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15 Electron form factors and the anomalous magnetic mo-

ment

Interaction of the electromagnetic field with leptons is described by the fol-

lowing term in the QED Lagrangian

L = −e
∫
d4x Aµ(x) J

µ(x). (15.1)

We have discussed how to quantize QED in the previous lectures. In this

lecture we will use these results to discuss the problem of interaction between

a given electromagnetic field (we can call it external, classical, background

etc.) and an electron. We do this by formally separating Aµ into two parts

Aµ(x)→ Aµext(x) + A
µ(x), (15.2)

and, when computing Green’s functions we can consider Green’s functions

that contain fixed number of interactions between Aµext and electrons.

The simplest quantity that one can study is the scattering of an electron

on Aµext. To describe it, we need to compute the following amplitude in the

fully-interacting theory

T µf i(pf , pi , q) = −i
∫
d4x e−iqx ⟨e(pf , sf )|Jµ(x)|e(pi , si)⟩, (15.3)

where Jµ(x) = ψ̄(x)γµψ(x).

Calculation of this quantity proceeds in exactly the same way as the cal-

culation of ordinary scattering amplitude. We employ the LSZ reduction, and

connect the above matrix element to the computation of the integral of the

Green’s function

⟨0|Tψ(x1)Jµ(x)ψ̄(x2)|0⟩, (15.4)

which is then acted upon with Dirac operators multiplied with ū for the out-

going and with u for the incoming fermion. Also, from the LSZ reduction

process exponential functions e ipf x and e−ipix will appear for the outgoing and

incoming fermions. The integration over x in Eq. (15.3) will result in the

energy-momentum conserving δ-function

(2π)4δ(4)(pf − pi − q). (15.5)
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Hence, the rules for computing the quantity T µf i are the same that we use to

compute the scattering amplitudes for an electrons’ scattering on a virtual

“photon” except that this “photon” does not have the polarization vector

or an associated Green’s function and is characterized by a Lorentz index µ.

Similar to the scattering amplitude, we remove the δ-function and call the

rest the vertex function Γµ. In general,

Γµ(pf , pi , q; sf , si) = −i ū(pf , sf )Ôµu(pi , sf ), (15.6)

where Ôµ is a four-by-four matrix that depends on pf , pi and q.

It is straightforward to check that at leading order in the electron charge

e Oµ = γµ, so that

Γµ0 = −i ū(pf , sf )γµu(pi , sf ), (15.7)

as, perhaps, to be expected.

We would like to discuss now what can be said about the vertex function

Γµ beyond perturbation theory. We definitely know that Eq. (15.6) is an exact

equation. We also know that an arbitrary four-by-four matrix Oµ can only

depend on four-vectors p1, p2 and q and that an arbitrary four-by-four matrix

can be written as a linear combination of 16 matrices

1, γ5, γµ, γµγ5, σµν, (15.8)

where σµν = i/2[γµ, γν]. Then,

Oµ = Aµ + Bµγ5 + C
µ
αγ
α +Dµαγ

αγ5 ++E
µ
αβσ

αβ. (15.9)

The various vectors and tensors must be composed of three vectors pf , pi , q,

the metric tensor gµν and the Levi-Civita tensor ϵµναβ. Moreover, all these

quantities can be functions of Lorentz-invariant combinations of scalar prod-

ucts of the three momenta pf , pi and q.

Although it appears that number of various tensors and vectors is high,

we can reduce their number taking into account that i) some of these contri-

butions (the ones with γ5 and the Levi-Civita tensor) lead to parity-violating

interactions whereas QED conserves parity; ii) we actually need a matrix el-

ement of Oµ, i.e. ū(pf , sf )Ô
µu(pi , sf ), iii) spinors satisfy respective Dirac

equations and iv) pf − pi = q. Choosing qµ and πµ = pµf + p
µ
i as two

independent vectors, we can write

Aµ = A1π
µ + A2q

µ, Bµ = 0, Dα = 0, (15.10)
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where the last two equation follow from the parity-conserving nature of QED.

Next, consider the tensor Cµα. Its most general form is

Cµα = C1g
µ
α + C2q

µqα + C3π
µπα + C4q

µπα + C5π
µqα. (15.11)

It we contract this tensor with γα and compute the matrix element of the

resulting matrix w.r.t ū(pf ) and u(pi), the result simplifies because

ū(pf )q̂u(p1) = 0, ū(pf )π̂u(p1) = 2mū(pf )u(p1). (15.12)

This means that some of the terms in Eq. (15.11) will vanish and some can

be combined with A1 and A2. The only new term is the one with C1g
µ
α which

just returns the matrix element of γµ. A similar analysis of the tensor Eµαβ
reveals that the only relevant contribution is gµαqβ.

Hence, we can write

Γµ = −i ū(pf ) [A1πµ + A2qµ + C1γµ + E1σµαqα] u(pi). (15.13)

An additional constraint arises because Γµ represents a matrix element of the

conserved current which implies that

qµΓ
µ = 0. (15.14)

Since πµq
µ = 0 and ū(pf )q̂u(pi) = 0, it follows that A2 = 0. Finally, the

number of independent structures can be further reduced by using the so-

called Gordon identity. It reads

ū(pf )γ
µu(pi) = ū(pf )

[
πµ

2m
+
iσµνqν
2m

]
u(pi). (15.15)

This equation allows us to remove πµ as an independent Lorentz structure in

the computation of the vertex function. Hence, we finally find,

Γµ = −i ū(pf )
[
F1(q

2)γµ + F2(q
2)
iσµαqα
2m

]
u(pi), (15.16)

where the two functions F1,2(q
2) are called Dirac and Pauli form factors,

respectively.1

1Form factors are dimensionless quantities, so they are functions of q2/m2.
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We will now discuss the meaning of these form factors. The idea is the

following. Consider the non-relativistic limit of the electron scattering at the

external electromagnetic field. In the non-relativistic limit q2/m2 ≪ 1 and
we can expand the form factors in series in q2/m2. The two first terms in

the series F1(0) and F2(0) can be matched to the electron scattering in the

electromagnetic field described by the Pauli Hamiltonian

H =
(p⃗ − eA⃗)2

2m
+ eφ− µ⃗ · B⃗, (15.17)

where µ⃗ = µσ⃗/2 is the electron’s magnetic moment.

This comparison leads to the conclusion that

F1(0) = 1, (15.18)

and

µ⃗ =
e

m
(F1(0) + F2(0))

σ⃗

2
. (15.19)

In quantum mechanics, the magnetic moment of the electron is usually pa-

rameterized in terms of gyromagnetic factor ge and Bohr magniton

µ⃗ = ge
e

2m

σ⃗

2
, (15.20)

The two expressions match if

ge = 2(F1(0) + F2(0)), (15.21)

so that

F2(0) = (ge − 2)/2. (15.22)

Note that the Dirac equation predicts that electron’s ge-factor equals to

two. Hence, if F2(0) is different from zero, it would imply an effect that is

not captured by the Dirac equation.2

We will now compute the two form factors in QED perturbation theory.

At the second order of the perturbative expansion there is one diagram to

consider. The expression reads

Λµ1 = ū(pf )Γ
µ
1u(pi) = −e2

∫
d4k

(2π)4

×
ū(pf )γ

α(p̂f + k̂ +m)γ
µ(p̂i + k̂ +m)γαu(pi)

((k + pf )2 −m2)((k + pi)2 −m2)(k2)
.

(15.23)

2For this reason F2(0) is called the anomalous magnetic moment of an electron.
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Note that we should have added +i0 to all propagators; we do not display it

for brevity.

As the next step, I would like to show that Λµ1 , as written, cannot be

computed. To see this, consider the contribution that comes from very large

values of the loop momentum k . Then, neglecting external momenta and

masses in the integrand, we arrive at

− e2
∫
d4k

(2π)4
ū(pf )γ

αk̂γµk̂γαu(pi)

(k2)3

= −e2ū(pf )γαγβγµγργαu(pi)
∫
d4k

(2π)4
kβkρ
(k2)3

.

(15.24)

Since ∫
d4k

(2π)4
kβkρ
(k2)3

=
gβρ
4

∫
d4k

(2π)4
1

k4
, (15.25)

and

γαγβγµγβγα = 4γ
µ, (15.26)

we conclude that a contribution to Λµ1 from very large loop momenta reads

Λµ1 ≈ −e2ū(p1)γµu(p2)
∫
d4k

(2π)4
1

k4
. (15.27)

The remaining integral is infinite. To see this, we imagine doing a radial

integration in the four-dimensional space and find

∫
d4k

(2π)4
1

k4
∼

M∫
µ

dk

k
∼ ln

M

µ
. (15.28)

Considering M → ∞ limit, we conclude that Λµ1 indeed becomes infinite.
One aspect to notice is that this divergence is proportional to leading order

vertex function ū(pf )γ
µu(pi) and, therefore, only contributes to the Dirac

form factor F1.

Next, we consider the opposite situation – the limit of the small loop

momenta k → 0. In this case, in the integrand in Eq. (15.23) we can neglect
k in the numerator. Then we find

ū(pf )γ
α(p̂f + k̂ +m)γ

µ(p̂i + k̂ +m)γαu(pi)

= ū(pf )γ
α(p̂f +m)γ

µ(p̂i +m)γαu(pi) = (4pf pi)ū(pf )γ
µu(pi).

(15.29)
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The propagators can also be simplified, e.g.

(pi + k)
2 −m2 ≈ 2pik, (pf + k)

2 −m2 ≈ 2pf k. (15.30)

Hence, in the limit of the small loop momentum, we find

Λµ1 = −e2(4pipf )ū(pf )γµu(pi)
∫
d4k

(2π)4
1

(2pik)(2pf k)(k2)
. (15.31)

This integral diverges logarithmically at small k and, again, this divergence

only affects the Dirac form factor F1 and not the Pauli form factor F2.

Developing an understanding of how to properly deal with the divergences

that we have just seen, both for F1 at one loop but also in general, played a

very important role in the development of quantum field theory. We will talk

about this in the next lecture. At the same time, since all problems reside in

F1, we can attempt to compute F2(q
2) which should appear at the first oder

in perturbation theory for the first time.

Calculation of loop integrals as in Eq. (15.23) proceed in several steps.

The first step is to simplify the integrand and this is usually done by combining

the propagators using Feynman’s trick. To this end, we employ the formula

1

Am11 A
m2
2 ...A

mN
N

=
Γ(m1 + ...+mN)

Γ(m1)...Γ(mN)

×
∫ N∏
i=1

dxi δ(1−
N∑
i=1

xi)

N∏
i=1

xmi−1i

(A1x1 + A2x2 + ...ANxN)

N∑
i=1

mi

,

(15.32)

and write

1

((k + pf )2 −m2)((k + pi)2 −m2)(k2)

= Γ(3)

∫ 3∏
i=1

dxi δ(1− x1 − x2 − x3)
1

(k2 + 2kP + i0)3
,

(15.33)

where P = pf x1 + pix2 and we restored infinitesimal imaginary part i0 in all

progagators. In what follows I will use the notation

[dx ]3 =

3∏
i=1

dxi δ(1− x1 − x2 − x3), (15.34)
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for brevity.

We use the representation shown in Eq. (15.33) in the integrand of

Eq. (15.23), shift the loop momentum to k = l − P and find

Λµ1 = −e2Γ(3)
∫
[dx ]3

∫
d4l

(2π)4

×
ū(pf )γ

α(p̂f + l̂ − P̂ +m)γµ(p̂i + l̂ − P̂ +m)γαu(pi)
(l2 − P 2 + i0)3 .

(15.35)

Since the denominator of the integrand depends on l2, linear l-terms in the

above equation can be dropped. It is also easy to convince oneself that the

term quadratic in l contributes only to the Dirac form factor. Hence, if we

are only interested in computing first non-vanishing contribution to the Pauli

form factor, we can write

[Λµ1 ]F2 = −e
2Γ(3)

∫
[dx ]3

∫
d4l

(2π)4

×
ū(pf )γ

α(p̂f − P̂ +m)γµ(p̂i − P̂ +m)γαu(pi)
(l2 − P 2 + i0)3 .

(15.36)

Then, using

γαγ
µγα = −2γµ, γαγµγνγα = 4gµν, γαγµγνγργα = −2γργνγµ, (15.37)

we rewrite the numerator in Eq. 15.36) as

ū(pf )
[
−2(p̂i − P̂ )γµ(p̂f − P̂ )+4m(pµf +p

µ
i −2P

µ)−2m2γµ
]
u(pi) (15.38)

We can drop the last term, as it contributes only to the Dirac form factor,

and rewrite the second one by re-introducing γµ. We find

ū(pf )
[
− 2(p̂i − P̂ )γµ(p̂f − P̂ ) + 2m

{
(p̂f + p̂i − 2P̂ ), γµ

} ]
u(pi). (15.39)

We can now simplify this expression by expanding it to first order in q and

systematically neglecting all the terms that only contribute to the Dirac form

factor. We do this by expressing all momenta through pf and q if they appear

to the left of γµ and through pi and q if they appear to the right. This allows
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us to use the Dirac equation for ū(pf ) and u(pi) and we find

ū(pf )(p̂f + p̂i − 2P̂ )γµu(pi)→ −(1− 2x2)ū(pf )q̂γµu(pi),
ū(pf )γ

µ(p̂f + p̂i − 2P̂ )u(pi)→ (1− 2x1)ū(pf )γµq̂u(pi),
ū(pf )(p̂i − P̂ )γµ(p̂f − P̂ )u(pi)→
m x3ū(pf )(γ

µq̂(1− x1)− q̂γµ(1− x2))u(pi).

(15.40)

Finally, we collect all the terms, write

γµq̂ = qµ − iσµνqν, q̂γµ = qµ + iσµνqν, (15.41)

and discard all qµ terms because they have to vanish. Finally, we obtain

[Λµ1 ]F2 = e
2ū(pf )

iσµνqν
2m

u(pi)×

× (2m)2
∫
[dx ]3 x3(1− x3) Γ(3)

∫
d4l

(2π)4
1

(l2 − P 2 + i0)3 .
(15.42)

We need to to integrate over the shifted loop momentum l . To do this,

we consider a generalized integral

I(n) =

∫
d4l

(2π)4
1

(l2 − ∆ + i0)n . (15.43)

Assuming ∆ ≥ 0, we determine poles in the complex l0 plane and find

l0 = ±
√
l⃗2 + ∆∓ i0. (15.44)

The location of poles implies that we can deform the integration contour

(the real axis) in such a way that we integrate over l0 imaginary axis in the l0
complex plane from −i∞ to i∞ without changing the result. Then, we write
l0 = i l̃0 and find

I(n) = i(−1)n
∫
d4lE
(2π)4

1

(l2E + ∆)
n
, (15.45)

where lE is the Euclidean vector, so that l
2
E = l̃

2
0 + l⃗

2. To compute the above

integral, we use spherical coordinates in the four-dimensional space. Denoting

the solid angle as Ω4, we write

I(n) = i(−1)n
Ω4
(2π)4

1

2

∞∫
0

l2Edl
2
E

(l2E + ∆)
n
. (15.46)
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Changing the integration variable l2E → u,

l2E = ∆
u

(1− u) , (15.47)

we find

I(n) = i(−1)n
Ω4

(2π)4∆n−2
1

2

1∫
0

du
u

(1− u)3 (1− u)
n

= i(−1)n
Ω4

(2π)4∆n−2
1

2

Γ(2)Γ(n − 2)
Γ(n)

.

(15.48)

Finally, using

Ω4 = 2π
2 (15.49)

we obtain

I(n) =

∫
d4l

(2π)4
1

(l2 − ∆ + i0)n =
i(−1)n

(4π)2∆n−2
Γ(n − 2)
Γ(n)

. (15.50)

In our case (cf. Eq. (15.42)), n = 3 and

∆ = P 2 = m2(x1 + x2)
2 − q2x1x2. (15.51)

We obtain

[Λµ1 ]F2 = −
4ie2

(4π)2
ū(pf )

iσµνqν

2m
u(pi)

∫
[dx ]3x3(1− x3)

(x1 + x2)2 − q2/m2x1x2
. (15.52)

Comparing this result with the general parameterization of the vertex func-

tion, we find

F2(q
2) =

α

π

∫
[dx ]3x3(1− x3)

(x1 + x2)2 − q2/m2x1x2
, (15.53)

where we introduced the fine structure constant α = e2/(4π) ≈ 1/137.
To compute F2(0), we note that x1 + x2 = (1− x3). Then, since

∫
[dx ]3 =

1∫
0

dx3

∫
dx2 θ(1− x3 − x2) =

1∫
0

dx3 (1− x3), (15.54)
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the integral in Eq. (15.53) simplifies to∫
[dx ]3

x3(1− x3)
(1− x3)2

=
1

2
. (15.55)

This implies

F2(0) =
α

2π
. (15.56)

This is the result for the anomalous magnetic moment of the electron that

was first obtained by J. Schwinger in 1947. Since α = 1/137, our prediction

is ae = 0.00116141. The recent experimental measurement and significantly

improved theoretical calculations give

aexpe = 0.00115965218073(28),

athee = 0.00115965218161(23).
(15.57)
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