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18 Proper treatment of the external legs

In quantum field theory Green’s functions contain propagators associated with

external legs; this happens both in the position space and in the momen-

tum space. When we construct scattering amplitudes, we use the Lehmann-

Symanzik-Zimmermann formula that requires us to act with a Klein-Gordon

or Dirac operator on the field related to a particular external leg. Here is the

formula for the transition matrix in a scalar field theory from lecture 10

iTf i = i
n

∫ n∏
i=1

dxi e
i

(
n∑
j=3

pjxj−p1x1−p2x2

)
n∏
i=1

(
∂2i +m

2
0

)
⟨0|Tφ(x1)...φ(xn)|0⟩,

(18.1)

and, as we said earlier, Klein-Gordon operators ∂2i +m
2
0 “amputate” external

legs of Green’s functions.1

However, in reality the situation is more subtle since, for a generic Green’s

function one can accumulate corrections that reside on the external legs that

cannot be discarded because of the action of Klein-Gordon (or Dirac) oper-

ator. To see this, consider φ4-theory as an example. In general, an external

leg of any Green’s function is a two-point Green’s function itself. We have

discussed the two-point Green’s function in such a theory in Lecture 10. To

one loop it reads

G(p) =
i

p2 −m20
+

i

p2 −m20
(−iΣ)

i

p2 −m20
, (18.2)

where

−iΣ1 =
λ

2

∫
d4k

(2π)4
1

k2 −m20
. (18.3)

To compute the contribution of the external-leg correction to the the scat-

tering amplitude in φ4 theory, we need to multiply G(p) with −p2 +m20 and
take the limit p2 → m20. We immediately see that it is impossible to do so
since the second term in Eq. (18.2) blows up.

To understand how to handle this situation, consider a two-point Green’s

function in some scalar theory in the momentum space. We can design a

useful representation of the two-point Green’s function by considering one-

1For the reasons that will become clear shortly, we denote the mass of the particle by m0.
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particle irreducible diagrams2 and treating them as basic contributions to a

two point function. Then in general

G(p,m0) =
i

p2 −m20
+

i

p2 −m20
(−iΣ(p2, m20))

i

p2 −m20

+
i

p2 −m20
(−iΣ(p2, m20))

i

p2 −m20
(−iΣ(p2, m20))

i

p2 −m20
+ ...

=
i

p2 −m20 −Σ(p2, m20)
,

(18.4)

where we have re-summed the geometric progression. The self-energy func-

tion Σ(p2, m20) is composed of one-particle irreducible diagrams only and ad-

mits the standard loop expansion.

For φ4 theory the one-loop contribution to Σ is shown in Eq. (18.3); it is

independent of the four-momentum p. Then, it follows from Eq. (18.4) that

the two-point function has a pole not at p2 = m20 as we originally thought

but at p2 = m2 where

m2 = m20 +Σ(m
2
0). (18.5)

The pole of the two-point function gives us the value of the mass of a free

particle. The above result implies that the observed mass of the particle

m differs from the mass parameter in the Lagrangian m0 because of self-

interactions. We will refer to the mass parameter in the Lagrangian as the

bare mass.

The next point is quite obvious. In principle, we are not interested in the

bare mass parameter since a proper theory should operate with observable

quantities. This is true in general but in quantum field theory the significance

of this issue is amplified because the relation between the bare mass and the

physical mass usually involves divergent integrals that need to be regularized.

For this reason, it becomes a bit more than just an inconvenience to keep the

bare mass in the results.

Furthermore, when we match the theory with interactions to a free theory

by switching interactions adiabatically as in the case of Lehmann-Symanzik-

Zimmermann formula, we need to match to a free theory where particles have

2We say that a diagram is “one-particle irreducible” if it can not be turned into two

disconnected pieces by cutting a single line.
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correct masses since adiabatic switching of interactions is not supposed to

change the theory spectrum. This implies that the mass parameter m0 that

appears in Klein-Gordon operator in Eq. (18.1) is supposed to be a physical

mass m.

The thing is that we have to write everything in terms of the physical

mass parameter and we need to assume that m20 that appears in the the LSZ

formula is also the physical mass parameter. In our φ4-example at one-loop

this change alone is sufficient to take care of the “external legs” problem

since after that, the Klein-Gordon operator ∂2 + m2 will indeed remove the

external Green’s function 1/(p2 − m2) and no trace of the problem would
remain. In addition, one will have to write amplitudes and cross sections

using the physical mass m and not the bare mass m0.

However, this is not the whole story since in general the self-energy func-

tion depends on p2. To understand implications of this fact, consider again

Eq. (18.4). For a generic function Σ(p2, m20) the only assumption that we

can make is that G(p,m) should have a pole at the physical mass m2 which,

at this point we do not know. Expanding around the pole, we find

p2 −m20 −Σ(m2, m20)−
∂Σ(p2, m20)

∂p2
(p2 −m2) +O((p2 −m2)2), (18.6)

where the derivative is taken at p2 = m2. We can write this expression as

(p2 −m2)Z−1 ++O((p2 −m2)2), (18.7)

where

Z−1 = 1−
∂Σ

∂p2
|p2=m2, (18.8)

and

m2 = m20 +Σ(m
2, m20). (18.9)

One can compute the function Σ(p2, m20) and calculate the relation between

the physical mass and the bare mass, as well as the constant Z. We will do

this below for the case of the electron in QED. However, before we do that

we need to discuss important consequences of the obtained result.

Basically, what we have seen is that even after we express the two-point

Green’s function in terms of the physical mass, in the vicinity of the on-shell

pole the function reads

G(p,m) ≈
iZ

p2 −m2 . (18.10)
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This expression for the two-point Green’s function implies that upon acting

with Klein-Gordon operator ∂2 +m2 on G(p,m), we will still get a factor Z

as a remnant. So it definitely seems that the external legs have re-appeared

again and need to be dealt with.

The latter statement refers to the following point. Eq. (18.10) implies

that at large times the interaction field does not smoothly go over to a “free

field” described by regular creation and annihilation operators but rather to

φ(t, x⃗)→ Z1/2φI(t, x⃗), t → T, (18.11)

where

φI(t, x⃗) ∼ ak⃗ + a
+

k⃗
, (18.12)

and the creation and annihilation operators are properly normalized

[ak⃗ , a
+

k⃗1
] = (2π)3δ(3)(k⃗ − k⃗1). (18.13)

The derivation of Lehmann-Symanzik-Zimmerman formula proceeds by

relating an integral of the interacting field to its asymptotic value which

then is expressed in terms of creation an annihilation operators. Thanks to

Eq. (18.11), such relations will be modified; for example instead of Eq. (??),

we will get

−i
∫
d4x e−ipµx

µ (
∂2 +m2

)
φ(x) =

√
2Ep⃗ Z

1/2
(
a+p⃗ (T )− a

+
p⃗ (−T )

)
.

(18.14)

Since we need an expression that relates e.g.
√
2Ep⃗ ap⃗ and an integral of φ,

we will have to divide Eq. (18.1) by
√
Z for each leg. When this statement is

combined with the fact that one gets additional factor of Z from each of the

external lines when computing amputated Green’s functions, previous rules

for computing amplitudes from Green’s functions ( which boil down to the

statement – ignore external legs) should be corrected to: start by ignoring

external legs and doing exactly the same things as before, but at the end

multiply the amplitude with Z1/2 for each external leg, and re-write the result

in terms of the physical mass, not the bare mass.

We will now apply the above discussion to Quantum Electrodynamics

and compute electron’s self-energy. We will denote it as Σ̂. The one-loop

4



expression reads

−iΣ̂(p,m) = −e2
∫
d4k

(2π)4
γα(p̂ + k̂ +m)γα

((p + k)2 −m2)(k2 − λ2) , (18.15)

where we added the photon mass λ for the reasons to be discussed later. I

also denote the mass of the electron as m but in principle at this point should

be the bare mass m0.

The self-energy diverges at large values of k . To take care of this problem,

we again subtract a contribution of a hypothetical Pauli-Villars particle with

the mass M. The regulated quantity reads

Σ̂(p,m) = −ie2
∫
d4k

(2π)4
γα(p̂ + k̂ +m)γα
(p + k)2 −m2

(
1

k2 − λ2 −
1

k2 −M2

)
.

(18.16)

We then introduce Feynman parameters, shift the loop momentum and find

Σ̂(p,m) = −ie2
∫
[dx ]2

∫
d4l

(2π)4
γα(l̂ + p̂(1− x1) +m)γα

×
(

1

(l2 − ∆)2 −
1

(l2 − ∆M)2

)
,

(18.17)

where

∆λ = m
2x1 + λ

2x2 − p2x1(1− x1), (18.18)

and ∆M is the same as ∆λ but with λ → M. We note that the linear l̂-
term in Eq. (18.17) drops out because it is odd under l → −l . The required
l-integration therefore is

G(∆λ,∆M) =

∫
d4l

(2π)4

(
1

(l2 − ∆λ)2
−

1

(l2 − ∆M)2

)
. (18.19)

Performing the Wick rotation, we find

G(∆λ,∆M) =
iΩ4
(2π)4

1

2

∞∫
0

l2Edl
2
E

(
1

(l2E + ∆λ)
2
−

1

(l2E + ∆M)
2

)
. (18.20)

The differential equation is easy to derive

∂G(∆λ,∆M)

∂∆λ
= −

iΩ4
(2π)4

∞∫
0

l2Edl
2
E

1

(l2E + ∆λ)
3
= −

iΩ4
(2π)4

1

2∆λ
. (18.21)
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Integrating, we find

G(∆λ,∆M) =
i

(4π)2
ln
∆M
∆λ
, (18.22)

where we have used the boundary condition G(∆λ,∆λ) = 0. Therefore,

Σ̂(p̂, m) =
αs
2π

∫
[dx ]2 (−p̂(1− x1) + 2m) ln

∆M
∆λ
. (18.23)

It is clearly possible to perform the integration over the Feynman parameters;

however, the exact result is not of interest to us. Rather, we need to un-

derstand the implications of this result for the mass renormalization and the

wave function renormalization in QED.

In general, we write the one-loop expression for the electron self-energy

as follows

Σ̂(p̂, m) = Σ1(p
2, m2)(p̂ −m) +m Σ2(p2, m2), (18.24)

where m is the pole mass. In principle, one can define Σ1,2 as functions of the

bare mass, but the required algebra is simpler if this representation is used.

We compute the electron two-point function by re-summing the geometric

series and find

Ŝe(p,m) =
i

p̂ −m0 −Σ1(p2, m2)(p̂ −m)−m Σ2(p2, m2)
. (18.25)

We now assume that the above expression has a pole at the physical

electron mass m and derive an approximate expression for Eq. (18.25) in the

vicinity of the pole. It is easy to understand that one can write Ŝe(p,m)
−1 in

the vicinity of the pole m as a particular (matrix) Taylor expansion

Ŝe(p,m)
−1 = Z−1(p̂ −m) + X2(p̂ −m)2 +X3(p̂ −m)3 + ... (18.26)

To find a relation betweenm andm0, as well as Z
−1, we expand the denomina-

tor in Eq. (18.25) around p2 = m2, and use p2−m2 = 2m(p̂−m)+(p̂−m)2.
The relation between masses can be found by simply setting p̂ → m and
insisting that Ŝe(p,m)

−1 vanishes. We find

m −m0 −mΣ2(m2, m2) = 0. (18.27)
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Defining the mass renormalization constant Zm as

m0 = Zmm, (18.28)

we find

Zm = 1−Σ2(m2, m2). (18.29)

To compute Z, we need to expand Σ2 in Taylor series around m
2. Then

Z−1 = 1−Σ1(m2, m2)− 2m2
∂Σ2
∂p2
|p2=m2. (18.30)

We now identify Σ1,2 in Eq. (18.23). As we said, the mass that appears in

these equations is the bare mass m0. However, since the difference between

m0 and m is formally O(α) and since Σ1,2 are also O(α), we can simply use
the pole mass m when computing these quantities to one loop. We find

Σ1(p
2, m2) = −

αs
π

∫
[dx ]2 (1− x1) ln

∆M
∆λ
,

Σ2(p
2, m2) =

αs
π

∫
[dx ]2 (1 + x1) ln

∆M
∆λ
.

(18.31)

We are now in position to compute Zm and Z2. To find Zm, we set

p2 = m2 in expression for Σ2(p
2, m2) in Eq. (18.31) and find

Zm = 1−
α

2π

[
3

2
ln
M2

m2
+
3

4

]
(18.32)

For Z, we need to calculate the derivative with respect to p2 and p2 = m2

and, as it is easy to see, this derivative becomes divergent in the infrared;

hence, we need to keep λ ̸= 0. We find

Z2 = 1−
α

2π

(
1

2
ln
M2

m2
− ln

m2

λ2
+
9

4

)
. (18.33)

It is now instructive to go back and compute the Dirac form factor F1(q
2)

at q2 = 0 using Eq. (??). The calculation is similar to what has been done

above; we find

F
(1)
1 (0) =

α

2π

(
1

2
ln
M2

m2
− ln

m2

λ2
+
9

4

)
. (18.34)
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Comparing Eqs. (18.33,18.34), we derive the following relation between

the Dirac form factor and the renormalization constant of the electron field

Z2
F1|q2=0 = Z−12 , (18.35)

where F1 = 1 + F
(1)
1 .

This result has important implications. Recall that we were arguing that

we have to ensure that F1(q
2 = 0) is zero since otherwise it will appear as

if we work with the wrong electric charge. This is a “poor man’s” way of

getting the correct result. In reality, doing this is not necessary. In fact,

according to the discussion in this lecture, we should be computing not the

vertex function of the electron but the vertex function multiplied with
√
Z

per each leg. Since there are two legs, we find

Zū(pf )Γ
µu(pi). (18.36)

Expanding this formula through O(α), we observe that the subtraction of the
Dirac form factor at q2 = 0 happens automatically because of the relation in

Eq. (18.35).
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