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11 Feynman rules for fermions

In this lecture we would like to discuss how Green’s functions and scattering

amplitudes can be computed in theories with Dirac fermion. For definiteness,

consider a theory defined by the action

S = SD + Ss + Sint, (11.1)

where SD is the action of the Dirac field

SD =

∫
d4x

(
ψ̄(x)i∂µγ

µψ(x)−m ψ̄(x)ψ(x)
)
, (11.2)

Ss is the action of the scalar field

Ss =
1

2

∫
d4x

(
∂µφ ∂

µφ−m2φ2
)
, (11.3)

and the last term is the interaction

Sint =

∫
d4x

[
−gφ(x)ψ̄(x)ψ(x)−

λ

4!
φ(x)4

]
. (11.4)

Similar to the case of a scalar field, we define an interaction Hamiltonian

Hint =

∫
d3x⃗

[
gφ(t, x⃗)ψ̄(t, x⃗)ψ(t, x⃗) +

λ

4!
φ(x)4

]
(11.5)

switch to the interaction representation for both φ and ψ fields, and obtain

the following result for an arbitrary Green’s function in an interaction theory

⟨Ω|Tψα1(x1)...ψαn(xn)..ψ̄β1(y1)..ψ̄βm(ym)...φ(z1)...φ(zl)|Ω⟩

=
⟨0|Tψα1(x1)...ψαn(xn)..ψ̄β1(y1)..ψ̄βm(ym)...φ(z1)...φ(zl)U(T,−T )|0⟩

⟨0|U(T,−T )|0⟩ ,

(11.6)

where

U(T,−T ) = e
−i

T∫
−T
dτ Hint(τ)

, (11.7)

and on the right hand side of Eq. (11.6) all the fields are supposed to be

treated as fields in the “interaction representation” (meaning that they are

known functions of creation and annihilation operators).
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Computation of the Green’s function in Eq. (11.6) follows the same rules

as what has been discussed for the the scalar field theory. Namely, we expand

the exponential function in U(T,−T ) in powers of the coupling constants g
and λ, move all creation operators next to ⟨0| and all annihilation operators
next to |0⟩, and make use of the fact that ⟨0|a+ = 0 and a|0⟩ = 0.
We have discussed how to use the Wick theorem to do this efficiently for

scalar fields. An extension of Wick theorem to the case of fermion is straight-

forward but we need to account for the fact that fermion fields anticommute.

One can show that the Wick theorem for fermions reads

T (ψ1...ψn) = N(ψ1...ψn + contractions)(−1)perm, (11.8)

where ψi is a generic notation for ψ and/or ψ̄ and the subscript in the above

equation reminds us about the fact that there are relative signs between dif-

ferent terms in this expression that corresponds to (−1) raised to the power
which equals to the number of permutations that are needed to get a parti-

cular term to match the ordering of the fermion fields on the left hand side.

Contractions of fermion fields correspond to Feynman propagator

ψα(xi)ψ̄β(yi) = ⟨0|Tψα(xi)ψ̄β(yi)|0⟩ =
yi xi

β α

= Sαβ(xi − yi) =
∫
d4p

(2π)4

(
i

p̂ −m + i0

)
αβ

e−ipµ(xi−yi )
µ

,

(11.9)

and the only possible contractions are those of ψ with ψ̄.

As an illustration of the Wick theorem, we re-write the time-ordered pro-

duct of four fermion fields using Wick theorem. We use the short-hand nota-

tion ψi = ψ(xi) and find

Tψ1ψ2ψ̄3ψ̄4 = N

(
ψ1ψ2ψ̄3ψ̄4 − ψ1ψ̄3ψ2ψ̄4 + ψ1ψ̄4ψ2ψ̄3

+ ψ2ψ̄3ψ1ψ̄4 − ψ2ψ̄4ψ1ψ̄3 − ψ1ψ̄3ψ2ψ̄4 + ψ1ψ̄4ψ2ψ̄3

)
.

(11.10)

Note that if we take a vacuum expectation value of the above expression, all

terms with uncontracted fields drop out and we are left with two fully contrac-

ted contributions. These are represented by two diagrams where either points
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x1, x3 and x2, x4, or x1, x4 and x2, x3 are connected by fermion propagators

x4 x1

β4 α1

x3 x2

β3 α2
+ (−1) x4 x2

β4 α2

x3 x1

β3 α1
(11.11)

Note the relative minus sign between these diagrams. Note also that in va-

riance with the scalar case, for fermions the initial point and the final point

of a propagator are not the same since one of them corresponds to the field

ψ and the other one to ψ̄. Because of that, a fermion line has a fermion

flow direction associated with it. This direction is such that, for a particular

contraction, a line starts at the argument of ψ̄ and ends at the argument of

ψ.

To understand this better, we go back to the calculation of the scattering

matrix and generalize what we did for scalar fields to fermions. We begin by

considering fermions (as opposed to anti-fermions); then we need to find how

to express the operators as,p⃗ and a
+
s,p⃗ through the fermion fields ψ and ψ̄.

Similar to the scalar field case, our starting point is the integral

I =

∫
d4x e ipx ūp⃗,s

(
−i ∂̂ +m

)
ψ(x), (11.12)

where p2 = m2. Writing −i ∂̂ = −iγ0∂t − i γ⃗ · ∇⃗ and integrating by parts over
x⃗ , we find

I =

∫
d4x e ipx ūp⃗,s (−iγ0∂t + γ⃗ · p⃗ +m)ψ(x). (11.13)

The spinor ūs,p⃗ satisfies the Dirac equation ūs,p⃗(p̂ −m) = 0. Therefore,

ūs,p⃗ (γ⃗ · p⃗ +m) = ūs,p⃗ γ0p0. (11.14)

It follows that

I =

∫
d4x e ipx ūp⃗,s (−iγ0∂t + γ0p0)ψ(x)

=

∫
d4x (−i∂t)e ipx ūp⃗,sγ0ψ(x) = −i

∫
d3x⃗e ipµx

µ

ūp⃗,sγ0ψ(x)

∣∣∣∣∣
t=+∞

t=−∞

.

(11.15)
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In analogy with the scalar field case, at t = ±∞ the fermion field is represen-
ted by creation and annihilation operators of a free field theory. Therefore,

we find

I = −i
∫
d3x⃗e ipµx

µ

ūp⃗,sγ0ψ(x)− i
∫
d3x⃗e ipµx

µ

ūp⃗,sγ0 ×∫
d3k⃗

(2π)3
√
2Ek

∑
r

[
ar,k⃗ur,k⃗ e

−ikµxµ + b+
r,k⃗
vr,k⃗ e

ikµxµ
]
.

(11.16)

Note that in this formula x0 is supposed to be very large and that creation

and annihilation operators refer to asymptotic fields at x0 = ±∞. Next, we
integrate over x⃗ and k⃗ ; this leads to k⃗ = p⃗ in terms with a and k⃗ = −p⃗ in
terms with b+. The expression simplifies further since

ūs,p⃗γ
0ur,p⃗ = 2Ep⃗δrs , ūs,p⃗γ

0vr,−p⃗ = 0. (11.17)

Therefore, we find

I =

∫
d4x e ipx ūp⃗,s

(
−i ∂̂ +m

)
ψ(x)

= −i
√
2Ep (as,p⃗(T )− as,p⃗(−T )) .

(11.18)

A similar calculation gives

I =

∫
d4x ψ̄(x)

(
i
←
∂̂ +m

)
us,p⃗e

−ipx (11.19)

= i
√
2Ep

(
a+s,p⃗(T )− a

+
s,p⃗(−T )

)
.

(11.20)

Note that the differential operator ∂̂ in the above formula acts on the field

ψ̄(x), i.e. to the left, as indicated by an arrow on top of it.

We will also need to relate fields ψ and ψ̄ to creation and annihilation

operators for anti-particles. The calculation can be performed in exactly the

same way as for a and a+ and we obtain∫
d4x e−ipµx

µ

v̄s,p⃗(−i ∂̂+m)ψ(x) = −i
√
2Ep⃗

(
b+s,p⃗(T )− b

+
s,p⃗(−T )

)
, (11.21)

and ∫
d4x ψ̄(x)

(
i
←
∂̂ +m

)
vs,p⃗e

ipµxµ = −i
√
2Ep⃗ (bs,p⃗(T )− bs,p⃗(−T )) .

(11.22)
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Let us explore the implications of these formulas by considering the four-

fermion scattering. We are interested in the following matrix element

iTf i =

4∏
i=1

√
2Ei⟨Ω|Tap3,s3(T )ap4,s4(T )a+p1,s1(−T )a

+
p2,s2
(−T )|Ω⟩. (11.23)

We re-write it as

iTf i = i
4

∫ 4∏
i=1

dxi e

4∑
i=1

ηipi ,µx
µ
i

× ūα3(s3, p3)(−i ∂̂3 +m)α3β3 ūβ4(s4, p4)(−i ∂̂4 +m)α4β4
× ⟨Ω|Tψβ3(x3)ψβ4(x4)ψ̄β1(x1)ψ̄β2(x2)|Ω⟩

×
(
i
←
∂̂1 +m

)
β1α1

(
i
←
∂̂1 +m

)
β2α2

uα1(p1, s1)uα2,s2(p2, s2).

(11.24)

The Green’s function in the middle of this formula can be written through

fields in the interaction representation and computed in perturbation theory.

Similar to the scalar field theory, we only need to consider fully-connected

diagrams since otherwise we will not capture the contribution to the transfer

matrix Tf i .

We will now discuss the role of differential operators in Eq. (11.24). The

Green’s function in Eq. (11.24) contains fermion propagators associated with

external points. Consider x3, for definiteness. The dependence of the Green’s

function on x3 is given by the fermion propagator

⟨0|Tψβ3(x3)ψ̄β(y)|0⟩ =
∫
d4p

(2π)4

(
i

p̂ −m + i0

)
β3β

e−ipµ(x3−y)
µ

. (11.25)

We require

ūα3(s3, p3)(−i ∂̂3 +m)α3β3⟨0|Tψβ3(x3)ψ̄β(y)|0⟩

= −i ūβ(s3, p3)
∫
d4p

(2π)4
e−ipµ(x3−y)

µ

.
(11.26)

We then integrated over x3, obtain δ
(4)(p − p3) and remove this δ-function

by integrating over p. The net result is that there is a spinor ū(p3) that is
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associated with the final state outgoing fermion with momentum p3 and this

fermion is contracted to the rest of the Green’s function via its spinor index.

The factor −i combines with one of the i ’s from i4 in Eq. (11.24) and returns
1. For the incoming fermion, the calculation is similar; the result is that for

an incoming fermion there is a spinor u(p).

Such calculations can be generalized and a set of rules that we can use to

construct scattering amplitudes in theories with fermions can be formulated.

For definiteness, we will consider the interaction Lagrangian in Eq. (11.5) as

an example but many of these rules are more general.

• To write down scattering amplitudes, we only consider fully-connected
diagrams. For the scalar sector of the theory, we use Feynman rules

described earlier. There are special rules for fermions that we point

out below, but everything related to associating d4p/(2π)4 for each

internal line, integrating over as many internal momenta as possible

and extracting and removing the overall energy-momentum conserving

δ function remains valid.

• A fermion in the initial state with momentum p and spin s is described

by a spinor u(s, p). We associate an incoming fermion line with such a

spinor.

• A fermion in the final state with momentum p and spin s is described

by a spinor ū(s, p). We associate an outgoing fermion line with such a

spinor.

• An anti-fermion in the initial state with momentum p and spin s is

described by a spinor v̄(s, p). We associate an outgoing fermion line

with this spinor with the momentum −p.

• An anti-fermion in the final state with momentum p and spin s is des-

cribed by a spinor v(s, p). We associate an incoming fermion line with

this spinor with the momentum −p.

• For fermions, a propagator that carries momentum p reads

p

β α
=

(
i

p̂ −m

)
αβ

(11.27)

There is no separate propagator for fermions and anti-fermions.
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• The interaction vertex of two fermions and a scalar boson reads

p1 β

p2 α

p3
= −ig(2π)4δ(4)(p2 + p3 − p4)Iαβ (11.28)

Again, there is no separate vertex for fermions and anti-fermions. A

vertex is attached to a fermion line that has a particular flow. This

Feynman rule is particular to the Yukawa theory.

• Fermion flow can only originate/terminate on the external lines; this
cannot happen “inside” a diagram. To write an expression for each

fermion line, start at the “outgoing” end of the line and multiply spinor

indices moving against the direction of the fermion flow.

• Diagrams which differ from each other by permutations of two identical
fermions should have a relative ‘minus sign.

• Each closed fermion loop receives a minus sign.

• For each diagram with a continuous anti-particle line there is a minus
sign (an “anti-particle” line means a fermion line whose beginning and

end correspond to an anti-particle).

As an application of these rules, consider the process where a fermion

with momentum p1 and an anti-fermion with momentum p2 annihilate into

two scalars with momenta p3 and p4, i.e.

f (p1) + f̄ (p2)→ φ(p3) + φ(p4). (11.29)

There are two Feynman diagrams shown below

p1

−p2

f φ(p3)

f̄ φ(p4)
+

p1

−p2

f φ(p4)

f̄ φ(p3)
(11.30)

Note continuous fermion flow from incoming fermion to the incoming anti-

fermion. According to the above rules, we start with an anti-fermion and
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work our way against the fermion flow line to an incoming fermion. The

corresponding expression for the amplitude reads

iMf i = (−ig)2v̄(p2)
[

i

p̂1 − p̂3 −m
+

i

p̂1 − p̂4 −m

]
u(p1). (11.31)

The expression in square brackets is a 4 × 4 matrix which is multiplied with
two spinors from the right and from the left.
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