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9 Feynman diagrams

As we have seen, the Wick theorem gives us a straightforward way to express

any correlation function ⟨0|Tφ(x1)...φ(xN)|0⟩ in a non-interacting field theory
as a sum of products of Feynman propagators. Consider for definiteness a

four-point function ⟨0|Tφ(x1)...φ(x4)|0⟩. As discussed in the previous lecture,
the following result holds

⟨0|Tφ(x1)...φ(x4)|0⟩ = DF (x1 − x2)DF (x3 − x4)
+DF (x1 − x3)DF (x2 − x4) +DF (x1 − x4)DF (x2 − x3),

(9.1)

where DF (x − y) = ⟨0|Tφ(x)φ(y)|0⟩ is the Feynman propagator.

Let us develop a pictorial representation of this result. We will represent

the four space-time points by dots and the Green’s function as a whole by a

blob. We will represent a Feynman propagator that depends on xi − xj by a
line that connects the points

DF (xi − xj) =
i j

(9.2)

Since the propagator is symmetric under the interchange of xi and xj , the

line has no direction. Then Eq. (9.1) can be presented in a graphical form as

follows
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3 4
+

1 2

3 4
(9.3)

The interpretation of this representation is straightforward: particles are

created at two points, propagate to two other points and are absorbed there

back into vacuum. All we need to do is to account for all possible ways this

can happen and add the “probability amplitudes”, as required by quantum

mechanics.

The case of the four-point function is quite simple but it gets more com-

plicated if we consider correlation functions with more than just one field

produced at a given point. To see how this can happen, consider a two-point

correlation function in a theory with self-interaction λφ4/4!. In the previous
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lecture the following representation was derived for this Green’s function

⟨Ω|Tφ(x)φ(y)|Ω⟩ = lim
T→∞(1−iϵ)

⟨0|TφI(x)φI(y)U(T,−T )|0⟩
⟨0|U(T,−T )|0⟩ , (9.4)

where the time evolution operator reads

U(T,−T ) = e
−i

T∫
−T
dτ Hint(φI(τ),πI(τ))

, (9.5)

and

Hint =
λ

4!

∫
d3x⃗ φ4I (τ, x⃗). (9.6)

Note that the time evolution operator is the only quantity in this formula that

depends on λ.

We focus on the numerator of the ratio in Eq. (9.4) and expand it to first

order in λ. We find1

⟨0|TφI(x)φI(y)|0⟩ −
iλ

4!
⟨0|TφI(x)φI(y)

∫
d4z φ4I (z)|0⟩. (9.7)

The first term in Eq. (9.7) is a free Green’s function; we know that it is

described by the Feynman propagatorDF (x−y). The second term in Eq. (9.7)
can be written as a sum of products of all possible contractions of the fields

φI. Let us describe all the possible contractions.

• We can contract φI(x) with φI(y). We then need to contract fields
that appear in φ4I (z) between themselves. There are three distinct (but

equivalent) ways to do that. Hence this contraction gives

−
iλ

4!
3 DF (x − y)

∫
d4z DF (z − z) DF (z − z). (9.8)

• We contract φI(x) with one of φI(z)’s and then contract φI(y) with
one of the remaining φI(z)’s. There are four ways to do the first con-

traction and three ways to do the second. Therefore, the corresponding

contribution reads

−
iλ

4!
4 · 3

∫
d4z DF (x − z)DF (y − z) DF (z − z). (9.9)

1For the time being we ignore the fact that we need to integrate over τ from −T to T
and take a limit T →∞(1− i ϵ).
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There is nothing else that we can do so that the complete result reads

−
iλ

4!
⟨0|TφI(x)φI(y)

∫
d4z φ4I (z)|0⟩

= −
iλ

4!
3 DF (x − y)

∫
d4z DF (z − z) DF (z − z)

−
iλ

4!
4 · 3

∫
d4z DF (x − z)DF (y − z) DF (z − z).

(9.10)

We can draw the various contributions that appear in the above expression

using the rule that a line connects the points xi and xj in a Feynman propagator

DF (xi − xj) and leaving aside the integration over z . The terms on the right
hand side of Eq. (9.10) look as follows

DF (x − y)
∫
d4z DF (z − z) DF (z − z) =

x y
z , (9.11)

∫
d4z DF (x − z)DF (y − z) DF (z − z) =

x y
z

. (9.12)

Hence, to first order in λ, we find

lim
T→∞(1−iϵ)

⟨0|TφI(x)φI(y)U(T,−T )|0⟩ =

x y

1−
iλ

4!
3 z

−
iλ

2x y
z

,
(9.13)

where integration over d4z is assumed.

To find the Green’s function in the full theory, we need to divide the above

equation by the expectation value of the operator U(T,−T ). Expanding in λ,
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we find

⟨0|U(T,−T )|0⟩ = 1−
3iλ

4!
z , (9.14)

where again one has to integrate over all possible values of z .2

Hence, to first order in λ, we obtain the following result for the Green’s

function in λφ4 theory

⟨Ω|Tφ(x)φ(y)|Ω⟩ =
x y

(
1− iλ

4!
3

)
− iλ
2 x y

1− 3iλ
4!

≈
x y

−
iλ

2 x y
+O(λ2).

(9.15)

An important feature of this formula is that all disconnected diagrams can-

celed out and the two-point function is described by a sum of connected

diagrams only. This result is absolutely general; it applies to all Green’s func-

tions and all quantum field theories.

There is a certain nomenclature that is used to describe these pictures.

The pictures themselves are called Feynman diagrams. Lines in these pictures

are called (Feynman) propagators. Points, where several lines come together,

are called vertices. More complicated diagrams can be constructed using larger

number of external points, more vertices and more propagators.

All contributions to Green’s functions can be analyzed following the discus-

sion of the two-point function. For example, when computing the two-point

Green’s function through O(λ3), three insertions of the interaction Hamilto-
2We will stop showing the coordinate of the point where the lines get together and we

will stop mentioning that one has to integrate over this coordinate.
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nian produce the following term3

1

3!

(
−iλ
4!

)3
⟨0|Tφ(x)φ(y)

3∏
i=1

∫
d4zi φ

4(zi)|0⟩. (9.16)

The 1/3! arises from the expansion of the exponential with Hint in power

series in λ.

To compute the contribution shown in Eq. (9.16) we will have to write it

as a sum of all possible contractions of the fields φ. Consider the following

possible contraction term

1

3!

(
−iλ
4!

)3 ∫ 3∏
i=1

dzi ⟨0|Tφ(x)φ(z1)φ(z1)φ(z1)

× φ(z1)φ(z2)φ(y)φ(z2)φ(z2)φ(z3)φ(z2)φ(z3)φ(z3)φ(z3)|0⟩.

(9.17)

The Feynman diagram that corresponds to this contraction looks as fol-

lows

x yz1 z2

z3 (9.18)

It is clear that the contraction shown in Eq. (9.17) can be obtained in

more than one way starting from the original expression. To calculate how

many times this contraction appears, we should do the following. First, we

need to contract φ(x) with one of the three interaction Hamiltonians and

φ(y) with one of the remaining two. There are 3 × 2 = 3! ways to do that.
Lets call the coordinate of the the contracted with φ(x) z1 and the coordinate

of the vertex contracted with φ(y) z2. There are four ways to select φ(z1)

from φ(z1)
4 to contract with φ(x) and four ways to select φ(z2) to contract

with φ(y). This gives 4× 4 possibilities.
3To avoid cluttering formulas too much, from now on I will write φ instead of φI .
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Furthermore, we need to contract one field with the argument z1 and

another field with the argument z2. Since there are three fields left in each

vertex, this can be done in 3× 3 different ways. The remaining two fields in
z1 vertex need to be contracted with themselves, this does not give additional

factors. The two fields in the z2 vertex need to be contracted with two fields

from the vertex with z3 coordinate. This can be done in 4× 3 different ways.
Hence, we find that this contraction can be obtained in

3!× 4× 4× 3× 3× 4× 3 = 10 368 (9.19)

different ways.

When we perform real calculations, we first draw diagrams and determine

the relevant factors later. There are several factors, however, that always ap-

pear in the calculation. They are 1/n! from the Taylor expansion of U(T,−T )
in Taylor series in λ and 1/4! from each vertex. Effectively, 1/n! from the ex-

pansion of U(T,−T ) cancels against permutations of vertices that appear in
a particular expansion term and each 1/4! cancels against 4! possible con-

tractions of external fields into Hint. To account for these cancellations in an

automatic way, we adopt the following rules for calculating Feynman diagrams

1. we will ignore the 1/n! factor from the expansion of U(T,−T ) in powers
of λ;

2. we will assign a factor −iλ to each vertex of a diagram ignoring the
1/4! factor in each of them.

According to these rules, the weight of the diagrams that we just considered

is (−iλ)3. However, the correct weight factor, that we can compute following
earlier discussion, is 10368/3!/(4!)3(−iλ)3 = (−iλ)3/8.
The additional factor (eight) by which we have to divide the naive weight

to get the correct one is called the symmetry factor. It counts a number of

ways to interchange components of a diagram4 without changing it.

To understand how to compute the symmetry factors of individual dia-

grams, consider a diagram
x yz

. Here, there is a line that starts and ends

at the same point so that we can interchange the starting point and the final

4Starting and ending points for each line as well as lines and vertices themselves.
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point of the line without changing the diagram. Hence, a symmetry factor is

2 because there are two ways to assign the starting and ending points to this

line that do not change the diagram. More complicated examples follow.

, S = 8

x y
, S = 3! = 6

(9.20)

In the first case there are two ways assign the beginning and the end for

each of the two closed lines and there is a possibility to interchange the left

loop and the right loop. Altogether, the symmetry factor is 8. In the second

case there are 3! = 6 ways to interchange lines that connect the two vertices

without changing the diagram.

We are now ready to associate a set of rules that will allow us to asso-

ciate mathematical expressions with each graph (Feynman diagram) that are

needed to compute expressions of the type

⟨0|Tφ(x1)φ(x2)...φ(xm) e−iλ
∫
dττHint(τ)|0⟩

⟨0|Te−iλ
∫
dττHint(τ)|0⟩

. (9.21)

To compute O(λN) contributions to this quantity in perturbation theory,
we do the following.

• We draw external points x1, x2, ..., xm;
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• We introduce N vertices and associate with each vertex the factor
−iλd4zi

−iλ zi ; (9.22)

• We draw all connected diagrams that contribute to the expansion of
Green’s function to a desired order by connecting N vertices either

among themselves or connecting them to external points x1, .., xN;

• We associate a Feynman propagator with each line of the diagram;

• We integrate over coordinate zi of each vertex;

• For each diagram, we compute the symmetry factor by counting the
number of symmetry transformations that do not change a diagram.

We divide contributions of each diagram by its symmetry factor.

• We sum over all diagrams to obtain the final expression for the Green’s
function.

These rules allow us to compute the position-space Green’s functions.

As we will see in what follows quite often we require the momentum-space

representation for Green’s functions. To obtain it, we do the following. Ima-

gine that we start with a position space expression and replace all Green’s

functions with

DF (x − y) =
∫
d4p

(2π)4
i

p2 −m2 + i0 e
−ip(x−y). (9.23)

Once this is done, the integration over each vertex’ coordinate becomes

trivial. Indeed, in each vertex we have

p4

p1

p2

p3

z ↔
∫
d4z e−ip1z−ip2z−ip3z−ip4z = (2π)4δ(4)(p4+p1+p2+p1),

(9.24)
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so that in each vertex the total four-momentum is conserved. Hence, to write

expressions for Feynman diagrams that contribute to Green’s functions, we

can do the following

• associate the momentum space propagator with each line

p
=

i

p2 −m2 + i0 .

Of course each line has to be given a different momentum and the

direction of the momentum flow has to be chosen.

• associate = −iλ with each vertex;

• associate a factor
e−ipx

with each of the external points and

the momentum that flows into the point.

• divide by the symmetry factor;

• assign momentum conserving δ-functions ((2π)3δ(4)(
∑
pi)) to each

vertex; make sure that in-flowing and out-flowing momenta appear in

the delta-function with different signs.

• integrate over all momenta.

As an example, we write a corresponding expression for the following Feyn-

man diagram

px y

p1 p1

. (9.25)
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The symmetry factor is 1/2, so that

px y

p1 p1

=
−iλ
2

∫
d4p

(2π)4
ie−ip(x−y)

(p2 −m2 + i0)2

×
∫
d4p1
(2π)4

i

p21 −m2 + i0
.

(9.26)

We will now go back to the issue that we mentioned earlier, namely that,

for each vertex, we have to integrate over z0, the time component of four-

vector z , from −T to T where T = T0(1− i ϵ), and T0 →∞. In each vertex
we have e−i(p1+p2+p3+p4)z to integrate. Hence, a typical z0 integral will look

like
T∫

−T

dz0e
−ip0z0, (9.27)

and we would like this integral to vanish for non-vanishing p0-values. However,

convergence of this integral depends on the sign of p0 and z0 since the real

part of the argument of the exponential function is

−i(±)T0(−i ϵ)p0 = ∓T0p0ϵ, (9.28)

One way to enforce a uniform convergence is to make the phase pure ima-

ginary; this can be achieved if p0 will have an imaginary part that com-

pensates the imaginary part in T0(1 − i ϵ). Then we should imagine that
p0 → p0/(1 − i ϵ) ≈ p0(1 + i ϵ). This implies that points with p0 > 0 re-
ceive small positive imaginary parts and points with p0 < 0 receive small

negative imaginary parts. Since, for computing the Green’s function, we are

supposed to integrate over all values of p0, the convergence (and the limit

T0 →∞ is ensured if we integrate over the following contour γ

p0

Re p0

Im p0

γ

(9.29)
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It is important to emphasize that this deformation can be done seamlessly

because we employ Feynman propagators whose i ϵ prescription ensures that

the location of the poles in p0 complex plane is as shown below

×
×

p0

Re p0

Im p0

. (9.30)

Next, I would like to mention the mechanism by which cancellation of

disconnected diagrams happen. It is relatively straightforward to see that for

the two-point function the sum of all disconnected diagrams exponentiates,

which means that the following formula holds

⟨0|Tφ(x)φ(y)e−i
∫
dτHint(τ)|0⟩ =

x y
+

x y
+

x y
+ . . .


× exp

[
+ +

]
.

(9.31)

Since

⟨0|Te−i
∫
dτHint(τ)|0⟩ = exp

[
+ +

]
, (9.32)

we find

⟨Ω|Tφ(x)φ(y)|Ω⟩ = lim
T→∞(1−iϵ)

⟨0|TφI(x)φI(y)U(T,−T )|0⟩
⟨0|U(T,−T )|0⟩

=


x y

+
x y

+
x y

+ . . .

 . (9.33)

In case of more complex correlation functions, the same formula holds.

Note, however, that in this case “connected” does not mean “fully connec-

ted”, as can be seen already by computing Green’s function in a free theory.
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For example, the expansion of the four-point Green’s function looks as follows

⟨Ω|Tφ(x1)φ(x2)φ(x3)φ(x4)|Ω⟩ =

 + +

+ + + (9.34)

+ + . . .+ + . . .

 . (9.35)
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