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Figure 1: Relation between the vertex function and self-energy diagrams.

19 Ward-Takahashi identities

We have seen in the previous lecture that there is an interesting relation

between the electron vertex function and the electron self-energy (or the

renormalization constant related to it). In this lecture we will discuss the

origin of this relation.

To this end, consider a single fermion line interacting with N off-shell

photons. We will call the momentum of the incoming fermion p0 and the

incoming momenta of N photons q1, q2.. qN. The interactions of these N

photons with the electron line are ordered, i.e. p0 first interacts with the

photon with momentum q1, then with the photon with momentum q2, then

with the photon with momentum q3 and so on. We do not assume that any

of the “particles” are on-shell; effectively, we work with a contributions to

tree Green’s functions. We will denote such an object as

EN1 (qN, .., q1; p0)
1

p̂N −m
γµN

1

p̂N−1 −m
γµN−1....

1

p̂1 −m
γµ1

1

p̂0 −m
, (19.1)

where

pi = p0 +

i∑
j=1

qj , (19.2)

and we do not indicate the dependence of the function EN1 on photons’ indices.

Next, we consider a photon with (incoming) momentum k that couples

to the above function. The important difference between this k-photon and
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N q-photons is that we account for all possible ways the photon k can couple

to the fermion line. The interaction is described by the following function

Gµ(qN, .., q1; p0; k) =

N∑
i=0

ENi+1(qN..qi+1; pi + k)γ
µE i1(qi , .., q1; p0) (19.3)

where

E01(..; p0) =
1

p̂0 −m
, ENN+1(..; pN) =

1

p̂N −m
. (19.4)

As the next step, we consider

Gµkµ =

N∑
i=0

ENi+1(qN, .., qi+1; pi + k)k̂E
i
1(qi , .., q1; p0). (19.5)

For the i-th term in the sum, we write

k̂ = (p̂i + k̂ −m)− (p̂i −m), (19.6)

and use the definition of E-functions to obtain

(p̂i −m)E i1(qi , ..q1; p0) = γµiE i−11 (qi−1, .., q1; p0), (19.7)

and

ENi+1(qN..qi+1; pi+k ; )(p̂i+ k̂−m) = ENi+2(qN, .., qi+2; pi+1+k)γµi+1. (19.8)

Hence, we find

Gµkµ =

N∑
i=0

[
ENi+2(qN, .., qi+2; pi+1 + k ; )γ

µi+1E i1(qi , ..q1; p0)

− ENi+1(qN..., qi+1; pi + k)γµiE i−11 (qi−1, .., q1; p0)

]
.

(19.9)

Next, we notice that if we shift the (dummy) summation index i → i + 1 in
the second term in the sum the above formula, it becomes equal and opposite

in sign to the first term in the sum. Hence, the two contributions to the sum

cancel each other up to the boundary terms. We obtain the following result

kµG
µ(p0; q1..qN; k) = E

N
1 (qN, .., q1; p0)− EN1 (qN, .., q1; p0 + k). (19.10)
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Figure 2: The illustration of the equation for qµΓ
µ.

To see what we can do with this result, consider electron self-energy

function and take any diagram that contributes to it.1 We can turn this

diagram into a diagram that contributes to electron vertex function but this

time defined as a Green’s function with amputated external legs Γµ(p+q, p, q)

and without assuming that (p + q)2 = m2 and p2 = m2. To do so, we need

to consider all possible insertions of the external “photon” with momentum

q into the electron line, see Fig. 2.

It is then easy to see (c.f. Fig.3), using Eq. (19.10), that the following

equation holds

qµΓ
µ(p+ q, p, q) = q̂− Σ̂(p+ q)+ Σ̂(p) = iS−1e (p+ q)− iS−1e (p). (19.11)

As a next step, we consider the q → 0 limit of the above equation. The left
hand side is already small. We then write the right-hand side as

iS−1e (pf )− iS−1e (pi) = iS−1e (pi +q)− iS−1e (pi) ≈ iqµ
∂S−1e (pi + q)

∂pµi
. (19.12)

Hence, we find

qµΓ
µ(pi + q, pi , q) ≈ qµΓµ(pi , pi , 0) = iqµ

∂S−1e (pi)

∂pµi
. (19.13)

1We only consider diagrams that contain photons and a single electron line. In princi-

ple, there are also vacuum polarization diagrams where photons split into e+e− pairs and

recombine back and there are light-by-light scattering diagrams etc. We do not discuss such

contributions below although the result remains valid even if those are included.
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Since this equation should hold for an arbitrary q, it follows that

Γµ(pi , pi , 0) = i
∂S−1e (pi)

∂pµi
. (19.14)

We compute the derivative of the inverse electron propagator. We write

iS−1e (p) = (p̂ −m) (1−Σ1(p,m))−mΣ2(p,m), (19.15)

so that

i
∂S−1e
∂pµ

= γµ(1−Σ1(p,m))− (p̂ −m)
∂Σ1(p,m)

∂p2
2pµ −

∂Σ2(p,m)

∂p2
2pµ.

(19.16)

We now consider the on-shell limit p2 → m2 and consider

ū(p)i
∂S−1e
∂pµ

u(p). (19.17)

We find

ū(p)i
∂S−1e
∂pµ

u(p) = ū(p)γµu(p)

[
(1−Σ1)− 2m2

∂Σ2(p,m)

∂p2
|p2=m2

]
= Z−1ū(p)γµu(p).

(19.18)

where we have used the Gordon identity in the forward limit

ū(p)pµu(p) = mū(p)γ
µu(p). (19.19)

It follows that

ū(p)Γµu(p) = F1(0)ū(p)γ
µu(p) = Z−1ū(p)γµu(p), (19.20)

so that

ZF1(0) = 1. (19.21)

We have first seen this result at one-loop, after the explicit computation of Z

and F1(0). The above derivation is valid to all orders in perturbation theory

and in this sense this is exact result in QED. Again, the important implications

of this result is that, since it is the combination ZF1(q
2) that appears as a

“physical” form factor in the matrix elements that describes interaction of an

electron with the external electromagnetic field, the physical form factor at

q2 = 0 is always equal to 1. As we said, this quantity is connected to the

definition of the electric charge of a fermion. Hence, this result implies that

the electric charge of a fermion is independent of e.g. the fermion mass and

should be the same for e.g. muon and electron to all orders in α.
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