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10 S-matrix

A very important source of information about particle interactions is scattering

experiments. These experiments work as follows: two beams of particles are

assembled and sent towards each other. When these beams pass each other,

particles in the beams interact and scatter. We observe scattered particles

and study their numbers, their types, energies and spins, and their angular

distributions. From this information, we try to understand as much as we can

about their interactions. This, of course, is only possible if we know how to

describe scattering in quantum field theory, connecting properties of scattered

particles with the underlying Lagrangian.

To understand how to do this, we consider the following problem. We ima-

gine that we have a scalar field theory described by the following Lagrangian

L =
1

2
(∂µφ)

2 −
1

2
m2φ2 − V (t, φ), (10.1)

where

V (t, φ) = V (φ)θ(T0, t). (10.2)

The function θ(T0, t) equals to one on the interval −T0 < t < T0 but adiaba-
tically (very slowly) vanishes for smaller and larger values of t. Hence, there

exists T ≫ T0 such that for |t| > T our theory is, effectively, a free theory.
We also assume that, because of the adiabatic switching of the interaction,

the ground state of the theory does not change and equals to the exact one

at t = ±∞.
Because of that, we can define the Hilbert space of the theory at |t| > T

exactly. To this end, we write

φ(t > T, x⃗) =

∫
d3k⃗

(2π)3
√
2Ek

(
ak⃗(T )e

−ikµxµ + a+
k⃗
(T )e ikµx

µ
)
,

φ(t < −T, x⃗) =
∫

d3k⃗

(2π)3
√
2Ek

(
ak⃗(−T )e

−ikµxµ + a+
k⃗
(−T )e ikµxµ

)
.

(10.3)

We now imagine that the scattering experiments can be described in the

following way. At t = −∞ we have a collection of free particles that are
constructed using a+

k⃗
(−T ) operators acting on vacuum state |0⟩. Then, as

we let the time flow, scattering occurs and, by t = ∞, the initial state
transforms into a collection of particles that fly in different directions. These
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particles can be described by a final state |f ⟩ defined using a+
k⃗
(T ) operators

acting on the vacuum state.

To make this explicit, consider a typical (inelastic) scattering process whe-

re two particles with momenta p1,2 produce n particles with momenta p3,4,...,n,

i.e.

p1 + p2 → p3 + p4 + ...+ pn. (10.4)

We assume that pi ̸= pj , for i ̸= j and that p2i = m2 for all i ’s. According
to our discussion, to describe this process, we require the following matrix

element

iTf i = ⟨f |i⟩ =
n∏
i=1

√
2Ei⟨0|ap3(T )...apn(T ) a+p1(−T )a

+
p2
(−T )|0⟩. (10.5)

There are two comments to make about this formula. First, the matrix

element between initial and final states just described is usually called the

S-matrix and is denoted by Sf i . We, on the other hand, wrote it as iTf i . The

matrix T̂ is called the transfer matrix. Its relation to the S-matrix is as follows

S = 1̂ + i T̂ . (10.6)

The identity operator in the above formula describes processes without scat-

tering; we explicitly exclude such processes by our assumption that none of

the momenta in the scattering process are the same.

The second comment is about the prefactor
∏√
2Ei in Eq. (10.5). These

are introduced to work with external states whose normalization is invariant

under Lorentz transformations.

We would like to relate the matrix element Tf i to a quantity that depends

on exact quantum fields φ rather than the creation and annihilation operators

at very large or very small times. To do so, we consider the following integral,

for p2 = m2,

I = i

∫
d4x e ipµx

µ (
∂2 +m2

)
φ(x)

= i

∫
d4x e ixµp

µ
(
∂2t − ∂⃗2 +m2

)
φ(x).

(10.7)

We assume that φ(x) vanishes if |x⃗ | → 0 and integrate by parts in Eq.(10.7).
Then ∫

d4x e ixµp
µ

∂⃗ · ∂⃗ φ(x) = −
∫
d4x e ixµp

µ

p⃗2 φ(x). (10.8)
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Hence,

I = i

∫
d4x e ipµx

µ (
∂2 +m2

)
φ(x) = i

∫
d4x e ipµx

µ (
∂2t + E

2
p⃗

)
φ(x), (10.9)

where E2p⃗ = p⃗
2 +m2 = p20. To proceed further, we note that, if p0 = Ep⃗, the

following identity holds,

e ipµx
µ (
∂2t + E

2
p⃗

)
φ(x) = −i∂t

[
e ipµx

µ

(i∂t + Ep⃗)φ(x)
]
. (10.10)

To check it, we compute the right-hand side explicitly. We find

−i∂t
[
e ipµx

µ

(i∂t + Ep⃗)φ(x)
]
= e ipµx

µ (
∂2t − iEp⃗∂t

)
φ

+ e ipµx
µ

Ep⃗ (i∂t + Ep⃗)φ

= e ipµx
µ (
∂2t + E

2
p

)
φ.

(10.11)

We use Eq.(10.10) in Eq.(10.9) and find

I = i

∫
d4x(−i)∂t

[
e ipµx

µ

(i∂t + Ep⃗)φ(x)
]

=

∫
d3x e ipµx

µ

(i∂t + Ep⃗)φ(t, x) |t=+∞t=−∞.

(10.12)

At t = ±∞, φ(t, x⃗) is written using its asymptotic form, Eq.(10.3). We find

lim
t→±∞

e ipµx
µ

(i∂t + Ep⃗)φ(t, x⃗) = lim
t→±∞

e ipµx
µ

∫
d3k⃗

(2π)3
√
2k0
×{

ak⃗(±T )(k0 + Ep⃗)e
−ikµxµ + a+

k⃗
(±T ) (Ep⃗ − k0) e ikµx

µ
}
.

(10.13)

We use this equation in Eq.(10.12) and integrate over x⃗ . We find

I = I+ − I−, (10.14)

where

I± =
1√
2k0

[
ap⃗(±T )(k0 + Ep)e i(p0−k0)x0

+ a+−p⃗(±T )(Ep⃗ − k0)e
i(p0+k0)x0

]
k0=Ep⃗=p0,x0=±∞

,

(10.15)
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so that

I =
√
2Ep⃗ (ap⃗(T )− ap⃗(−T )) . (10.16)

Hence,

i

∫
d4x e ipµx

µ (
∂2 +m2

)
φ(x) =

√
2Ep⃗ (ap⃗(T )− ap⃗(−T )) , (10.17)

and similarly,

−i
∫
d4x e−ipµx

µ (
∂2 +m2

)
φ(x) =

√
2Ep⃗

(
a+p⃗ (T )− a

+
p⃗ (−T )

)
. (10.18)

We would like to use Eqs.(10.17,10.18) to construct the matrix element

iTf i in Eq.(10.5). For example, we can use the following equation

−i
∫
d4x e−ip1,µx

µ (
∂2 +m2

)
φ(x) =

√
2Ep⃗

(
a+p⃗1(T )− a

+
p⃗1
(−T )

)
, (10.19)

to express a+p⃗1(−T ) through an integral of φ. The problem is that upon doing
that, we will also obtain a+p⃗1(T ) in the relation between a

+
p⃗1
(−T ) and φ, and

this is not what is needed in Eq.(10.5). A trick that is used to get rid of

a+p⃗1(T ) and ap⃗3,..,N(−T ) is to employ properties of the vacuum state |0⟩ since
ap⃗|0⟩ and ⟨0|a+p⃗ vanish. What we need to do is to ensure that all “unwan-
ted” creation and annihilation) operators appear to the left (to the right) of

all other operators in Eq.(10.5). To accomplish this, we introduce the time

ordering into the definition of the S-matrix element and write

iTf i =
√
2E1 2E2 ...2En⟨0|T

[
ap3(T )...apn(T ) a

+
p1
(−T )a+p2(−T )

]
|0⟩.
(10.20)

The time ordering ensures that operators that depend on the largest time

appear to the left of all other operators and operators that depend on the

smallest time appear to the right of all other operators. Then, since ap⃗|0⟩ = 0
and ⟨0|a+p⃗ = 0, we can replace all the a and a+ operators in the formula for Sf i
with integrals over fields φ since additional terms a+p⃗ (T ) and ap⃗(−T ) provide
vanishing contributions because of the T -product in Eq.(10.20). We therefore

find

iTf i = i
n

∫ n∏
i=1

dxi e
i

(
n∑
j=3

pjxj−p1x1−p2x2

)
n∏
i=1

(
∂2i +m

2
)
⟨0|Tφ(x1)...φ(xn)|0⟩.

(10.21)
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Note that in writing this formula we commuted the differential operators

∂2i + m
2 with the time-ordering operator T . While this is not legitimate in

general, it is allowed for computing the matrix element Tf i because additional

terms will lead to disconnected contributions (see below).

The above equation relates the S-matrix elements with the Green’s func-

tions in the exact theory. Usually, it is not possible to find Tf i exactly but

we have discussed how to construct exact Green’s functions in perturbation

theory when treating the strength of the interaction as a small parameter. If

we combine this information with Eq. (10.21), we should be able to find rules

to compute Sf i as a sum of Feynman diagrams.

We will start with considering two examples. The first one is the 2 → 2
scattering in a theory with the self-interaction −λ/4!φ4 To zeroth order in λ,

⟨0|Tφ(x1)...φ(x4)|0⟩ = DF (x1 − x2)DF (x3 − x4)
+DF (x1 − x3)DF (x2 − x4) +DF (x1 − x4)DF (x2 − x3).

(10.22)

To use this result in Eq. (10.21), we represent each propagator as

DF (x − y) =
∫
d4p

(2π)4
i

p2 −m2 e
−ipµ(x−y)µ. (10.23)

Taking for definiteness the first term in Eq. (10.22), we write

4∏
i=1

(
∂2i +m

2
)
DF (x1 − x2)DF (x3 − x4)

=

∫
d4k1
(2π)4

i(−k21 +m2)2

k21 −m2
e−ik1(x1−x2)

∫
d4k2
(2π)4

i(−k22 +m2)2

k22 −m2
e−ik2(x3−x4).

(10.24)

Then, if we integrate such a term over x1, x2, x3, x4 with the exponential func-

tion e ip3x3+ip4x4−ip1x1−ip2x2, as required by Eq. (10.21), we find that the result

is proportional to

δ(4)(p1 + p2)δ
(4)(p3 + p4). (10.25)

This term vanishes because for a scattering process p1 ̸= −p2 and p3 ̸= −p4.
A similar analysis for all other term in Eq. (10.22) reveals that they are

proportional to

δ(4)(p1 − p3)δ(4)(p2 − p4), (10.26)
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or

δ(4)(p1 − p4)δ(4)(p2 − p3). (10.27)

Again, since we assumed that p3 ̸= p1 and p2 ̸= p4, such terms do not
contribute to the matrix element Tf i . We therefore conclude that

Tf i ∼ O(λ), (10.28)

which corresponds to our intuition that scattering requires interactions.

Hence, to find the first non-trivial term in Tf i , we need to expand the

Green’s function to first oder in λ; the result reads

−
iλ

4!
⟨0|Tφ(x1)φ(x2)φ(x3)φ(x4)

∫
dx φ4(x)|0⟩. (10.29)

We can write this Green’s function as a sum of Feynman diagrams. Among

these diagrams, there will be one, where all φ-fields are contracted with fields

in the interaction Hamiltonian and many other diagrams where at least two

fields out of the set φ(x1), φ(x2), φ(x3), φ(x4) are contracted with each other.

It is clear that, after integration over x1,2,..,4 all latter terms will again produce a

δ-function of the difference or the sum of two external momenta; as we already

mentioned, all such contributions should be set to zero when evaluating the

transfer matrix Tf i .

Hence, for computing the scattering matrix element, we should focus on

the diagram where all “external” fields get contracted with the fields in the

interaction Hamiltonian. It reads

−
iλ

4!
⟨0|Tφ(x1)φ(x2)φ(x3)φ(x4)

∫
dx φ4(x)|0⟩ → −iλ

∫
d4x

∏
DF (xi − x).
(10.30)

We then use this expression in Eq. (10.21), use momentum representation

for each of the propagators, integrate over x1,2,..,4 and x and find that the

above expression evaluates to

iTf i = −iλ(2π)4δ(4)(p3 + p4 − p1 − p2). (10.31)

From the point of view of Feynman diagrams, the above result is constructed

by considering all fully-connected Feynman diagrams that contribute to the

Green’s function at this order of perturbation theory, discarding propagators

that are related to their external legs (we refer to this as amputated diagrams)
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and then multiplying the result by a (2π)4 and a δ-function that enforces the

overall momentum conservation. Since the latter factors are present in the

expression for a matrix element of any scattering process, it is customary to

introduce a new scattering matrix elementMf i defined as

iTf i = iMf i(2π)
4δ(4)(

n∑
i=3

pi − p1 − p2). (10.32)

Then, for the 2→ 2 scattering in λ4 theory, we find

iMf i = −iλ+O(λ2). (10.33)

We will now consider a 2 → 2 scattering in a theory with the self-

interaction g/3!φ3. In this case scattering appears at second order in the

expansion of perturbation theory in powers of g. The corresponding contribu-

tion to the Green’s function is

1

2!

(
−ig
3!

)2
⟨0|Tφ(x1)φ(x2)φ(x3)φ(x4)

∫
d4z φ(z)3

∫
d4yφ(y)3|0⟩.

(10.34)

We need to contract external fields into interaction Hamiltonians and then

contract the remaining fields in the interaction Hamiltonians between themsel-

ves. It is also clear that one has to contract two external fields into one vertex

and two other fields into another vertex, to get a fully-connected diagram.

There are three ways to do so and, as the result, three diagrams contribute.

Suppose we consider the case when φ(x1) and φ(x2) are contracted into

one vertex and φ(x3) and φ(x4) into the other one. This contribution reads

(−ig)2
∫
d4zd4y DF (x1 − z)DF (x2 − z) DF (x3 − y)DF (x4 − y)DF (z − y).

(10.35)

We use this result in Eq. (10.21), employ momentum representation for Feyn-

man propagators, and obtain the following contribution to the scattering ma-

trix

(−ig)2
i

(p1 + p2)2 −m2
(2π)4δ(p1 + p2 − p3 − p4). (10.36)

When a different contraction is chosen, the result appears to be the same

except that the remaining propagator differs. The full result for the Mf i
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amplitude reads

iMf i = −ig2
[
1

s −m2 +
1

t −m2 +
1

u −m2

]
, (10.37)

where we introduced the so-called Mandelstam variables s, t, u to describe

the 2→ 2 scattering

s = (p1 + p2)
2, t = (p1 − p3)2, u = (p1 − p4)2. (10.38)

It should be clear from the above examples what happens in the general

case. Here is a set of rules that allow us to write down mathematical expres-

sions for scattering amplitudes iMf i in a quantum field theory of a scalar

field:

• For a given process, draw all Feynman diagrams that contribute to the
relevant Green’s function at the desired order in perturbation theory;

assign relevant symmetry factors;

• Keep fully-connected diagrams, discard all other;

• Remove external lines (i.e. remove propagators and everything else that
affects external lines only); assign relevant momenta for each incoming

and outgoing line;

• Assign (2π)4δ(4)(
∑
ki) (in addition to the coupling constant) for each

vertex, where {ki} is a set of incoming momenta;

• Assign d4k/(2π)4 for each of the internal propagators;

• Perform as many trivial integrations over momenta assigned to internal
propagators, removing momentum conserving δ-functions, as possible;

• Extract an overall four-momentum conserving δ-function (2π)4δ(
n∑
i=3

pi−

p1 − p2) and discard it.

As an example, consider again the 2→ 2 scattering in λφ4/4! theory. We
have earlier found that to first order in λ, the scattering amplitude iMf i is
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2
<latexit sha1_base64="veY4cGtr1/7DpM+XDsMy7qiM3Ts=">AAAB6HicbVDLSsNAFJ34rPFVdelmsAiuSiJt0y7EohuXLdgHtKFMppN27GQSZiZCCf0CNy4Ucasf496N+DdO01J8HbhwOOde7r3HixiVyrI+jaXlldW19cyGubm1vbOb3dtvyjAWmDRwyELR9pAkjHLSUFQx0o4EQYHHSMsbXU791i0Rkob8Wo0j4gZowKlPMVJaqhd62ZyVt1LAv8Sek9z5m3kWvX6YtV72vdsPcRwQrjBDUnZsK1JugoSimJGJ2Y0liRAeoQHpaMpRQKSbpIdO4LFW+tAPhS6uYKp+n0hQIOU48HRngNRQ/vam4n9eJ1Z+2U0oj2JFOJ4t8mMGVQinX8M+FQQrNtYEYUH1rRAPkUBY6WzMNIRKyXHKzuJlHUKlXCzahYXSPM3bpXyxbuWqF2CGDDgER+AE2MABVXAFaqABMCDgDjyAR+PGuDeejOdZ65IxnzkAP2C8fAECIpBJ</latexit>

4

<latexit sha1_base64="WPQabkko5wfUIjVYOf4DsJv83qw=">AAAB6HicbVDLSsNAFJ3UV42vqks3g0VwVRKxTbsQi25ctmAf0IYymU7asZNJmJkIJfQL3LhQxK1+jHs34t84TUvxdeDC4Zx7ufceL2JUKsv6NDJLyyura9l1c2Nza3snt7vXlGEsMGngkIWi7SFJGOWkoahipB0JggKPkZY3upz6rVsiJA35tRpHxA3QgFOfYqS0VLd7ubxVsFLAv8Sek/z5m3kWvX6YtV7uvdsPcRwQrjBDUnZsK1JugoSimJGJ2Y0liRAeoQHpaMpRQKSbpIdO4JFW+tAPhS6uYKp+n0hQIOU48HRngNRQ/vam4n9eJ1Z+2U0oj2JFOJ4t8mMGVQinX8M+FQQrNtYEYUH1rRAPkUBY6WzMNIRKyXHKzuJlHUKlXCzapwuleVKwS4Vi3cpXL8AMWXAADsExsIEDquAK1EADYEDAHXgAj8aNcW88Gc+z1owxn9kHP2C8fAH9h5BG</latexit>

1

<latexit sha1_base64="qDGtA9kMZAjr2JWxX4rbEOnOqwI=">AAAB6HicbVDLSsNAFJ34rPFVdelmsAiuSlJs0y7EohuXLdgHtKFMppN27GQSZiZCCf0CNy4Ucasf496N+DdO01J8HbhwOOde7r3HixiVyrI+jaXlldW19cyGubm1vbOb3dtvyjAWmDRwyELR9pAkjHLSUFQx0o4EQYHHSMsbXU791i0Rkob8Wo0j4gZowKlPMVJaqhd62ZyVt1LAv8Sek9z5m3kWvX6YtV72vdsPcRwQrjBDUnZsK1JugoSimJGJ2Y0liRAeoQHpaMpRQKSbpIdO4LFW+tAPhS6uYKp+n0hQIOU48HRngNRQ/vam4n9eJ1Z+2U0oj2JFOJ4t8mMGVQinX8M+FQQrNtYEYUH1rRAPkUBY6WzMNIRKyXHKzuJlHUKlXCzapwulWcjbpXyxbuWqF2CGDDgER+AE2MABVXAFaqABMCDgDjyAR+PGuDeejOdZ65IxnzkAP2C8fAH/C5BH</latexit>

2

<latexit sha1_base64="EJ6QY3XBse5lhqnU8r2T/d3u0fA=">AAAB6HicbVDLSsNAFJ3UV42vqks3g0VwVRK1TbsQi25ctmBboQ1lMp20YyeTMDMRSugXuHGhiFv9GPduxL9xmpbi68CFwzn3cu89XsSoVJb1aWQWFpeWV7Kr5tr6xuZWbnunKcNYYNLAIQvFtYckYZSThqKKketIEBR4jLS84cXEb90SIWnIr9QoIm6A+pz6FCOlpfpxN5e3ClYK+JfYM5I/ezNPo9cPs9bNvXd6IY4DwhVmSMq2bUXKTZBQFDMyNjuxJBHCQ9QnbU05Coh0k/TQMTzQSg/6odDFFUzV7xMJCqQcBZ7uDJAayN/eRPzPa8fKL7sJ5VGsCMfTRX7MoArh5GvYo4JgxUaaICyovhXiARIIK52NmYZQKTlO2Zm/rEOolItF+2SuNI8KdqlQrFv56jmYIgv2wD44BDZwQBVcghpoAAwIuAMP4NG4Me6NJ+N52poxZjO74AeMly8AnpBI</latexit>

3

<latexit sha1_base64="veY4cGtr1/7DpM+XDsMy7qiM3Ts=">AAAB6HicbVDLSsNAFJ34rPFVdelmsAiuSiJt0y7EohuXLdgHtKFMppN27GQSZiZCCf0CNy4Ucasf496N+DdO01J8HbhwOOde7r3HixiVyrI+jaXlldW19cyGubm1vbOb3dtvyjAWmDRwyELR9pAkjHLSUFQx0o4EQYHHSMsbXU791i0Rkob8Wo0j4gZowKlPMVJaqhd62ZyVt1LAv8Sek9z5m3kWvX6YtV72vdsPcRwQrjBDUnZsK1JugoSimJGJ2Y0liRAeoQHpaMpRQKSbpIdO4LFW+tAPhS6uYKp+n0hQIOU48HRngNRQ/vam4n9eJ1Z+2U0oj2JFOJ4t8mMGVQinX8M+FQQrNtYEYUH1rRAPkUBY6WzMNIRKyXHKzuJlHUKlXCzahYXSPM3bpXyxbuWqF2CGDDgER+AE2MABVXAFaqABMCDgDjyAR+PGuDeejOdZ65IxnzkAP2C8fAECIpBJ</latexit>

4

given by −iλ. What happens if we consider the scattering at the next order
in perturbation theory?

Following the above rules, it is easy to convince oneself that we have to

consider just three diagrams shown in the above figure. Consider the first

diagram. The corresponding expression reads

1

2
(−iλ)2

∫
d4k1
(2π)4

d4k2
(2π)4

i

k21 −m2
i

k22 −m2
×

(2π)4δ(4)(p1 + p2 − k1 − k2) (2π)4δ(4)(k1 + k2 − p3 − p4).
(10.39)

The factor 1/2 in front is the symmetry factor.

We can simplify the above expression by integrating over k2 and removing

the first δ-function. This means that in Eq. (10.39) we should replace

d4k2
(2π)4

(2π)4δ(4)(p1 + p2 − k1 − k2)→ 1, (10.40)

and set

k2 → p1 + p2 − k1, (10.41)

in all remaining expressions. Upon doing that, we find

(2π)4δ(4)(p12 − p34)
(−iλ)2

2

∫
d4k1
(2π)4

i

k21 −m2
i

(p12 − k1)2 −m2
, (10.42)

where p12 = p1 + p2 and p34 = p3 + p4.

It should be clear now how the above calculation generalizes and, without

further ado, we write down for the 2→ 2 scattering amplitude through O(λ2)
in λφ4/4! theory. The result reads

iM = −iλ+
(−iλ)2

2

4∑
j=2

∫
d4k

(2π)4
i

k2 −m2
i

(k + p1j)2 −m2
. (10.43)

where p13 = p1 − p3 and p14 = p1 − p4.
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