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17 Photon emission in the electron scattering on an exter-

nal potential

In the previous lecture, we have studied a process where electron scatters on

an external electromagnetic field. Scattering implies a change in the three mo-

mentum of an electron over a certain (relatively short) time period. Momen-

tum change is associated with the acceleration. In classical electrodynamics a

charged particle that undergoes acceleration radiates electromagnetic waves.

How should we describe such a process in quantum field theory?

Radiation implies the energy loss of a radiator; hence, in quantum field

theory, it should correspond to an inelastic process where electron both scat-

ters and emits an additional photon,

e(pi) + A→ e(pf ) + γ(k), (17.1)

where A indicates that external electromagnetic potential is present. The

matrix element of this process reads

iMf i = −ieAµū(pf )

[
ϵ̂(p̂f + k̂ +m)γ

µ

(pf + k)2 −m2
+
γµ(p̂i − k̂ +m)ϵ̂
(pi − k)2 −m2

]
u(pi), (17.2)

where Aµ = Aµ(q) is the vector potential of the external electromagnetic

field. In principle, the photon here is in the final state, so one should write ϵ∗

instead of ϵ for its polarisation vector, but we will use ϵ for brevity.

We will eventually need this matrix element in a situation where photon

has small but non-vanishing mass. Hence, as the first step we want to check

the transversality of the matrix element in case k2 = λ2 ̸= 0. Then, in
Eq. (17.2) we replace ϵ→ k and find

ū(pf )

[
k̂(p̂f + k̂ +m)γ

µ

(pf + k)2 −m2
+
γµ(p̂i − k̂ +m)k̂
(pi − k)2 −m2

]
u(pi)

= ū(pf )

[
(2pf k + k

2)γµ

2pf k + k2
+
γµ(2pik − k2)
−2pik + k2

]
u(pi) = 0,

(17.3)

so the matrix element is transverse for arbitrary k2. This means that we can

use −gµν for the sum over photon’s polarizations.

The next important step is to understand the dependence of the matrix

element Mfi on the energy of the radiated photon. To this end, we use the
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Dirac equation for the external spinors to rewrite Eq. (17.2) in such a way

that the dependence on the photon energy becomes clear. We obtain

iMf i = −ieAµ(q)ū(pf )

[(
2pf ϵ

df
+
2piϵ

di

)
γµ +

ϵ̂k̂γµ

df
−
γµk̂ ϵ̂

df

]
u(pi),

(17.4)

where

df = 2pf k + λ
2, di = −2pik + λ2. (17.5)

It is clear from this expression that the dependence of the amplitude on the

photon energy ω can be schematically described as follows

iMf i =
M−1
ω
+M0 + ..., (17.6)

where the first term is singular in the limit ω ∼ λ → 0 and the second is
regular.

To understand the implications of this (soft) singularity, we will first check

if we need to care about it at all. To this end, we set the photon mass to

zero and consider the cross section of inelastic process

dσγ ∼ |Mf i |2(2π)4δ(4)(pf + k − q − pi)
d3p⃗f

(2π)32Ef

d3k⃗

(2π)32ω
. (17.7)

The photon phase space reads

d3k⃗

(2π)32ω
=
dΩγ ωdω

2(2π)3
(17.8)

If ω is small, we can drop k in the energy-momentum conserving δ-function

(physically, this means that if photon’s energy is extremely small, photon’s

presence does not affect the kinematics of electron’s scattering on the ex-

ternal vector potential). Then, we replace the amplitude with its singular

component in the ω → 0 limit and find
It is now easy to see that the dependence of this cross section on the

(small) photon mass is logarithmic. Indeed such dependence can only arise if

the photon is soft ω ∼ λ. We then use the approximate expression for the
amplitude as indicated above and find

dσγ ∼ |M−1|2(2π)4δ(4)(pf − q − pi)
d3p⃗f

(2π)32Ef

1∫
0

dω

ω
=∞. (17.9)
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Hence, we observe that, similar to the one-loop correction to the Dirac form

factor, the real-emission cross section cannot be computed without an infra-

red regulator.

In what follows, we will use the photon mass as a regulator, repeating what

we did for the virtual corrections to the Dirac form factor. One interesting

possibility is that the observed dependences on the infra-red regulators in real

and virtual contributions is not accidental but a reflection of the fact that this

splitting is somewhat unphysical and, if we combine these two quantities in a

way that allows us to describe physical observables, the singular dependence

on λ cancels out.

To check this hypothesis, we will try to combine the virtual (elastic) and

the real-emission (inelastic) contributions. We will only pay attention to terms

that develop logarithmic dependence on λ.

As the first step, we need to complete the calculation of the inelastic cross

section and for this we need to determine the part of the singular part of the

amplitude M−1/ω since this part of the amplitude determines the singular

dependence of the cross section on λ. In Eq. (17.4), we can neglect λ2

relative to 2pf ,ik ∼ Ef ,iω > Ef ,iλ in di ,f . Then,

M−1

ω
= e

[
pf ϵ

pf k
−
piϵ

pik

]
(−iAµ ū(pf )γµu(pi))

= e (ϵµJ
µ
eik(pf , pi , k)) iMel(pf , pi),

(17.10)

whereMel is the amplitude of the elastic process (i.e. of a process where the

photon emission does not happen) and Jµeik

Jµeik =
pµf
pf k
−
pµi ϵ

pik
, (17.11)

is the eikonal current responsible for the emission of soft photons.

It is now straightforward to compute the amplitude squared summed over

photon polarizations and spins of the initial-state and final-state electrons.

We find∑
|
M−1
ω
|2 = −JµeikJµ,eik

∑
|Mel|2 = e2Eik(pf , pi , k)

∑
|Mel|2, (17.12)

where

Eik(pf , pi , k) =
2pf pi

(pf k)(pik)
−
m2

(pf k)2
−
m2

(pik)2
. (17.13)
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Using this expression for the amplitude squared in Eq. (17.12), we derive

the following formula for the cross section of the inelastic process in the soft

approximation

dσγ ≈ dσel(pf , pi)
α

2π

[
d3k

(2π)ωk
Eik(pf , pi , k)θ(ωmax − ω)

]
. (17.14)

In Eq. (17.14) dσγ is the cross section of an inelastic process, dσel is the cross

section of an elastic process and we introduced a Heaviside function to ensure

that the energy of the photon does not become large, i.e. λ ≫ ωmax ≪ Ef ,i
and the soft approximation remains valid.

We now need to integrate the eikonal function over the photon energy and

its emission angle. To do this, we will consider three terms in Eq. (17.13)

separately. We will start with the last one and we emphasize that we are

interested in contributions that behave like lnλ. With this clarification in

mind, we write∫
d3k

(2π)ωk
θ(ωmax − ω)

m2

(pik)2
=
2m2

E2i

ωmax∫
λ

βλdω

ω

dΩk
Ωk

1

(1− βiβλ cos θki)2

=
m2

E2i
ln
ωmax
λ

1∫
−1

d cos θki
(1− βi cos θki)2

=
m2

E2i

2

1− β2i
ln
ωmax
λ
= 2 ln

ωmax
λ
.

(17.15)

Note that we have set βλ =
√
1− λ2/ω2 to one in the intermediate stages of

the calculation; this is justified because we are only interested in the logarithms

of the photon mass.

Since the result in Eq. (17.15) does not depend on the momentum of the

electron, we can immediately write down the result for the next integral∫
d3k

(2π)ωk
θ(ωmax − ω)

m2

(pf k)2
= 2 ln

ωmax
λ
. (17.16)

The last integral we need to compute reads∫
d3k

(2π)ωk
θ(ωmax − ω)

2pf pi
(pf k)(pik)

. (17.17)
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Although it looks somewhat different as compared to the other two, we can

make this calculation look similar to the previous ones by using Feynman

parameters. We write

1

(pf k)(pik)
=
1

P 2y

1∫
0

dy
P 2y
(Pyk)2

, (17.18)

where Py = pf y + pi(1− y). We note that the integral is the same as what
we previously considered provided that P 2Y is interpreted a a mass parameter

squared. We find

∫
d3k

(2π)ωk
θ(ωmax − ω)

2pf pi
(pf k)(pik)

= 2 ln
ωmax
λ

1∫
0

dy
2pf pi
P 2y
. (17.19)

Since P 2y = m
2 − q2y(1− y), we find∫

d3k

(2π)ωk
θ(ωmax − ω)Eik(pf , pi , k)

= 2 ln
ωmax
λ

1∫
0

dy

[
2pf pi

m2 − q2y(1− y) − 2
]
= ln

ω2max
λ2
Y (q2),

(17.20)

where we used Eq. (??) to identify the last integral with the function Y .

We now use Eq. (17.14) and write the cross section for an inelastic process

as follows

dσγ = dσ
(0)
el

α

2π
ln
ω2max
λ2
Y (q2). (17.21)

In the previous lecture we discussed the calculation of radiative corrections to

the elastic process and we have seen there that the Dirac form factor has a

logarithmic dependence on the photon mass. Since

F1(q
2) ≈ 1 +

α

2π
ln
µ2

λ2
Y (q2), (17.22)

we easily find that the elastic cross section with O(α) accuracy reads

dσel = dσ
(0)
el

(
1−
α

π
ln
µ2

λ2
Y (q2)

)
. (17.23)
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Adding elastic and inelastic cross sections gives the so-called inclusive

cross section; inclusive cross section, in the current case, gives us the proba-

bility for an electron to scatter.

It follows from our analysis that such an inclusive cross section does not

contain infra-red divergent terms proportional to ln(λ). The result reads

dσel + dσγ = dσ
(0)
el

(
1−
α

π
ln
µ2

λ2
Y (q2)

)
+ dσ

(0)
el

α

π
ln
µ2

λ2
Y (q2)

= dσ
(0)
el .

(17.24)

Of course, the fact that we obtained dσ
(0)
el for the inclusive cross section is a

consequence of keeping only ln(λ) terms in the calculation. In reality, O(α)
corrections do appear on the right hand side of the above equation but they

are not singular in the λ→ 0 limit and for this reason we do not show them.
Interpretation of the cancellation: operationally, it is impossible to define

purely “elastic processes” since all detectors have finite energy resolution. All

we can say is that the total energy carried by additional photons is smaller than

or equal to it. If we interpret ωmax as a quantity that is equal to the detector

resolution, the inclusive cross section that we computed corresponds to the

elastic process where the energy of the electron is determined with ωmax/Ei
relative accuracy.
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