]

)
+ ...

(8.53)

The only term that contributes to the Green’s function is the commutator

of the positive-energy and the negative-energy parts of the quantum fields.

Hence, we find

⟨0|TφI(x)φI(y)|0⟩ = ⟨0|θ(x0 − y0)[φ+I (x), φ
−
I (y)]

+ θ(y0 − x0)[φ+I (y), φ
−
I (x)]|0⟩ = DF (x − y),

(8.54)

the Feynman propagator. We also note that the commutators in the above

formula are not operators but c-numbers; because of this

⟨0|[φ+I (y), φ
−
I (x)]|0⟩ = [φ

+
I (y), φ

−
I (x)], (8.55)

so that the vacuum expectation value does not need to be taken. We then

define a contraction symbol

φI(x)φI(y) = θ(x0 − y0)[φ+I (x), φ
−
I (y)]

+ θ(y0 − x0)[φ+I (y), φ
−
I (x)] = DF (x − y),

(8.56)

and write the T -product of the two fields as follows

TφI(x)φI(y) = N(φ(x)φ(y)) + φI(x)φI(y). (8.57)

8



The operator N stands for the “normal ordering operator” which places all

creation operators to the left and all annihilation operators to the right. Since

⟨0|N(φ(x)φ(y))|0⟩ = 0, (8.58)

we conclude that

⟨0|TφI(x)φI(y)|0⟩ = φI(x)φI(y) = DF (x − y). (8.59)

The generalization of Eq. (8.57) to the case of many fields is called the

Wick theorem. It reads

TφI(x1)φI(x2)...φI(xN) = N
{
φI(x1)...φI(xN)+

all possible contractions between the fields φI

}
.

(8.60)

Note that “all possible contractions” includes terms where e.g. φI(x1) is con-

tracted with φI(x2) and the rest of the fields are normal-ordered. Or, if all

fields become contracted pair-wise, one can place such a term under the nor-

mal ordering sign since in this case there are no creation and annihilation

operators left.

As an example, we re-write the time-ordered product of four fields through

normal-ordered products. We find

TφI(x1)φI(x2)φI(x3)φI(x4) = N
[
φI(x1)φI(x2)φI(x3)φI(x4)

+ φI(x1)φI(x2)φI(x3)φI(x4) + φI(x1)φI(x3)φI(x2)φI(x4)

+ φI(x1)φI(x4)φI(x2)φI(x3) + φI(x2)φI(x3)φI(x1)φI(x4)

+ φI(x2)φI(x4)φI(x1)φI(x3) + φI(x3)φI(x4)φI(x1)φI(x2)

+ φI(x1)φI(x2)φI(x3)φI(x4) + φI(x1)φI(x3)φI(x2)φI(x4)

+ φI(x1)φI(x4)φI(x2)φI(x3)
]
.

(8.61)

The beauty of this formula is that only fully-contracted terms contribute to

the vacuum expectation value of T -ordered fields. Since each contraction is

a Feynman propagator, we find

⟨0|TφI(x1)φI(x2)φI(x3)φI(x4)|0⟩ = DF (x1 − x2)DF (x3 − x4)
+DF (x1 − x3)DF (x2 − x4) +DF (x1 − x4)DF (x2 − x3).

(8.62)
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The same result applies to the general case of N-fields where, of course, the

number of contractions is larger.

We will now prove the Wick theorem. We have explicitly discussed it for

N = 2, so it is natural to prove it by induction. We thus assume that the

theorem is valid for N − 1 fields and we use this information to prove that
it is valid for N fields. We consider TφI(x1)...φI(xN), assume for definiteness

that x01 is the largest time and write

TφI(x1)...φI(xN) = φI(x1)TφI(x2)..φI(xN)

= φI(x1)N[φI(x2)..φI(xN) + contractions].
(8.63)

We now write φI(x1) = φ
+
I (x1)+φ

−
I (x1). The negative energy component we

just leave where it is since this term is already normal-ordered

φ−I (x1)N[φI(x2)..φI(xN) + contractions]

= N[φ−I (x1)φI(x2)..φI(xN) + contractions)].
(8.64)

On the contrary, we need to move φ+I (x1) passed all φ
−
I (xi) fields inside the

normal ordering operator.

To see how this works, consider the term with no contractions. Then we

write

φ+I (x1) N[φI(x2)..φI(xN)] = N[φI(x2)..φI(xN)φ
+
I (x1)]

+
[
φ+I (x1), N[φI(x2)..φI(xN)]

]
.

(8.65)

The first term here combines with a similar term in Eq. (8.64) and allows us

to replace a sum of φ−I (x1) and φ
+
I (x1) with φI(x1) under the normal ordering

sign.

The second term in Eq. (8.65) produces N−1 contractions of φI(x1) with
the other fields. Indeed,

[
φ+I (x1), N[φI(x2)..φI(xN)]

]
=

N∑
i=2

N[φI(x2)...., [φ
+
I (x1), φ

−
I (xi)], ..φI(xN)]

=

N∑
i=2

N[[φ+I (x1), φ
−
I (xi)] φI(x2)....φI(xi−1) φI(xi+1)..φI(xN)].

(8.66)
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Since x01 > x
0
i , we can replace the commutator with the contraction of the

two fields

[φ+I (x1), φ
−
I (xi)] = φI(x1)φI(xi). (8.67)

Identical arguments apply to terms in Eq. (8.63) which contain contrac-

tions between (some) of the fields φ(x2), .., φ(xN). We therefore conclude

that

TφI(x1)...φI(xN) = N[φI(x1)φI(x2)..φI(xN) + contractions], (8.68)

as required by the Wick theorem.
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