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14 Predictions of QED

I would like to discuss a few predictions that we can make using the theory that

we constructed in the previous lecture. We will start with the discussion of

the interactions between electrons and positrons. This interaction is described

by two Feynman diagrams; one describes the scattering of an electron on a

positron and the other one describes the annihilation. For our purposes only

the scattering diagram is important. Using the Feynman rules discussed in

the previous lecture, we can write

iMf i =
−ie2Jµ31Jµ,24

q2
, (14.1)

where q = p1 − p3 and
Jµ31 = ū(p3)γ

µu(p1), (14.2)

is the electron current and

Jµ42 = v̄(p2)γ
µv(p4), (14.3)

is the positron current and one factor (−1) is introduced to account for an
anti-particle line.

We would like to understand what happens to this matrix element in the

non-relativistic approximation, i.e. when

pµi = (Ei , p⃗i), i = 1, .., 4, (14.4)

and |p⃗i | ≪ m so that with

Ei = m +
p⃗2i
2m
+O(p⃗4). (14.5)

We need to construct the expansion for of spinors and the currents in the

non-relativistic limit. The γ-matrices in the Dirac representation read

γ0 =

(
1 0

0 −1

)
, γ i =

(
0 σ⃗i
−σ⃗i 0

)
. (14.6)

The Dirac equations

(p̂ −m) u(p) = 0, (p̂ +m) v(p) = 0, (14.7)
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have the following solutions

u(p, s) =
√
Ep +m

(
ϕ(s)
σ⃗p⃗ϕ(s)
Ep+m

)
, v(p, s) =

√
Ep +m

(
σ⃗p⃗ϕ(s)
Ep+m

ϕ(s)

)
. (14.8)

The non-relativistic limit of the currents depends on the component. To

leading order in momenta p⃗1, p⃗3, p⃗2, p⃗4 the currents read

Jµ31 = (2m)δ
µ0
(
ϕ+(s3)ϕ(s1)

)
= (2m)δµ0δs1s3. (14.9)

and

Jµ42 = (2m)δ
µ0
(
ϕ+(s2)ϕ(s4)

)
= (2m)δµ0δs2s4. (14.10)

Finally,

q = p1 − p3 = (
p⃗21 − p⃗23
2m

, p⃗1 − p⃗3) ≈ (0, q⃗), (14.11)

where q⃗ = p⃗1 − p⃗3.
Hence, the scattering amplitude in the non-relativistic limits becomes1

iMf i =
ie2(2m)2

q⃗2
δs1s3δs2s4. (14.12)

What can we learn from this amplitude? The first thing we can learn is

that spin degrees of freedom play no role in the non-relativistic limit since

spin cannot change in the scattering and we can simply ignore it. Second,

we go back to quantum mechanics where we describe electron and positron

as two different particles that interact with each other through a potential.

The Hamiltonian reads

H =
p⃗2e−
2m
+
p⃗2e+

2m
+ U(r⃗e, r⃗e+). (14.13)

I would like to compute the process of electron-positron scattering in quantum

mechanics. According to Fermi’s golden rule formula, I need to compute the

cross section

dσ =
V

2β
(2π)δ(E3 + E4 − E1 − E2)|Uf i |2

V d3p⃗3
(2π)3

V d3p⃗4
(2π)3

, (14.14)

1As this point, it is worth pointing out that the annihilation diagram will give a contribution

that will behave as Mf i ∼ O(1) in the non-relativistic limit and, for this reason, will be
suppressed at q⃗2/m2.
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where V is the space volume, β is the velocity, and

Uf i = ⟨Ψf |U(r⃗e−, r⃗e+|Ψi⟩. (14.15)

The wave functions for the initial and final state are

|Ψi⟩ =
e−i p⃗1 r⃗e−√
V

e−i p⃗2 r⃗e+√
V
, |Ψf ⟩ =

e−i p⃗3 r⃗e−√
V

e−i p⃗4 r⃗e+√
V
. (14.16)

Then, we find

Uf i =
1

V 2

∫
d3re−d

3re+e
i p⃗3 r⃗e−+i p⃗4 r⃗e+U(r⃗e − r⃗−)e−i p⃗1 r⃗e−−p⃗2 r⃗e+

=
(2π)3δ(3)(p⃗3 + p⃗4 − p⃗1 − p⃗2)

V 2
U(q⃗),

(14.17)

where

U(q⃗) =

∫
d3r⃗ e−i q⃗r⃗U(r⃗), (14.18)

is a Fourier transform of the potential. Since

|Uf i |2 =
1

V 3
(2π)3δ(3)(p⃗3 + p⃗4 − p⃗1 − p⃗2)|U(q⃗)|2, (14.19)

we find

dσf i =
1

2β
(2π)4δ(4)(p3 + p4 − p1 − p2)|U(q⃗)|2

d3p⃗3
(2π)3

d3p⃗4
(2π)3

. (14.20)

We can compute the same cross section in QED. We obtain

dσf i =
(2π)4δ(4)(p3 + p4 − p1 − p2)

2 s β
|Mf i |2

d3p⃗3
(2π)3(2E3)

d3p⃗4
(2π)3(2E4)

.

(14.21)

The two results should agree in the non-relativistic limit. This can only happen

if

U(q⃗) = −
Mf i

4m2
, (14.22)

where on the r.h.s. we should remove spin-conserving Kronecker symbols.

Hence, we find

U(q⃗) = −
Mf i

4m2
= −
e2

q⃗2
, (14.23)
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where spin-dependent parts of the amplitude have been omitted. Then,

U(r⃗) = −e2
∫
d3q⃗

(2π)3
e2

q⃗2
e i q⃗r⃗ = −

e2

4πr
, (14.24)

which is an attractive Coulomb potential between electron and positron.

As the next step, we consider scattering of an electron on a heavy nuclei

which we will represent by a fermion with a charge Z and mass M. The

scattering matrix element reads

iMf i =
ie2Z

q2
ū3γ

µu1 ū4γµu2, (14.25)

where spinors u2,4 describe a heavy nucleus, u3,1 describe an electron, and

q = p1 − p3 = p4 − p2.
We now square the amplitude and sum over spins of all spinors. We find∑
|iMf i |2 =

e4Z2

(q2)2
Tr ((p̂3 +m)γ

µ(p̂1 +m)γ
ν)Tr ((p̂4 +M)γµ(p̂2 +M)γν) .

(14.26)

The two traces is easy to compute. We find

Lµν = Tr ((p̂3 +m)γ
µ(p̂1 +m)γ

ν) = 4
(
pµ3p

ν
1 + p

ν
3p
µ
1 − gµν((p3p1)−m2)

)
.

(14.27)

The trace for a heavy nucleus is obtained from Lµν upon the replacement

p3 → p4, p1 → p2 and m → M. We find

Hµν = 4
(
pµ2p

ν
4 + p

ν
4p
µ
2 − gµν((p2p4)−M2)

)
(14.28)

The two tensors Lµν and Hµν have an important property

qµL
µν = qµH

µν = 0. (14.29)

This allows us to simplify Hµν by writing p4 = p2 + q and then neglecting all

terms with either qµ or qν. We find

Hµν = 4
(
2pµ2p

ν
2 − gµν(p2p4 −M2) + terms with qµ or qν

)
. (14.30)

We will focus on the case when the nucleus is very heavy in comparison

with electron’s energy and mass M ≫ E1, m and it is at rest, originally. From
the energy-momentum conservation, we find that

p4 ≈ p2 = (M, 0⃗), (14.31)
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E3 = E1 and |p⃗3| = |p⃗1| by the direction of p⃗3 is arbitrary; the recoil is
absorbed by the nucleus. Then p2p4 ∼ M2 and

Hµν ≈ 8pµ2pν2 . (14.32)

We then compute

LµνH
µν ≈ 32M2(E3E1 + E3E1 − (p3p1) +m2)
= 64M2E21(1− β2 sin2(θ/2)).

(14.33)

We compute the cross section and obtain (4J = 4ME1β, 1/4 because for

two fermion we have to divide by 4)

dσ =
Z2e4

16ME1β

64M2E21(1− β2 sin2(θ/2)
q4

× (2π)4δ4(p3 + p4 − p1 − p2)
d3p⃗4

(2π)32E4

d3p⃗3
(2π)32E3

.

(14.34)

Since E4 ≈ M, we find

dσ =
4Z2α2E21
(q2)2

(
1− β2 sin2(θ/2)

)
dΩ, (14.35)

where we have introduced the fine structure constant α = e2/(4π) ≈ 1/137.
To understand the angular distribution, we note that because in case of

the heavy nucleus electron’s energy before and after the scattering remains

unchanged, the momentum transfer is spatial

q = p1 − p3 = (0, p⃗1 − p⃗3). (14.36)

Hence,

q2 = −q⃗2 = −4E21β2 sin2(θ/2). (14.37)

Therefore,

dσ =
Z2α2

4E21β
4

(
1− β2 sin2(θ/2)

)
sin4(θ/2)

dΩ. (14.38)

This is the differential cross section for the Rutherford scattering, i.e. scat-

tering of an electron on a point-like nucleus. Note that the total cross section

in this case, i.e.

σ =

∫
dσ

dΩ
dΩ (14.39)
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is infinite because for small scattering angles the cross section is too singular.

Next, we consider a process of an electron-positron annihilation into a

muon and anti-muon pair. Muon is an elementary particle which is very

similar to an electron (a fermion, spin 1/2, same charge ) but it is about

200 times heavier, mµ/me ≈ 200. To produce a pair of muons, electron and
positron should have energies higher than mµ (in the center of mass frame)

and, for this reason, we will neglect electron masses in what follows.

The process we consider is

e−(p1) + e
+(p2)→ µ−(p3) + µ+(p4). (14.40)

To compute the cross section, we require the matrix element

iMf i =
ie2

Q2
[v̄2γ

µu1] [ū3γµv4] , (14.41)

where Q = p1 + p2 = p3 + p4. The amplitude squared summed over spins of

all particles evaluates to

|Mf i |2 =
e4

Q4
L(e)µν L

(µ)µν, (14.42)

where

L(e)µν = Tr [p̂2γµp̂1γν] , (14.43)

and

L(µ)µν = Tr [(p̂3 +m)γµ(p̂4 −m)γν] , (14.44)

where m denotes the muon mass. Traces evaluate to

L(e),µν = 4 (pµ2p
ν
1 + p

µ
1p
ν
2 − gµνp1p2) , (14.45)

and

L(µ),µν = 4
(
pµ3p

ν
4 + p

µ
4p
ν
3 − gµν(p3p4 +m2)

)
, (14.46)

Contracting the two tensors, we find

L(e),µνL(µ)µν = 16
[
2(p2p3)(p1p4) + 2(p2p4)(p1p3)− 2(p1p2)(p3p4 +m2)

− 2(p3p4)p1p2 + 4p1p2(p3p4 +m2)
]

= 16
[
2(p2p3)(p1p4) + 2(p2p4)(p1p3) + 2p1p2m

2
]

= 8
[
(m2 − u)2 + (m2 − t)2 + 2m2s

]
.

(14.47)
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49. Plots of cross sections and related quantities 5

σ and R in e+e− Collisions
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Figure 49.5: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s).
σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, σ(e+e− →
µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section of
this Review, Eq. (9.7) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)). Breit-Wigner
parameterizations of J/ψ, ψ(2S), and Υ(nS), n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the details of
the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, May 2010.)

Figure 1: The ratio of e+e− → hadrons cross section to that of e+e− →
µ+µ−.

We then use Mandelstam variables to express scalar products

p1p2 = s/2, p3p4 = s/2−m2,
p1p3 = p2p4 = m

2 − t, p1p4 = p2p3 = m2 − u.
(14.48)

Then,

L(e),µνL(µ)µν = 4s
2
(
2− β2 sin2 θ

)
. (14.49)

The cross section reads

dσ =
2πα2β

s

(
1−
β2

2
sin2 θ

)
dΩ

4π
. (14.50)

Integrating over angles, we find

σ =
4πα2β

3s

(
1 +
1− β2

3

)
. (14.51)

At high energies,
√
s ≫ mµ, β → 1 and the cross section of e+e− → µ+µ−

becomes

σ =
4πα2

3s
. (14.52)

As a side remark, we notice that measurements of e+e− → hadrons,

performed at e+e− colliders worldwide, revealed an interesting feature shown
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in Fig. 1.2 What is shown there is the ratio R defined as

R =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−) , (14.53)

where the e+e− → µ+µ− cross section is taken from Eq. (14.52), i.e. in
the massless approximation for both electrons and muons. Although one

sees structures, there are large energy intervals where R behaves like a con-

stant, e.g. R ≈ 2 for 2 GeV ≤
√
s ≤ 3 GeV, R ≈ 3 for 4 GeV ≤

√
s ≤

10 GeV and R ≈ 4 for 10.5 GeV ≤
√
s ≤ 90 GeV. One possible ex-

planation is that e+e− → hadrons is, at its core, an incoherent sum of

e+e− → elemenrary fermions with strong charges that we cannot observe

otherwise. If this interpretation is correct (and it turns out to be correct)

R counts the number of such fundamental fermions (quarks) that can be

produced at a given energy.

2Hadrons are particles that primarily interact with each other by virtue of the strong force.
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