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12 Computing cross sections and decay widths

In the previous lectures, we have discussed how to compute scattering am-

plitudes in quantum field theories. Scattering amplitudes are probability am-

plitudes that a particular initial state |i⟩ scatters or gets transformed into a
particular final state |f ⟩. A quantity related to a probability of this to happen
is the cross section. For a process where the initial state consists of two par-

ticles with momenta p1 and p2 and the final state of particles with momenta

p3, ..pN, the expression for the cross section reads

dσf i =
1

4 J Ni

1

Sf

∑
λf ,λi

|Mf i |2(2π)4δ(4)(
N∑
k=3

pk−p1−p2)
N∏
k=3

d3p⃗k
(2π)32Ek

. (12.1)

In this formula, J is the flux factor

J =

√
(p1p2)2 −m21m22, (12.2)

Ni is the total number of different (internal) quantum degrees of freedom

the initial state; we average over all possibilities which means that we do

not assume any prior knowledge about the initial state except of particles’

momenta. For example, for the collision of two scalars, Ni = 1, for the collision

of a fermion and a scalar Ni = 2 because initial fermion has spin 1/2; for a

collision of two fermions Ni = 2× 2 = 4 etc.
The sum over λf ,i indicates that we have to sum the amplitude squared

over internal quantum numbers (e.g. spins) of particles in the initial and in the

final states (unless we would like to study production of polarized states or if

we know exactly that particles in the initial state have particular polarization).

We also have the energy-momentum conserving δ-function and relativistic

phase-space elements for each of the final state particles. Finally, the factor

1/Sf is equal to 1/n! where n is the number of identical particles in the final

state.

To visualize what you can do with the cross section of a particular reaction,

imagine that we have to deal with collisions of two particles’ beams at a typical

accelerator (say the LHC). The colliding beams have particular geometries and

particle densities, they fly towards each other with particular velocities etc.

When beams collide, a process where two particles from the two beams get

transformed to a final state f occurs; this process is described by a cross
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section dσf i . What we are interested in is how often this actually happens,

say if a collider is run for a year. In addition to cross section, this depends

on other aspects of beam collisions and this information is encapsulated in a

quantity that is called luminosity L. The number of final states f produced

per unit time in the collision of beams of particles i reads

dNf
dt
= dσf i L, (12.3)

For CERN, where proton beams collide, L ≈ 2 × 1034cm−2sec−1. There
are 107 seconds in a year. Therefore, if you think that getting O(100) events
per year is sufficient to study a particular process, CERN experiments can

realistically study cross sections that are as small as σ ∼ 10−39cm2.
In particle physics, the cross sections that we want to study are very

small, so one uses a special unit which is called barn. It is defined as 1 bn =

10−24 cm2. Hence, according to the above discussion, the LHC experiments

can study cross sections that are as small as 10−15 bn or one femtobarn.

These are very small cross sections. For example, Higgs boson production

cross section at the LHC is 40 pb, so each year LHC produces close to ten

million Higgs bosons.

After this digression, we go back to the question of how cross sections are

computed. We will consider the theory with λφ4/4! interaction. The process

we are interested in is

φ(p1) + φ(p2)→ φ(p3) + φ(p4). (12.4)

The amplitude for this process has been calculated in one of the previous

lectures; we have found

Mf i = −iλ, (12.5)

so that |Mf i |2 = λ2. Among the many factors that appear in the formula for
the cross section, Ni = 1 since we deal with scalars and Sf = 2! = 2 since

we have two identical particles in the final state. Also, we write

J =
√
(p1p2)2 −m4 =

1

2

√
s(s − 4m2), (12.6)

where s = (p1 + p2)
2. Assembling all the factors, we find

dσ =
λ2

4
√
s(s − 4m2)

(2π)4δ(4)(p3+p4−p1−p2)
d3p⃗3

(2π)32E3

d3p⃗4
(2π)32E4

. (12.7)
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The cross section is a Lorentz-invariant quantity, hence, we can compute it

in any reference frame. We choose the center-of-mass frame where

p1 = (E, p⃗), p2 = (E,−p⃗). (12.8)

Then s = (p1 + p2)
2 = 4E2. Using the above expressions for p1,2, we write

δ(4)(p1 + p2 − p3 − p4) = δ(2E − E3 − E4)δ(3)(p⃗3 + p⃗4). (12.9)

Integrating over p⃗4, we find p⃗4 = −p⃗3 and, since E3 =
√
p⃗23 +m

2 and E4 =√
p⃗24 +m

2, we find E4 = E3. Hence,

dσ =
λ2

4
√
s(s − 4m2)

1

4E23(2π)
2
δ(2E3 − 2E)d3p⃗3. (12.10)

We write

d3p⃗3 = dΩ3p
2
3dp3 = dΩ3p

2
3

dp3
dE3
dE3 = dΩ3p3E3dE3, (12.11)

where dΩ3 is the infinitesimal solid angle which describes direction of p⃗3.

Substituting this result into the formula for the cross section and inte-

grating over E3 (this leads to E3 = E), we find

dσ =
λ2

4
√
s(s − 4m2)

p3
8E3(2π)2

dΩ3. (12.12)

Since p3/E3 = β3, where β3 is the velocity of particle 3 and since E3 = E,

we write β3 = β =
√
1−m2/E2, s − 4m2 = 4E2β2, we find

dσ =
λ2

64πs

dϕ

2π
d cos θ. (12.13)

The total cross section is obtained upon integration over φ from 0 to 2π and

over cos θ from −1 to 1. We find

σ =
λ2

32πs
. (12.14)

Note also that Eq. (12.13) predicts an isotropic angular distribution of the

produced particles in the center of mass frame of colliding particles.
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Our second example is the annihilation of two fermions into two bosons

in the Yukawa theory. The corresponding amplitude was computed in the

previous lecture. It reads

iMf i = −g2v̄(p2)
[

i

p̂1 − p̂3 −m
+

i

p̂1 − p̂4 −m

]
u(p1), (12.15)

where m is the fermion mass.

To compute the cross section, we need to square the amplitude and sum

the result over polarizations of the incoming fermions. To understand how this

can be done, note that the above amplitude can be written in the following

way

iMf i = −ig2v̄α(s2, p2)Γαβuβ(s1, p1), (12.16)

where

Γαβ =

[
1

p̂1 − p̂3 −m
+

1

p̂1 − p̂4 −m

]
αβ

. (12.17)

We require∑
s1,s2

|Mf i |2 = g2s
∑
s1,s2

v̄α(s2, p2)Γαβuβ(s1, p1) v̄
∗
α1
(s2, p2)Γ

∗
α1β1
u∗β1(s1, p1).

(12.18)

To put this into a reasonable form, we write∑
s1,s2

|Mf i |2 =
∑
s1,s2

v̄α(s2, p2)Γαβuβ(s1, p1) u
∗
β1
(s1, p1)Γ

+
β1α2
(γ0)α2α1vα1(s2, p2).

(12.19)

Using γ20 = 1, we rewrite this formula and find∑
s1,s2

|Mf i |2 =
∑
s1,s2

(v(s2, p2)α1 v̄(s2, p2)α) Γαβ (uβ(s1, p1) ūβ1(s1, p1)) (γ0Γ
+γ0)β1α1

= Tr
[
(p̂2 −m)Γ̂(p̂1 +m)

(
γ0(Γ̂)

+γ0
)]
,

(12.20)

where we have used∑
s2

vα1(s2, p2)v̄(s2, p2)α = (p̂2 −m)α1α,∑
s1

uβ1(s1, p1) ūβ(s1, p1) = (p̂1 +m)β1β.

(12.21)
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To compute γ0Γ+γ0, we use the fact that all γ-matrices satisfy the fol-

lowing equation

γµ = γ0γµ,+γ0. (12.22)

Hence,

γ0
(
âb̂ĉ

)+
γ0 = ĉ b̂â. (12.23)

In our case, Γ is quite simple, so we obtain

γ0Γ
+γ0 = Γ. (12.24)

Hence, the matrix element squared summed over spins of initial fermions

that we need to compute reads

∑
s1,s2

|Mfi|2 = g4Tr

[
(p̂2 −m)

[
p̂13 +m

t −m2 +
p̂14 +m

u −m2

]

(p̂1 +m)

[
p̂13 +m

t −m2 +
p̂14 +m

u −m2

]]
,

(12.25)

where we introduced t = (p1 − p3)2 and u = (p1 − p4)2 are the Mandelstam
variables.

To complete the calculation of the cross section, it remains to compute a

trace of the product of γ-matrices. This is not easy, especially, in cases when

the number of γ-matrices is large but this is a mechanical procedure. Indeed,

the following statements are true

• traces of odd number of γ matrices vanish;

• traces of even number of γ matrices can be computed recursively start-
ing from

Tr[γµγν] = 4gµν. (12.26)

• traces of γ5 with other γ-matrices can be computed recursively starting
from

Tr[γµγνγαγβγ5] = 4i ϵµναβ, (12.27)

where ϵ is a Levi-Civita tensor with ϵ0123 = 1.
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To show how the recursive procedure works, we compute the trace of four

gamma matrices

Tr[γµγνγαγβ]. (12.28)

The idea is to move γβ to the very left of the matrix chain by anti-commuting

it with other γ-matrices. We then find

Tr[γµγνγαγβ] = 2gαβTr[γµγν]−2gβνTr[γµγα]+2gµβTr[γνγα]−Tr[γβγµγνγα].
(12.29)

Because of the trace cyclic property

Tr[γµγνγαγβ] = Tr[γβγµγνγα]. (12.30)

Hence,

Tr[γµγνγαγβ] = 4
(
gµνgαβ − gµαgβν + gµβgνα

)
. (12.31)

For simplicity, I will assume that masses of the final-state bosons vanish.

Then, a calculation of the trace gives∑
s1,s2

|Mfi|2 = g4
(
2u

t −m2 +
2t

u −m2 − 4−
34m2

t −m2 −
34m2

u −m2

−
29m4

(t −m2)2 −
29m4

(u −m2)2 −
58m4

(t −m2)(u −m2)

)
.

(12.32)

This expression can be simplified further if we consider collisions in the

center of mass frame and use the velocity of initial particles and the scattering

angle to write the result for |M|2. Since

t = m2 −
s

2
(1− β cos θ), u = m2 −

s

2
(1 + β cos θ), (12.33)

where θ is the angle of momentum p⃗3 and the momentum p⃗1, we find∑
s1,s2

|Mfi|2 = g4
3 + β2(26− 24 cos2 θ) + β4(−29 + 32 cos2 θ − 8 cos4 θ)

(1− β2c2)2 .

(12.34)

For small values of β, we find∑
s1,s2

|Mfi|2 ≈ 3g4. (12.35)
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In the opposite (ultra-relativistic limit) β = 1 and we find∑
s1,s2

|Mfi|2 = g4
8 cos2 θ

sin2 θ
. (12.36)

Hence, the non-relativistic angular distribution is mainly isotropic but in the

ultra-relativistic limit particles are mostly produced in the forward θ = 0 or in

the backward θ = π direction.

To complete calculation of cross section, we need to compute the phase

space. In this case a simple computation reads

dσ =
g4

128πsβ

dφ d cos θ

4π

∑
s1,s2

|Mfi|2 (12.37)

There is another quantity that is computed quite often in particle physics,

this is the decay width of a particle to a particular final state. The inverse

of the (total) decay width gives us a lifetime of the particle. The formula for

computing the width is very similar to the formula for computing the cross

section except that the flux factor changes. The formula for a decay of a

particle X to the final state with f reads

dΓf =
1

2mXNi

1

Sf

∑
λf ,λi

|Mf i |2(2π)4δ(4)(
N∑
k=1

pk − pX)
N∏
k=1

d3p⃗k
(2π)32Ek

. (12.38)

It is often convenient to compute the width in the rest frame of the decaying

particle, where the four-momentum is just pX = (mX, 0⃗).
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