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16 The Dirac form factor and the various divergences

In the previous lecture we showed that interaction of electrons with the elec-

tromagnetic field is described by the two form factors and we discussed the

one-loop calculation of the Pauli form factor at zero momentum transfer in

some detail. We have also pointed out that the Dirac form factor suffers

from a pathological behavior and in this lecture we will talk more about it.

An important idea that should allow us to investigate F1 is that of the

regularization. This means that we need to modify the calculation in such

a way that we remove (or regulate) the apparent infinities and, once this is

accomplished, we can discuss what happens when the regulator is lifted.

We begin with repeating the expression for the one-loop vertex function

which we already saw in the previous lecture

Λµ1 = ū(pf )Γ
µ
1u(pi) = −e2

∫
d4k

(2π)4

×
ū(pf )γ

α(p̂f + k̂ +m)γ
µ(p̂i + k̂ +m)γαu(pi)

((k + pf )2 −m2)((k + pi)2 −m2)(k2)
.

(16.1)

We have seen that Λµ1 can be described by two form factors. We have also

seen that the expression for the Dirac form factor is pathological in that it

contains divergences at k → ∞, that we will refer to as ultraviolet, and at
k → 0, that we will refer to as infra-red.
To regularize these divergences, we will rewrite the photon propagator as

1

k2
→

1

k2 − λ2 −
1

k2 −M2 . (16.2)

We will consider M to be the largest parameter in the problem, i.e. signifi-

cantly larger than electron energies and masses and λ to be the smallest pa-

rameter in the problem, i.e. much smaller than electron energies and masses.

We will be interested in all terms which are not suppressed as powers of p/M

and of λ/p. We will also focus exclusively on the calculation of the Dirac

form factor.

As we already discussed previously, the way to proceed is to combine the
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propagators and shift the loop momentum. We find

Λµ1 = −e2Γ(3)
∫
[dx ]3

∫
d4l

(2π)4

(
1

(l2 − P 2 − λ2x3)3
−

1

(l2 − P 2 −M2x3)3

)
× ū(pf )γα(l + p̂f − P +m)γµ(l + p̂i − P +m)γαu(pi).

(16.3)

In the numerator, we can drop terms that are linear in l and re-write the

integrand as(
1

(l2 − P 2 − λ2x3)3
−

1

(l2 − P 2 −M2x3)3

)
ū(pf )γ

α l̂γµ l̂γαu(pi)

+
ū(pf )γ

α(p̂f − P +m)γµ(p̂i − P +m)γαu(pi)
(l2 − P 2 − λ2x3)3

.

(16.4)

Note that we dropped 1/(l2 − P 2 −M2x3)3 in the second term in the above
equation because its contribution is suppressed as p2/M2.

We will now compute the contribution of the first term. Averaging over

directions of l , we find(
1

(l2 − P 2 − λ2x3)3
−

1

(l2 − P 2 −M2x3)3

)
ū(pf )γ

α l̂γµ l̂γαu(pi)

→
(

l2

(l2 − P 2 − λ2x3)3
−

l2

(l2 − P 2 −M2x3)3

)
ū(pf )γ

µu(pi).

(16.5)

To integrate this expression over l , we again perform the Wick rotation

and find ∫
d4l

(2π)4

(
l2

(l2 − ∆)3 −
l2

(l2 − ∆M)3

)
=
iΩ4
(2π)4

1

2

∞∫
0

dl2E l
4
E

(
1

(l2E + ∆)
3
−

1

(l2E + ∆M)
3

) (16.6)

To compute the last integral, we introduce a function

G(∆,∆M) =

∞∫
0

dl2E l
4
E

(
1

(l2E + ∆)
3
−

1

(l2E + ∆M)
3

)
, (16.7)
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and compute

∂∆G(∆,∆M) = −3
∞∫
0

dl2E l
4
E

1

(l2E + ∆)
4
= −

1

∆
. (16.8)

Hence,

G(∆,∆M) = − ln
∆

∆M
, (16.9)

where we used the definition of the function G to deduce the boundary con-

dition G(∆M,∆M) = 0. Hence, we find∫
d4l

(2π)4

(
l2

(l2 − ∆)3 −
l2

(l2 − ∆M)3

)
= −

i

(4π)2
ln
∆

∆M
. (16.10)

As the next step we need to extract contribution to the Dirac form factor

from the l-independent contribution to the numerator in Eq. (16.4). We

contract Dirac indices and find

ū(pf )
[
−2(p̂i − P̂ )γµ(p̂f − P̂ )+4m(pµf +p

µ
i −2P

µ)−2m2γµ
]
u(pi). (16.11)

We now re-write the above expression neglecting linear terms in q since they

will either cancel, or combine into the tensor structure σµνqν. We find

− 2(p̂i − P̂ )γµ(p̂f − P̂ )→
(
−2m2x23 − 2q2(1− x2)(1− x3)

)
γµ,

4m(pµf + p
µ
i − 2P

µ)→ 4mπµx3 → 8m2x3γµ,
(16.12)

where in the last step we used the Gordon identity. The complete expression

for the numerator becomes(
−2m2(1 + x23 ) + 8m2x3 − 2q2(1− x1)(1− x2)

)
γµ. (16.13)

The integration over l is the same as in the previous lecture, so that

[Λµ1 ]F1 = −i ū(pf )γµu(pi)F
(1)
1 (q

2), (16.14)

where the one-loop contribution to the Dirac form factor reads

F
(1)
1 (q

2) =
α

4π

∫
[dx ]3

[
2 ln
∆M
∆

−
(−2m2(1 + x23 ) + 8m2x3 − 2q2(1− x1)(1− x2))

∆

]
.

(16.15)
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The quantities ∆ and ∆M are given by

∆ = m2(x1 + x2)
2 − q2x1x2 + λ2x3,

∆M = m
2(x1 + x2)

2 − q2x1x2 +M2x3 ≈ M2x3.
(16.16)

There are three points that we can learn from the above result. First, the

dependence of F
(1)
1 (q

2) on the ultraviolet regulator M is logarithmic and it

does not depend on the energies and momenta of the electrons,

F
(1)
1 (q

2) ≈
α

2π
ln
M2

m2
. (16.17)

In other words, this divergence is the same for F
(1)
1 (0) and for F

(1)
1 (q

2) for

q2 ̸= 0. Second, F (1)1 (0) ̸= 0, in variance with our general argument that
states that F1(0) = 1. Finally, the infrared divergence is a non-trivial function

of q, as we will now explain.

The infrared divergence implies that if we set λ = 0 in the expression for

F
(1)
1 , we will get an integrand that cannot be integrated. To see how this

comes about, we set λ → 0, change the integration variables x1 = xy , x2 =
x(1− y) and x3 = 1− x and obtain

∆→ x2
(
m2 − q2y(1− y)

)
. (16.18)

The integration measure becomes

∫
[dx ]3 =

1∫
0

xdx

1∫
0

dy . (16.19)

Hence, we find

∫
[dx ]3
∆
→

1∫
0

dx

x

1∫
0

dy

m2 − q2y(1− y) (16.20)

We observe that the integral diverges at x = 0. Hence, unless the numerator

of the second term in Eq. (16.15) vanishes, the integral needs to be regularized

by keeping λ small but finite. At the same time, we also see that the only

term in the numerator that needs to be regulated is the one that survives the
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x → 0 limit. This limit corresponds to x1 = 0, x2 = 0 and x3 = 1, so that the
numerator becomes

−4m2 + 8m2 − 2q2 = 4(pf pi). (16.21)

Hence,

F1(q
2)|ir. div = −

α

2π

1∫
0

xdx dy
2pf pi

x2f (y) + λ2(1− x) , (16.22)

with

f (y) = m2 − q2y(1− y). (16.23)

To compute this integral, we split the integration region over x into two

intervals

0 < x < σ, σ < x < 1, (16.24)

and we choose σ such that

λ√
f (y)

≪ σ ≪ 1. (16.25)

This choice implies that, when integrating over the first interval, we can set

λ2(1− x)→ λ2 and when we integrate over the second interval, we can set
λ→ 0. Then

σ∫
0

xdx

x2f (y) + λ2(1− x) ≈
σ∫
0

xdx

x2f (y) + λ2
=
1

2

σ2∫
0

dx2

x2f (y) + λ2

≈
1

2f (y)
ln
σ2f (y)

λ2
,

(16.26)

and

1∫
σ

xdx

x2f (y) + λ2(1− x) ≈
1∫
σ

xdx

x2f (y)
=
1

f (y)
ln
1

σ
. (16.27)

Adding the two contributions, we obtain

F1(q
2)ir. div = −

α

2π
2pf pi

1∫
0

dy

2f (y)
ln
f (y)

λ2
. (16.28)
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This result contains more than just the infrared divergence (the term that

blows up if the limit λ → 0 is attempted). We can separate this term by
writing

F
(1)
1 (q

2)ir. div = −
α

4π
ln
µ2

λ2

1∫
0

dy
2pf pi
f (q2, y)

+ ..., (16.29)

where ellipses denote contributions that remain finite when the limit λ → 0
is taken.

Although this integral can be computed, we will not need it. However,

it is useful to summarize the result of our calculations so far by writing the

following expression for the Dirac form factor

F1(q
2) = 1 +

α

2π
ln
M2

m2
−
α

4π
ln
µ2

λ2

1∫
0

dy
2m2 − q2

f (q2, y)
+ finite. (16.30)

This result is not satisfactory because it depends on the auxiliary parame-

tersM and λ and the required limitsM →∞ and λ→ 0 cannot be computed.

We will see that we need two distinct ideas to solve these two problems.

The first idea addresses theM →∞ limit; it emphasizes the role of measured
parameters in the construction of the theory and it is known under the name

of renormalization. The second idea addresses λ → 0 limit and emphasizes
the need to re-think what we call “asymptotic states” for charged particles.

Let us begin with the M → ∞ problem. Since we are able to compute
F1(q

2) in a theory with the regulator, we can investigate the result of such a

calculation. In particular, we can check whether our general conclusion that

F1(0) = 1 holds. We immediately find that it does not. The reason F1(0)

should be equal to one is the definition of the electric charge; hence, if F1(0)

is not one, it appears as if we do calculations in quantum field theory using

wrong electric charge of the electron. Let us call this wrong charge e0. Then,

we have computed the following quantity

−ie0F1(q2, e0). (16.31)

We know that at q2 = 0, this quantity should be equal to −ie, where e is the

6



true charge of the physical electron. Then

−ie0F1(q2, e0) = −ie0F1(0, e0)
F1(q

2, e0)

F1(0, e0)
= −ie

F1(q
2, e0)

F1(0, e0)
. (16.32)

We can compute the ratio of form factors in perturbation theory. Since

F1(q
2, e0) = 1 + F

(1)
1 (q

2, e0) + ..., (16.33)

we find that we can write the true form factor as follows

F1(q
2) = 1 + F

(1,phys)
1 + · · · , (16.34)

where

F
(1),phys
1 (q2) = F (1)(q2, e0)− F (1)(0, e0) (16.35)

The interpretation of the above result is that to obtain the one-loop cor-

rection to the Dirac form factor working with properly-defined electric charge

of the electron, we need to compute the difference between F (1)(q2) and

F
(1)
1 (0). Since the ultraviolet-divergent contribution to F

(1) is independent of

q2, the difference of the two form factors is free of this problem and admits

M →∞ limit.
However, this subtraction affects the second problem since F (1)(0, e0)

contains additional infra-red divergences. We find

F
(1),phys
1 = −

α

4π
ln
µ2

λ2
Y (q2), (16.36)

where

Y (q2) =

1∫
0

dy

[
2pf pi

m2 − q2y(1− y) − 2
]
. (16.37)

We will discuss how this term disappears in the next lecture.
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