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Chapter 1

Preliminary Remarks

1.1 Organisation

Lecture information available on ILTAS: script and exercise sheets, forum for questions,
organisational details

Lecture: Mo, 9h45-11h15 (Kleiner Horsaal B) and Thu, 9h45-11h15 (Kleiner Horsaal
A);
Exercises: to be determined

Exercise Group Leader: Dr. Christoph Borschensky
Tutors: M.Sc. Francisco Arco, M.Sc. Felix Egle

Criteria for obtaining the certificate of sucessful participation: see web page (ILIAS)

1.2 Literature
Textbooks:
[1 ] Bailin, David und Love, Alexander: Introduction to gauge field theory, Hilger

[2 ] Bjorken, James D. und Drell, Sidney D.: Relativistische Quantenfeldtheorie, BI-
Wissenschaftsverlag.

[3 ] Bohm, M., Denner, A. und Joos, H.: Gauge Theories of the Strong and Electroweak
Interaction, Teubner Verlag

[4 ] Cheng, Ta-Pei und Li, Ling-Fong: Gauge theory of elementary partilce physics, Oxford
Science Publications

[5 ] Halzen, Francis und Martin, Alan D.: Quarks and Leptons, John Wiley & Sons, Inc.
[6 ] Ttzykson, Claude und Zuber, Jean-Bernard: Quantum Field Theory, McGraw-Hill
[7 ] Kaku, Michio: Quantum field theory, Oxford University Press

[8 ] Kugo, Thaichiro: FEichtheorie, Springer
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[9 | Nachtmann, Otto: Phdnomene und Konzepte der Elementarteilchenphysik, Vieweg

[10 | Peskin, Michael E. und Schroeder, Daniel V.: An introduction to quantum field theory,

11

12

Addison-Wesley
| Pokorski, Stefan: Gauge field theories, Cambridge University Press

| Ramond, Pierre: Field theory, Addison-Wesley

[13 | Ryder, L.H.: Quantum Field theory, Cambridge University Press

14

| Sterman, George: An Introduction to Quantum Field Theory, Cambridge University
Press

[15 ] Weinberg, Steven: The quantum theory of fields, Cambridge University Press

Web pages:

http://pdg.lbl.gov  Particle Data Group
http://inspirehep.net Datenbank INSPIRE fiir Publikationen
http://arxiv.org Preprint-Archiv

http://www.cern.ch ~ CERN

1.3 Preliminary Content

1.

2.

Preliminary Remarks
Introduction (conventions, Lorentz and Poincaré group)

Lagrange formalism for fields (equations of motion, Noether theorem, inner symmetries,
group theory)

Quantisation of scalar fiels

. Quantisation of spinor fields (Dirac field)

Quantisiation of spin-1 fields (vector fields)
Perturbation theory, Feynman rules, Feynman diagrams

Computation of cross sections



Chapter 2

Introduction

Elementary particle physics means physics at smallest scales, respectively at highest (rela-
tivistic) energies. Look e.g. at the wave-particle duality and the de Broglie relation,

E=hv~FE?T < v1T < A| smallest scales . (2.1)

The basis of the description of high-energy physics is quantum field theory. It is the synthesis
of quantum mechanics and special relativity. In quantum mechanics, we use wave equations.
These cannot describe processes where the number or the type of the particles change.
Moreover, relativistic wave equations exhibit inconsistencies (e.g. negative energy solutions).
In quantum field theory we identify particles with modes of a field, and the field itself is
quantised (“2nd quantisation”). This allows us to describe the creation and annihilation of
particles.

An important concept are symmetries. In particular

(7) Space-time symmetries: They allow the Lorentz-/Poincaré-covariant formulation of the
field theory. It leads to mass and spin as fundamental properties of the particles.

(77) Internal symmetries: Particles are grouped into multiplets of symmetry groups. This
leads to additional quantum numbers like isospin, hypercharge, colour, ... Lie groups
play an important role in particle physics. They are used for the description of con-
tinuous symmetries.

(731) Gauge symmetries: They are of particular importance. Local gauge symmetries allow
to describe the interactions between fields dynamically. The fundamental interactions
are described by gauge symmetries:

Electromagnetic interaction: U(1)

Weak interaction: SU(2)
unified to electroweak interactions: SU(2) x U(1)

Strong interaction: SU(3)

Open problem: description of gravity as a gauge theory

Why do we do high-energy physics? - We want to find answers to our basic questions
about the universe:

1. What is the universe made of?
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2. How did the universe develop?

3. What are the fundamental building blocks of matter, and which forces hold them
together?

What is the status of elementary particle physics today?

1. The known matter can be described by a few fundamental particles.
2. The diverse interactions are described by fundamental forces between the particles.

3. The physics laws can be described mathematically using a few fundamental principles
(except for gravity).

We have a consistent model, whose particles all have been discovered: the Standard Model
of particle physics. However, there are open questions, which cannot be answered within
the Standard Model, like e.g. the nature of Dark Matter, why is there more matter than
antimatter in the universe, ...

2.1 Conventions and Definitions

Natural units: In theoretical particle physics we use natural units (Planck units). We set
the speed of light ¢ and the Planck constant h equal to 1. The energy unit (which is not
fixed by this choice) which is used, is the electron volt: 1eV = 1.6- 10719 J.

1. We set the speed of light ¢ equal to 1:

c=3-12=1 = 1s=3-10°m (2.2)
S

2. The Planck constant is set equal to 1:

h

h=5- =66 1072 GeVs=1 = 1s=15-10"GeV'. (2.3)
m
And
hc=1 = 1m=5.1-10"GeV'. (2.4)
Furthermore,
Eres
m = C2t = Lorest <25)
leV 1.6-107Y .
= = kg =1.78 10 kg = 1eV 1kg = 5.6 - 10%° GG
" ZEN CRT DR A T B

3. The elementary electric charge e > 0 is given by the Sommerfeld fine-structure constant
a:

O qgr, T em 03 (2.7)

The charge e is dimensionless.
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All physics units are hence given in terms of powers of energy. The exponent is the (mass)
dimension. He therefore have

[Length] = [Time] = —1, [Mass] =1, [¢/=0. (2.8)

Minkowski Metric A metric space is a vector space with a metric. We have the contravari-
ant four-vector

20
" x! t .

=1 2=\ (contravariant) . (2.9)
3

x

The dual space of the vector space contains as elements the covariant four-vectors

Lo
I S t .
=, | = < _z ) (covariant) . (2.10)
3

The transition between contra- and covariant is mediated by the Minkowski metric g,

(5)-(%)

The scalar product (which is invariant under Lorentz transformations - see next section) is
given by

1
T, = v |V
M_guyx— O
0

0
-1 0 0
-1 0

1

vy =ayt =alguy’ =% — 17, (2.12)
For the length of a Lorentz vector,

2t = -7, (2.13)
we have the classifications

22 >0 time-like
22=0  light-like (2.14)
22 <0  space-like .

This means that (with Az =z, — z3)

(Az)* >0 Signals with v < ¢ can be sent from z, to xy.
(Az)>=0:  An event at z; is on the light-cone of z,. (2.15)
(Az)* <0 The events are not causally connected.

See also Fig. 2.1.

Differential operators in Minkowski space The covariant derivative is given by

O=5-=(2V), (2.16)

Slo
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Figure 2.1: Light cone of the future and of the past.

and for the d’Alembert operator we have
o2 , 0
a= = — — =—-A.
Ou0 ot? v - Ot?

Tensors We have for the metric tensor

G = g" und gz = 5;: )

The Levi-Civita-tensor is defined through

+1 for even permutations
etP? = ¢ —1 for odd permutations
0  otherwise

It is
0123 __ _ urpo
e " =+1 = €23 = Goud1v92p93s€ = §00911922933€

We also have

a 0 1 : .
eb:<_10):202, ie. e?=1.

Einstein sum convention We sum over doubly appearing indices, i.e.

aibi = Zalbz .

and
3

a,b, = Z a,b .

=0

0123 _ _ 0123 _

(2.17)

(2.18)

(2.19)

~1. (2.20)

(2.21)

(2.22)

(2.23)

For four-vectors, the Greek indices run from 0 to 3 and the Latin indices run from 1 to 3.
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2.2 Lorentz group and Poincaré group

2.2.1 The Lorentz transformation

In classical physics and special relativity the tensor concept plays a central role. According
to the covariance principle, physics laws can be expressed through tensor equations:

Physics laws < Tensor equations . (2.24)

Physics laws are invariant under coordinate transformations. A tensor equations relates
vectors (tensors of rank 1) and tensors of higher rank. In quantum field theory we also deal
with fermions. They have spin of half unit and are fundamentally different from bosons with
unit spin. They are described through spinors. The covariance principle for fermions is

Physics laws < Spinor equations . (2.25)

A typical example is the Dirac equation. Once the transformation properties of objects like
tensors, spinors are known, we can construct invariant quantities, i.e. Lorentz invariants, from
them. The Lagrangian density e.g. is a Lorentz-invariant quantity. From the Lagrangian
density we can then derive the equations of motion.

All linear transformations in Minkowski space,
ot ah = A (2.26)
with :E’My/“ = zuyt forallz,y, (2.27)
are called Lorentz transformations. They form the Lorentz group. It corresponds to the

pseudo-orthogonal group O(3,1). This means for the 4 x 4 matrices that A € O(3,1). From
(2.27) it follows that

gwxl"x," = guNaPN 2% = gpoa’a” = (2.28)
Goo = GulNAY . (2.29)

And hence
AMgh=g = detg=det(ATgh) = detA==+1. (2.30)

The inverse of A* is given by (A™1)* = A K as
Eq. @
ALY = g g7 A = (g N A% g7t 22 g gon — gi — st qed. (2.31)
2.2.2 Transformation properties

The covariant derivative and the d’Alembert operator transform as

g 0 D

B xh Qxt Qxv

= A:&, (2.32)
and

0 = AN = gr0,0° = 0,0 =10 . (2.33)
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The d’Alembert operator is hence Lorentz-invariant.

A contravariant tensor of rank n transforms as
Ty V. M1 Mn V1...Un
T =AM, AT , (2.34)
and analogous the covariant tensor 7),, .. A mixed tensor of rank (n,m) transforms as

Tt = BN AT A I TP . (2.35)

V1...Um 01...0m

The metric tensor g, is invariant under the Lorentz transformation, i.e. ¢ = g/, g;’w =
Guv-
The transformation of the Levi-Civita tensor is given by

6/,ul/po = PP det A = FeHPe (236)

2.3 Lorentz group
The set of Lorentz transformations A forms a group g¢:
1. Unit element: 1 = %,
2. Inverse: (A~1)" =AM
3. Associativity: Aj o (Ao Asz) = (Aj0Ay)oA;.
4. Closure: Ajo Ay € g.
Special examples of Lorentz transformations are
e Space inversion (parity): Ap = diag(1, —1, —, 1—, 1), with

o = (Ap)a” = (%, —7)" . (2.37)

e Time reversal T: Ar = diag(—1,1,1,1), with

" = (Ap)a¥ = (—2°, %) . (2.38)
(Classification: The Lorentz group can be classified following two properties: the sign of the
determinant, det A, and the sign of A%. The Lorentz transformations

1. LT ={A € L:det A= +1, A% > 0} are called proper orthochronous.

2. Lfr ={A e L:detA=+1, A% < 0} are called proper non-orthochronous.
3. L' ={A e L:detA=—1, A% > 0} are called improper orthochronous.

4. L' ={A e L:detA = —1, AY < 0} are called improper non-orthochronous.

Examples for the four branches 1.—4. of the Lorentz group are the identity 1 =diag(1,1,1,1),
the inversion PT = —1, the space inversion Ap =diag(1,-1,-1,-1), the time reversal Ay =
diag(-1,1,1,1). They form the group of discrete transformations.
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2.4 The special Lorentz group and its decomposition

The group of transformations of a space with coordinates (y1, ..., Ym, 1, ..., T, ) which leaves
the quadratic form (y+...+y2 ) — (23 +...22) invariant, is called the orthognal group O(n, m).
The Lorentz group is O(3,1), the Ll is SO(3,1). The proper orthochronous Lorentz group

Ll ={A € SO(3,1)|detA =1, A% > 0} (2.39)

contains rotations and boosts. Every A € Ll can be written as product of a rotation R and
a boost b,

AeLl = A=MNAg. (2.40)

The rotations are given by

() (2.41)

—

with the axis % and the angle ¢ = || and the rotation matrix elements R(g);; -
¥

A pure boost into a reference system which moves with a relative velocity v in the direction
of the 2 = x-axis, is given by

v =B 0 0 coshn —sinhn 0 0
~w | =8 v 00| [ —sinhp coshnp 0 O
A= g o 10|~ 0 0 10 (242)
0 0 01 0 0 0 1
Here we defined
1
Y, - (2.43)
s
v
= - 2.44
=t (249
and
n = artanhv (2.45)

is the rapidity, with —oo < 1 < oo. In general, A can be parametrised by three angles and
the three components of v. The Lorentz group can be parametrised in a continuous and
differentiable way by six parameters and forms a Lie group. It is non-compact because of
—00 < 1 < 00.
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2.5 Infinitesimal transformations, Lorentz algebra

We can expand A as

A = 5 4 Swh + O((0w)?) . (2.46)
With

NN = Gpe = 9 (65 + 6Wh) (07 + 0w’,) + ... = Gpo + OWep + OWpo + ... (2.47)
we find

ey = —0Wpe (2.48)

and hence that dw is antisymmetric. It is hence defined by six independent parameters,
which correspond to d¢p; and é7;. Denoting the generators of the algebra by M®? we have

A =exp <—%wa5M°‘B> : (2.49)

With the infinitesimal representation

A = 68 4 Sapg™ol = ot — %maﬁwaﬂ)@ (2.50)
we get
(MP)e, = i(g*o) — g™6g) . (2.51)

We hence have

. "
A= [exp (‘é“’“ﬁM B)} and (M9), = i(go#d8 — gPrge) (2.52)

v

The Lorentz algebra is

Lorentz algebra

[MIW’ Mpa] = —i(gMP MY — g MYP + gV MM — 7P M)

Special cases are

K; = Moy, boosts in x; direction
J; = %eijijk generators of infinitesimal rotations around the 2? axis, (2.54)
= My = €pnJ, hence the angular momentum.

With the generators of the rotations, J; (i = 1,2, 3), we hence have
A0,3) = exp(ig-J) . (2.55)

And with the generators of the boosts K; (j = 1,2,3) and 7 = nv//|v| we have

—

A(7,0) = exp(iff - K) . (2.56)
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The generators fulfill the following algebra

Algebra
[Tk, Ji] = i€rimdm (angular momentum algebra) (2.57)
(K;, K, = —i€jnedi (two boosts involve a rotation) (2.58)
[y, K1 1€kim Km

Examples are

10 0 0
— 0 1 - (10 0 2 s 3 2
Ars=| g 5, 1 o |TO0R)=1—i0p]"+0O((00)7) . (2.60)
0 0 1
and
1 0 0 —dn
0 10 0 ) . 2
Ay=1 o o1 o [TOWM)=1+ionK"+0n):. (2.61)
7 00 0

For general rotations and boosts we have (cf. also Eqs. (2.55) and (2.56))

Ap = 1—i63T + O((60)?) (2.62)
Ay = 1407 +O((6n)?) (2.63)
with
000 0 0 0 00 00 0 0
1 1000 O 2 0 0 0 4 3_[ 00 =0
T=looo =" 7 loooo| "7 =|oi oo (2.64)
004 0 0 — 00 00 0 0
and
0 i 00 00 i 0 000 i
, [io000 _ (0000 s_ (0000
E=toooo | " " iooo| " loo0oo0o0]|" (2:69)
0000 0000 i 00 0
and
Jit = J* (hermitian), K" = —K' (anti-hermitian) . (2.66)

2.6 The Poincaré group

Tensors or (relativistic) bosons are objects which transform according to the tensor represen-
tation of the Lorentz group. Spinors or (relativistic) fermions are objects which transform
according to the spinor represenation of the Lorentz group. Hence, by studying the Lorentz
group, we can distinguish between bosons and fermions and assign particles to one of the
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two categories. But to completely treat the world of elementary particles we need to study
the Poincaré group.

The Poincaré group is the group of Lorentz transformations and translations in Minkowski
space. It describes the structure of our space-time, and all its irreducible representations
are characterised by mass and spin, hence by the fundamental properties of the elementary
particles.

Poincaré transformations in Minkowski space are composed of a Lorentz transformation
with A# and a translation by a*. We hence have the translation group 7" and the Poincaré
group P given by

T = {a" —2*=a"+a" : a* €R*} (2.67)

P = {s' sz =ANa"+a": A\ €L, a" R} . (2.68)
We have the following multiplication rule

(AQ, a2)(A1, (1,1) = (AQAl, A2a1 + ag) . (269)
Hence P is a semi-direct product of L and T". The semi-direct product differs from the direct
product, for which we have the multiplication rule (As, as)(A1,a1) = (AaAq, a1 + az).

The generators of the translation are given by

P, =10, , (2.70)
as

f(@") = f(z +a) = exp(ia”’P,) f(x) (Taylor expansion) . (2.71)
Together with the generators of the Lorentz transformation M* = —M"* we hence can
write

A= exp(—%waﬁM‘w +ia, P") . (2.72)

The algebra is given by

Poincaré Algebra

PP = ilgPT - g7 PY) 2.73)
[M* ) MP7] see Lorentz algebra Eq. (2.53)

Infinitesimally, we have

(1F5w,5a)::1—-%5uﬁgﬂfw3+i5awpuﬁ“. (2.76)
Let us check the relation Eq. (2.73). We have
(1+ 6w, 0) (1, 6a)(1 + dw,0)
= O+%MMMMXLHMJWO—%MMMW%h“

1
:1+Mﬁt5mmmM%WHm, (2.77)
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and we also have
(146w, 0)"*(1,6a)(1 4+ dw,0) = (1 —dw,0)(1+ éw,da) = (1,da" — sw"da,)
= 14 1i(6a" — 0w da,)P, + ...
= 1+i0a"P, — %&u’“’(éaVPu —da,P,)+ ... (2.78)
The combination of Egs. (2.77) and (2.78) yields Eq. (2.73).
2.6.1 Transformation of fields
Let us investigate the transformation of the fields. We have
o(x) 2 (') = ¢/ (Az + a) . (2.79)
For the scalar field we have
¢'(2") = p(x) (2.80)
and hence
¢(x) = (A (z — a)) . (2.81)

For infinitesimal translations this means

¢(z) = oo —da) = p(z) — da"dud(w) + O((0a)*) = (1 +1ida”(i0,))$(w) + O((da)?)

= (1+ida"P,)¢(x) + O((da)?) ,
from which follows (see also above)

Pt = 40" .

(2.82)

(2.83)

The momentum operator hence corresponds to the differential operator. For homgenous

infinitesimal Lorentz transformations we get
i
¢(x) = G(Aw) = (2" + J0was(M) 2" + )

= 9(a) + S0uas (M) 0,0(2) + .

Il N (07 (07 12
= o¢(x) + §5wagz(g “55 — gﬁ“éy)x Lo(x) + ...

= ox) + %5&1&5@'(3:580‘ — 220 (x) + ...
= (@) = S0wasl™B(@) + ...,
where we introduced the generalised angular momentum operator
L8 = i(xo‘ﬁﬁ — xﬁaa) = 2®PP — 2B p .

Non-infinitesimally, we have

¢ (1) = ¢(AH(z — a)) = exp (—%waﬁLO‘B + iauP“) o(x) .

(2.84)

(2.85)

(2.86)
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2.6.2 Groups

Be a pair (G, *) with a set G and an inner binary connection/group multiplication. x :
G x G — G, (a,b) — axbis called group if the following axioms are fulfilled

1. The group is closed. This means, if ghe G = g+ heG.
2. Associativity: (g1 * g2) * g3 = g1 * (g2 * g3).

3. 3 Identity element e with the property gxe=exg=g9 VgeG.

4. For each g there is an inverse g~! with g7t xg=g*xg ! =e.

Abelian group: A group is called Abelian, if g« h = h *g.

Continuous groups: They contain an infinite number of elements and are described by n
parameters. The elements depend in a continuous and differentiable way on a set of real
parameters 0%, a = 1,...,n, where n is the dimension of the group. For Lie groups n is finite.
We chose g(6 = 0) = e. All one-parameter Lie groups are Abelian. A typical example is
U(1) with the elements ¢'® and ¢ as parameter.

Examples of Lie groups:

(1) O(N): orthogonal group, dimension N(]gfl). We have MM7T =1 so that det M = +1.
We have the SO(N) for det M = 1.

(i) U(N): unitary group, dimension N2. We have UUT = 1. We have the SU(N) for
det U = 1. Its dimension is N? — 1.

(ii1) SL(N,C): complex matrices A, det A = 1, dimension 2N? — 2. E.g. the symplectic
group Sp(2n, C).

2.7 Representations
A representation R of a group is an operation assigning a linear operator Dg(g) to a group
element ¢:
9 — Dr(9) , (2.87)
with
1. Dg(e) =1 — Identity operator
2. Dgr(91)Dr(g2) = Dr(g1 © g2) — The mapping preserves the group structure.

The space on which the operators Dy act, is called the basis for the representation R. A
typical example is the matrix representation. Here the basis is a vector space of dimension
n, and the group element is represented by an (n x n) matrix.

(Dr(9));, 4,5 =1,.,m. (2.88)
We call n the dimension of the representation R. It is equal to the dimension of the basis

space on which it acts.

Let us look at an example and choose (¢!, ..., ¢") as element of a basis vector space, on
which we apply a group transformation induced by the group element g,

¢ — (Dr(9));¢’ - (2.89)
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Choosing a representation hence allows us to interpret g as a transformation on a certain
space.

A subspace of a representation is invariant if the action of Dg(g) on a vector of this
subspace results in another vector in the same subspace. A representation R is called irre-
ducible if the only invariant subspaces are the zero space and the basis space itself. Or, in
other words, an irreducible representation is a non-zero representation that has no proper
nontrivial subrepresentation.

Two representations R and R’ are called equivalent if there is a matrix S such that
Dg(g) = S™'Dri(g)S . (2.90)

An example is the change of the basis in the vector space spanned by the ¢‘. Note that in
general the dimension of the matrix Dg(g) changes with the representation R.

The Lie algebra is independent of the representation. The Lie group has a smooth de-
pendence on the parameter #¢, and for infinitesimal 0% we have

Dgr(0) = 14+i0°T% 4+ O(6%) , (2.91)
with
|ODR(0)
a _ 2.92
Th i ' o |, (2.92)

The T}, are called the generators of the group in the representation R. A group element ¢(f)
can be represented as

Drlg(8)) = €T (2.93)

Note that if the T3 are hermitian, the Dg(g(6)) are unitary and we hence have a unitary
representation.

Let us look at the group multiplication. We have
pioaTf iBaTfy _ bl (2.94)

for some a, 3,6. But in general, eAe? # eA+B. The relation defines the Lie bracket (Lie
algebra), given by

[T T = ifeTe . (2.95)

We call the f® structure constants. They are independent of the represenation R. The
Jacobi identity is given by

[T [T, T + [T°, [T, T + [T¢, [T*, T"]] =0 . (2.96)

For Abelian groups we have fo¢ = 0. All irreducible representations of Abelian groups are
one-dimensional. E.g. we have

U(1) and its representation D(g(#)) = e . (2.97)

Important representations: We have the following important representations:
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Fundamental representation: It is the non-trivial representation with the smallest di-
mension. E.g. the generators of SO(3,1) are given by (4 x 4) matrices and those of
the SU(N) by (N x N) matrices.

Adjoint representation: The representation has the same dimension as the number of
generators. For Lie groups they can be written in terms of the structure constants,
namely (T%)p. = —if%,

Casimir operators C: These are operators which commute with all generators T, i.e.

[C. T =0. (2.98)

They are proportional to 1 in all irreducible representations. Let us look as example at the
algebra of the angular momentum, given by

(4, J7) =ik gk (2.99)
The Casimir operator is

P=>"JJ, (2.100)
hence

[J2,J]=0. (2.101)

This allows to e.g. diagonalise J% and J3 simultaneously. The irreducible representations
DU) for fxed values of j are given by the eigenvalues of the Casimir operator, namely

Pljym> = j(j+1)jm> (2.102)
Pljm> = mljjm>, m=—j—j+1,...7. (2.103)
The {|j,m >} correspond to a (2j + 1)-dimensional multiplet for each fixed j.

Casimir operators of the Poincaré group
We have introduced before the Poincaré algebra, in particular

(PE P =0, [JL P =i Pr (i e{1,2,3}), [J,PY)=0, (2.104)
[K', P'] =iP%,;; , [K' P =iP". (2.105)

The operator P? is the Hamilton operator, and we can infer that J, P’ are conserved, but
K" is not conserved. The Casimir operator is given by P,P*. Let us proof this:

[K', P,P"] = [K', Py] — [K", 132] =2iP'P’ - 2i5;P’P* =0, (2.106)
and analogous for J. Its action on a one-particle state |p,s > with momentum p* and
p? = m? is

P'P,lp,s >=m?|p,s > . (2.107)
The mass is hence the eigenvalue of the Casimir operator.

There is another Casimir operator given in terms of the Pauli-Lubanski vector, which is
defined as

1
W = " M, P, (2.108)
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The Casimir operator is W, W*#. We give a sketch of the proof: W,W* is Lorentz-invariant
and hence commutes with M"?. We also have [W*, P"] = 0 so that [W*W,, P"] = 0.

For non-zero mass m, we have in the rest frame p* = (m,0) that W° = 0. And we have

Wi = %eol'jijk - %a‘ﬂ“Mjk = mJ' (2.109)
so that
~W,WHp,s >=m?s(s+ 1)|p,s > . (2.110)

The |p,s > corresponds hence to massive particles of spin s with 2s + 1 spin degrees of
freedom.

For m = 0, the p* can be written as p* = (w,0,0,w), leading to
~W WH =W [(K* — J')? + (K' = J*?] . (2.111)
It can be shown that W# = hP* where h is the helicity given by
r
7]

and the eigenvalues are h = +s. For the photon we have h = +1 and for a massless fermion
we have h = :i:%. For the graviton we have h = 4+2. We hence have 2 spin degrees of
freedom.

h==J (2.112)
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Chapter 3

The Lagrangian Formalism for Fields

3.1 Quantum Field Theory

In classical physics, we know particles and fields like e.g. the electromagnetic field. A particle
is fixed by its space-time-coordinates. A field on the other hand has an infinite number of
degrees of freedom. Particles are described in quantum mechanics through a wave function.
Fields appear as external fields, e.g. the Maxwell field. Through quantisation of the electro-
magnetic field, photons are introduced and thereby the wave-particle dualism of light. From
the point of view of theoretical physics, elementary particles, the smallest building blocks of
matter, are the lowest excitation levels of certain fields.

In order to describe elementary particles and their interactions we use quantum field
theory (gfth). In this theory, the principles of classical field theory and quantum mechanics
are joined into one theory. The theory goes beyond quantum mechanics, by treating parti-
cles and fields uniformly. Not only observables like e.g. energy are quantised, but also the
interacting (particle) fields themselves. The quantisation of the fields is also called second
quantisation. It allows to explicitly take into account creation and annihilation of pairs
of particles. Relativistic quantum field theories take into account special relativity
and are applied in elementary particle physics.!

The application of quantum field theory hence allows to solve a fundamental problem
of quantum mechanics: Its inability to describe systems with varying particle number. As
known from relativistic quantum mechanics, there are, according to the relativistic Klein-
Gordon equation and the Dirac equation, solutions of negative energy, which are inter-
preted as antiparticles. Thereby particle-antiparticle pairs can be created if there is sufficient
energy.? This is impossible in a system with constant particle number.

The first step towards a quantum field theory consists in finding the Lagrangian density
for the quantum fields. These deliver via the Euler-Lagrange equation the differential
equation for the fields. The differential equations are for the scalar field the Klein-Gordon
equation, for the spinor field the Dirac equation, and for the photon the Maxwell equa-
tions. These are the equations of motion for the free fields, which do not interact. They
have been derived from Lagrangian densities for free fields. In order to introduce interactions

'Non-relativistic quantum field theories are relevant e.g. in solid state physics.

2In the Dirac picture this corresponds to lifting a particle from the Dirac lake of states with negative
energies to a state with positive energy. Thereby a hole is generated in the Dirac lake, which is interpreted
as a positron, and leads to an electron with a positive energy, so that we get an electron-positron pair.

19
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between the fields, the Lagrangian densities have to be extended by additional terms.

3.2 Transition from the Discrete to the Continuum
System

We investigate the transition from the discrete to the continuum system by taking the
example of a chain consisting of mass points. The mass points of mass m shall be connected
with each other through springs with spring constant k. This is a system of coupled harmonic
oscillators. Be a the average distance between two mass points and ¢; the deviation of the
ith mass point from its rest/equilibrium position. We then have the kinetic energy T

I
T = Z §mqi2 . (3.1)

The potential energy V is given by

1
With this we get the equation of motion for the ith mass point,
. v
mgq; = _6(]‘ = k(i1 — @) — k(@ — ¢i-1) - (3.3)

On the other hand the equation of motion can also be deduced from the Lagrangian function
of the system. It is given by

L= Z a [ i (%)1 . (3.4)

The equation of motion of a single particle is obtained by applying the Euler-Lagrange
equation

d oL 0L
i — 3.5
dtog  Oq (3.5)
leading to
Qi+1 — 4 — 4i-1
— ka a2 + ka o 0. (3.6)

We take the limit @ — 0. This implies the following;:
1. The quotient m/a becomes the mass density .

2. The normalised distance & = (g;+1 — ¢;)/a is proportional to the force k(g;r1 — qi)-
The proportionality constant is given by the material constant y, the so-called Young
modul. We hence have

@ y = k(g1 — @) a0 y==~k-a. (3.7)
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3. We pass over from the discret index ¢ to a continuum index x. Insted of the index 1,
we take the position in rest, z. And instead of ¢;, we now have ¢(x) as function of the
position. We hence have

¢ — qx) (3.8)
Qz‘+1a— LN q(z + CLC)L —q(x) a0 a(é(;) ).

Furthermore,
a) - /da;. (3.10)

We thereby get the following Lagrangian function of the continuum system

L= /dx (%uq’(w)Q - % (a‘éf)f) . (3.11)

The integrand is called Lagrangian density £. The equation of motion is obtained from

Eq. (3.6):

. . d(x+a)—q(x . "
uq—yclg%(( i ()>=0 = pj—yq =0. (3.12)

Note that = is not a generalised coordinate, but an index. The canonical variable is given
by q(z) = q(t, 7). We call ¢ = q(t, %) a field. The equations of motion are partial differential
equations.

For three-dimensional systems we have

L:/dxdydzﬁ. (3.13)
The Lagrangian density £ is a function of ﬁq. The canonical momentum is given by
oL
=—. 3.14
"= 8 (3.14)

3.3 The Euler-Lagrange Equation for Fields

We apply the Hamiltonian principle to the Lagrangian density £(q, ¢, ﬁq) It states that the
action S

to
S:/ dt/d3:c£ (3.15)
t1

has to be minimised, keeping the endpoints ¢(¢), q(t2) fixed. We look at the variation

0 = 6S= dt/d3x%5q+a—£,5q’+ oL
dq dq o(Vq)

with 8¢ = —dq, 6(Vq) = Véq . (3.16)

5(Va),
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We perform a partial integration keeping the terms at the endpoints fixed so that their
variation vanishes, i.e. 0¢(t1) = dq(t2) = 0. We further demand that ¢(t, ) = 0 for |Z] — oo.
Thereby, we obtain

L[t oL  doL = oL
0= dt/d% <———f—vT>5 3.17

This has to hold for all variations dg. Thereby we get the Euler-Lagrange equation for fields

19) d o - 0
LodoL goc

—_— - - —=20. 3.18
dq dt g Vg ( )

The Hamiltonian density H is given by

0

H=m¢—-L, Withﬂ':a—g. (3.19)

We look as example at the following Lagrangian density
Ko Y i
B _Z/2 2

L=350—354 (3.20)
We have with

oL oL oL

= _0 = g d = = —yd 21

9~ 00 g —Ha and o0 =-u (3.21)
the equation of motion

pi—yq =0. (3.22)
3.3.1 Relativistic Notation
We define

0, = 0;2“ and 0" = % as well as (3.23)

/d:c = /dt/d?’x. (3.24)

The [dz is Lorentz-invariant (the Lorentz contraction is compensated by the time dilata-
tion). With this notation we get for the field ¢(¢,Z) then ¢(z) and for the Lagrangian
density

L= L(6,0,0) (3.25)
The Euler-Lagrange equations can be written as
oL oL oL
— —Oy=———=0 with 7= . 3.26
96~ 00,0) 7o) 220

In case the Lagrangian density L is Lorentz invariant, the field equations are covariant.

We look at the following examples:
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1. Real scalar field without interaction. The Lagrangian density reads
1 " m? 9
£(6,0:0) = 5(0:0)(00) — "o-0* (327)
We thereby have
oL 9 oL
— = —m?¢, = 0"¢ 3.28
% 70,0) 52

and hence get the equation of motion

—m?¢— 9,00 =0 = (O+m?)¢=0with 9,0" = 82 — V? = 92 — A(3.29)

This is the relativistic Klein-Gordon equation known from quantum mechanics.

2. Complex scalar field without interaction. The Lagrangian density reads

L(6, 0, 0,0, 0,0") = 0" "¢ —m*¢"¢ .

(3.30)

The fields ¢ und ¢* can be varied independently of each other. This means, we have

oL : oL
= —-m and
0¢p* ¢ 8(8ﬂ¢*)

= Ot

= 0,0"p +m*¢ =0 and analoguously — 9,0"¢* + m*¢* =0 .

3. Spin-1/2 field (Dirac field) without interaction. The Lagrangian density reads

L(,4) = (i@ —m)y,

where

¢i = GJM%A :a;ﬂ/u

0
@ = ’}/u% = ’Y“a“ .

We have
oL . oL

We thereby get the equation of motion

(i) —m)ip = 0.

(3.31)

(3.32)

(3.33)

(3.34)
(3.35)

(3.36)

(3.37)
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3.4 The Noether Theorem for Fields

For each symmetry of the action integral under a continuous transformation there exists a
conservation law, which can be derived from the Lagrangian density.

Proof: We look at £ = L(¢, 0,p). Here ¢ is a field (a scalar field ¢ or ¢ = A* or a multiplet
of fields ¢ = (g1, ..., pn)). We look at an infinitesimal transformation w.r.t. a Lie group

ot — =t 4 S (3.38)
with
Sxit = AlSWE . (3.39)

Here dw” is the parameter of the transformation (e.g. the Euler rotation angle). For a
rotation by 0 (exp(idw” Jy)) we have for example

i =4 0wk I T (3.40)
so that also
AV=0, Al =i(, 7, j=1,2,3. (3.41)
We furthermore have the transformation of the field
(1) = ¢'(2') = p(2) + dp(x) = p(z) + Dp(z)dw" . (3.42)
(For example we have for a scalar ¢'(z') = ¢(x) and hence dp(z) = 0 and for a vector
(') = A* ¥ (1) etc.) We find
@) = ¢(z+0x)
= Qpl(x) + 02”0,
= ¢(x)+ dop(z) + 02”0y, (3.43)
with the variation

dop(x) = ¢'(x) — () . (3.44)

Thereby we have

3.43 i y
bop(r) 2 (') — p(x) — 03”0,
(342 Oy (2)0wk — 6270,
B30 13, (2) — (8,0) AY]owE . (3.45)

For the variation of the Lagrangian density we have

oL = L), 04 ()] — Llp(x), dup(x)]
oL oL oL
(%ﬁx+fm%¢+&@wa@w (3.46)

=800
Application of the Euler Lagrange equation
oL oL
d — 0(0,)

(3.47)
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and using Eq. (3.45) and Eq. (3.46) leads to

L = %M“ + 0, <8(27f<p)50w)
= AL 10, | EE ) - @At (3.45)

And for the transformed action we have

S = /d4x’ L'(¢,0,¢") (3.49)
and

6§ =5-8= /5(d4x)£ + /d4x 5L . (3.50)
Furthermore we have

d*r = |det <8L/:L) d'x

ox

= | det(6" + 0, ALswF)|d s
(1+ 9,ALswk)d z (3.51)

where we have used
det(1 +¢) = 1+ tre + O(€?) . (3.52)

Thereby we have

§(d*z) = d*z 0, Al sw" . (3.53)
And hence
5SS = / d*x (L0, ALSw" + 6L)
(3.49) / i { p, L o1 5.k
= d*x 0, |LA, + ——[Pr — (0,0)A"]| dw" . 3.54

We call the transformations global if dw* is independent of z. The integration volume in
S = [, d'z L is chosen arbitrarily. If S is invariant, i.e. 65/dw, = 0, then it follows from
Eq. (3.54) that

oL

gt = —LA! + ————
g g a(au‘:o)

(Ar0yp — Pi(z)) (3.55)

is a conserved current (Noether theorem):
Oujr =0. (3.56)

We call ji' Noether current. And the charge

Qr(x) = /d?’xjg(:c) (3.57)
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is constant, because
. 3 -0 (3.56) 3 =7 ==
Qk(x):/d r0hjy = —/d ijk:—jgdS]k:0 (3.58)

for 7, = 0 at infinity. Note that the conserved Noether current is not unique. We can e.g. add
a current 7,/ whose divergence vanishes, hence

Bt =0 (3.59)

The Noether current Eq. (3.55) can be generalised to the case of several fields ¢® in £. We
then have

oL

j/J' — _EA;U' +
g g 8(8%0“)

(AR — @i()) - (3.60)

3.4.1 Examples
Real Klein-Gordon field: The Lagrangian density reads

1 m?

£ =50 00) - o~ V(9), (361)

where V(i) is an arbitrary potential e.g. V(¢) = A\/4! p*. The Lagrangian density is invariant
under transformations,

at — a4+ € | so that thereby A" (z) = % . (3.62)

Al swk
Since ¢ is a scalar field it is invariant, hence dp(x) = 0 and thereby ®,(z) = 0. From the
Lagrangian density Eq. (3.61) we get
oL
()

The conserved current, which in case of the translations Eq. (3.62) is denoted by T*, is the
energy-momentum tensor and given by

=M. (3.63)

oL
T = —Lo" + 0, 3.64
50,0) (364
= =L+ Mpdp. (3.65)

—~~

(3.63)

Hence
1 , m?

Tl = 000 — %  5(0u0)’ — 20~ V(0)) (3.66)

The conserved charge, the four-moment, is given by

P, = / P70 (3.67)
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We have
oL
TO = —L+ ———0yp . 3.68
0 8(80%0) OSO ( )
In classical mechanics we had the Hamilton function
. oL .
H:;piQi_L:;a—qui_L- (3.69)

The comparison shows: The quantity 79 is the Hamilton density. The canonical field-
momentum density is given by

m(x) = 8—£ = ¢(z) , where ¢ = 0y . (3.70)
0
Thereby the Hamilton density is
Ty = 7(x) p(x) — L(x) . (3.71)

The Hamilton operator, which corresponds to the total energy, is given by

H=P = /d% TY = /d% (mp — L) = /d% G(@? + (V)2 +m2p?) + V(go))(B.?Z)

And the 3-momentum reads

P, = /d%TO :/d?’xap@kgo (3.73)

PF = —/d%@@w (3.74)

P = —/d?’xgbﬁgo: —/dgx m(z) Ve : (3.75)
N—_——

-Momentum density

The next examples are infinitesimal rotations. This means

6F = 0w, 02°=0 (3.76)
AL = i(hD), AR=0, k=123 (3.77)
Sp = 0=y (3.78)
Thereby we obtain from Eq. (3.55)
oL oL =
.0 _ AJ 9. _ Y= T 1 —
GO (V)i . (3.79)

The momentum density, cf. Eq. (3.75), is defined through

—

F=—pVe, (3.80)
and thereby

P= / Paplx) . (3.81)
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We hence have

~——
—€kmn

where we have used that the generators of the rotation are given by
[Jk]lm = —ieklm and [Jk]o,u = [Jk]“(] =0. (383)

We hence find that —j? is an angular momentum density. The conserved charge hence is
the angular momentun, as with Eq. (3.57) we have

L, = / Pz ) (z) (3.84)

L = /d% (Z % p) . (3.85)

We now consider the Noether theorem for an inner symmetry. We apply this to a complex

field with self-interaction. The Lagrangian density reads
L = 0upd"¢" — mlo|* = V(|gl) - (3.86)

The Lagrangian density is invariant under a U(1) symmetry, i.e. under the transformation

o — pexp(idd) = o+ idd ¢ (3.87)
St = 0 = A'=0 (3.88)

op = W0y (B42) [ 0o \ .
Sot = —idd } = ( 5 ) =d0, with (3.89)

D = ( _i.‘fp* ) = ( f; ) . (3.90)

The Noether current (3.55) reads

oL oL
oo (I)l - (I)2
/ 00,p)  0(Oup")

= —i(0"¢")p + 1("p)p" . (3.91)

The corresponding charged current is
Q= [daf=i [ dr(eo- 06, (3.92)

We consider the U(1) symmetry of the Dirac theory. The Lagrangian density is invariant
under the transformations

W — exp(if) ¢, Y — exp(—if) 1) . (3.93)

The Lagrangian density is given by
L= i) — m)+ e hAD (3.94)
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It contains the coupling to the electromagnetic field A*. We have for ®

D = ( —ZZZ ) with the spinor index a = 1,2,3,4 . (3.95)
Thereby we obtain the Noether current
oL oL . . -
ju = T aa N iwa + iwa - _wa}/u“/} = WYWJ . 3.96
900t 00,0 290

This is the U(1)-current density of the Dirac field. With ¢ denoting the electron field,
ejt = eypy") is the electromagnetic current density. And

Q=c / P = / o in = ¢ / Poyty (3.97)

is the conserved total electric charge. Hence e’ is the charge density.
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Chapter 4

Quantisation of the Fields

In electrodynamics we deal with classical fields, which fulfill the Maxwell equations. These
equations, on the other hand, also describe the propagation of photons in the quantised
theory. The question is how these two views are related.

Furthermore, we want to describe the creation and annihilation of particles.

The formalism, which we look for, has to account for the fact that both the Klein-Gordon
equation and the Dirac equation can have states with negative energy, and that there is a
spin-statistics relation.

Quantum field theory provides the framework for the calculation of scattering processes. Its
predictions are confirmed by experiment.

4.1 Repetition of Quantum Mechanics

4.1.1 Schodinger Picture

In the Schrédinger picture the states [i(t))s are time-dependent, whereas the operators
Og are independent of time. The state at time ¢ is given by applying the unitary time-
development operator U(t) on the state vector at ¢y = 0,

[¥(t))s = U(t) [$(0))s - (4.1)

Inserting the time-dependent wave function in the Schrodinger equation

19)
i ()s = Hslo(0)s (4.2)
leads to
maU( DYO)s = HsU(®)|(0))s
0
ihs Ut) = HsU(t) . (4:3)

We get an operator equation which is equivalent to the Schrodinger equation.
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4.1.2 Heisenberg Picture

In the Heisenberg picture the states |1))y are independent of time, the operators Og(t),
however, are time-dependent. The transition from the Schrédinger to the Heisenberg picture
is done via

Wy = U'@) [(t)s (4.4)

Ou(t) = U'(t)OsU(t) . (4.5)
The expectation value o of the operator is in both pictures the same, as
o = sWBIOslEB)s = stBIUMUE) Os UBU () [(0))s

~~ N
1 1

= g(W|UOO0sU@) ) = < Ou()1V) n (4.6)
Performing the derivative of O (t) w.r.t. time leads to
d 0 0 0
4 t( f(y i A
dtOH<) <8tU ()) OsU(t) +U'(t)Og <8tU>+U <8tOS) Ul(t) . (4.7)
Usage of
Q0= LU and 2ute) = Luton (4.8)
T S A S '
results in
L out (t) = (UTH OsU — UlOsHsU) + Ut 90s ) s (4.9)
dat " peo oS S ot '
Insertion of UUT = 1 leads to the Heisenberg equation of motion
d 90y
with
= . 4.11
= ( ) o

In the lecture, we will use the Heisenberg picture.

4.2 Excursion: Lagrangian densities for Particles with

Spin 0 1

729

Starting from the corresponding fields, relativistic theories can be constructed for particles

with spin 0, 5 1. We have seen already that in high-energy physics all units can be traced
back to the unit 'mass’. We have
[m] = [mass] =1
[p"] = [momentum] =1
[z#] = [time, length] = —1
[H] = [energy] =1
[Pa] = -3

L] = [H]=4 (since H = /d3x H)
[S] = [action] =0. (4.12)
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4.2.1 Construction of Lagrangian Densities
For the construction of Lagrangian densities we apply the following principles:

1) The fields, which shall be included in the theory, are specified. (Fields)

2) The Lagrangian density has the form
L(x) = Zgi(’)i(x) . (4.13)

The O; are products of fields at the same spacetime point. (Locality) They transform
like Lorentz scalars. Thereby the action and hence the dynamics are relativistically
invariant/covariant. The g; are constants, whose mass dimension has been chosen such
that

[9:0:] = 4. (4.14)

If the theory shall contain inner symmetries, then we have to demand that the O;(x)
are also invariant under these symmetries. (Relativistic invariance and symmetries)

3) The Lagrangian density £ has to contain derivatives 0, of the fields. Otherwise the
canonical conjugate momentum of the field would disappear, and the Euler-Lagrange
equation would not lead to a development in time. We also note, that sometimes for
technical reasons it can be useful to introduce "help fields’, onto which no derivative is
acting and which hence have no dynamics. (Dynamics)

4) The mass dimension of the field products O; shall not be larger than four. It will
become clear later, why we demand this. We also note, that this is not a funda-
mental requirement. We can give it up in so-called ’effective quantum field theories’.
(Renormalisability)

5) Furthermore the Lagrangian density has to contain all terms, which are compatible
with the requirements 2) and 4). (Completeness)

4.3 Quantisation of the Scalar Field

We want to quantise the scalar field such that the Klein Gordon equation
(O+m?)¢ =0 (4.15)

still holds. For this we interpret ¢ as operator and determine its eigenvalues and eigenfunc-
tions. This then leads to the particle interpretation.

The classical field ¢ fulfills the Klein Gordon equation
(O+mPp=0 (4.16)

Special solutions of this equation are given by plane waves of the form exp(ikx) or exp(—ikx)
where k2 = m?. This hence means that

ko= +\/m? + k2 = tw(k) = wy, . (4.17)
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We then have

Oexp(ikx) = —k* exp(ikz) . (4.18)
The linear combination of both solutions leads to the general solution
)= [ S5 (atPyexp(=iko) +a* (Fexplika) (4.19)
p(x) = 27)7 2o a(k) exp(—ikx) + « exp(ikx) ) . .
Here the factor
1
4.20
(27)32wy, (4.20)
is convention. We furthermore note that the measure
3
d*ko(k* — m*)0(ko) = dk (4.21)
2wk

is Lorentz invariant.

Auxiliary calculation: Derivation of Eq. (4.21). We use the following formula: Be f(x)
continuously differentiable with simple roots z;, j = 1,...,n and f’(z;) # 0, then it holds
that

5(f(x)) = Z !ﬁ(lx-n 5z — xy) . (4.22)
Here x = ky and
Flko) = k2 — k> —m?. (4.23)

The roots are given by

ko,, = £\ k2 +m?2 . (4.24)

With

df

— =2k 4.2

dko 0 (4.25)
we find

1 - -
§(k* —m?) = ——r {(5(l<;0 —\/ k2 +m2) + 0(ko + \/ k% + m2)} : (4.26)
2V k2 + m?2

We define

w(k), =\ K24+ m?, (4.27)

this means, we have

O(ko)S (k2 — m?) = %5(/%—@ (4.98)
O(—ho)5(K: — m2) — ziwké(kow). (4.29)

And thereby we find Eq. (4.21).



Quantisation of the Fields 35

4.3.1 Transition to the Quantised Field

Be ¢(z) the classical measured value, which corresponds to the expectation value of the
operator ¢(z),

p(x) = (state|o(z)|state) . (4.30)
For ¢ it has to hold that

1. Be ¢ hermitian, hence ¢ = ¢'. From this it follows that the eigenvalue ¢ is real.
Furthermore, the ¢ shall fulfill the Klein Gordon equation, i.e.

(O+m*o(x) =0. (4.31)
From this it follows that
(O+m?)e(z) =0. (4.32)
2. Be P, the generator of a translation. The ¢ shall fulfill the following equation,

Opo(x) = i[Fy, d(x)] (4.33)

We are looking for a description of particles by ¢. Each solution of the Klein Gordon equation
can be given by a superposition of plane waves. Here the Fourier coefficients are operators.
Hence

o(x) = / (;iﬂ’;'gz—; (a(E) exp(—ikz) + al (k) exp(ikx)) . (4.34)

Application of Eq. (4.33) leads to

/%2%% (_CL(E) iky, exp(—ikx) + CLT(E) 1k, exp(ikx)) (4.35)
- / (5213:32—; (i[P,, a] exp(—ikz) + i[P,, a'] exp(ikx)) . (4.36)

Comparison of the coefficients leads to
[Py, a(k)] = —k,a (4.37)
Pudl(B)] = k. (4.38)

We here remind the harmonic oscillator, where the ladder operators are characterised by the
commutation relations

[H,a'] =wa’ wnd [H,a] = —wa . (4.39)
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4.3.2 Construction of the States

We now want to construct the states in an algebraic way. Be |0) the vacuum state, with
|0) # 0, and normalised to one, hence

0|0y =1. (4.40)
Since there are no particles in the vacuum, we have £ = 0 and p'= 0. Hence

P,0)=0. (4.41)
We apply (4.38) on |0) and find

(Pua’ (k) — al(k)P)|0) = kyal(k)0)
= Pd'(K)0) = kuafl0). (4.42)

Hence af|0) is an eigenstate of the energy- and momentum-operator with the eigenvalues kg
and k if a'|0) # 0. We apply Eq. (4.37) on |0) and find

Pyal0) = —koal0) . (4.43)

Thereby a|0) would be an eigenstate with negative energy eigenvalue. Since we require that
always E > 0, it follows that

a(B)|0y=0  Vk. (4.44)

If [p) is eigenstate of P,, then we have

Pulp) = pulp) - (4.45)
Using Egs. (4.38) and (4.37) leads to

Pua*@lp) = (pu+ku)a g )|p) (4.46)

Pua(k)lp) = (pu— ku)a(k)lp) . 4.47
And we have for

Prat(ky)al (K2)[0) = (K + k& Yal (ky)al (K2)]0) . (4.48)

We can hence interpret a' as creation operator and @ annihilation operator. Applying a' on
the vacuum we have

k) = a(k)[0) . (4.49)

It is a 1-particle state with momentum k. A particle is created in momentum space, with the
energy ko = V k2 +m2. Thereby the entire Hilbert space (= Fock space) can be constructed

in the following way:
|k:1,k2> = af (k) al(k)]0) (4.50)
koo k) = al(ky)...af(k,)[0) . (4.51)
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The latter is a state in the Fock space, which consists of n particles with the momenta E@

Microcausality: If we have two measurements, one at x and one at y, then they must not
influence each other, if x and y have a space-like distance. We hence have to demand

[b(z), 6] =0 for (z—y)*<0. (4.52)
Thereby we have more specifically also for & # i/
[6(Z,1),0(4,1)] = O (4.53)
6(7,1).0(7,1)] = 0. (4.54)
And by triviality,
[6(Z,1), o(Z,1)] = 0. (4.55)
We will use this to show that from this follows the Bose symmetry for particles, which means
[a (K1), af (k2)] = 0 (4.56)
[a(za), a(})] = 0. (4.57)
We can write the field and its derivative w.r.t. the time as
O(7,1) = / % 2—3% exp(—ik7) <exp(¢wt)af</5) + exp(—iwt)a<—/2)) (4.58)

H(7 1) = / (gﬂl§32—;€exp(—i/;f) (iwexp(iwt)af(/z)—iwexp(—iwt)a<—;§)) . (4.59)

The corresponding Fourier transformation is given by

exp(iwt)al (k) + exp(—iwt)a(—k) = 2w / Pz exp(ikT) (T, 1) (4.60)
exp(iwt)al (k) — exp(—iwt)a(—k) = —2i / Pz exp(ikT) $(T,1) . (4.61)
Since [¢(Z, 1), o(y,t)] = 0 VT, §, we get

0 = [(4.60)(k1), (4.60)(F> o

= exp(+i(wr + ws)t)[al( 1) al (ks )j

+  exp(—i(w; + wo)t)]a( Hk; 1), a( _)kz)]

+ exp(4i(wr — w)t)[al( i) a(—ky)]

+ exp(—i(wr — wa)t)[a(—ky), al (k)] . (4.62)

The time dependence of the first two terms is not compensated by any other term. The last
two terms, however, have the same time dependence for w; = wy and cancel each other (see
below). Thereby we have

[af(F1),al(k)] =0  and  [a(ky),a(ky)] = 0. (4.63)
These commutation relations contain the Bose symmetry of the particles, since

|k, ko) = al (k1)al (2)]0) = al (ky)al (F1)]0) = |ka, k1) (4.64)
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This means that two-particle-states are symmetric w.r.t. an exchange of k1 and ky. We here
have the first spin-statistics theorem, namely that particles with unit spin follow the Bose
statistics (and particles with half-unit spin, as we will see below, follow the Fermi statistics).

We look at the commutator [a,af]. Using Eqs. (4.60) and (4.61) we can calculate af (k)

-

and a(k):

dt(F) = exp(—iwt) / &z exp(+ik - T) (wqﬁ(f,t)—igi)(f,t)) (4.65)

—

a(k) = exp(+iwt) / &z exp(—ik - 7) (w¢(f,t)+i<;5(f,t)) . (4.66)
Using (4.53), (4.54), (4.55) and

[6(2), ()] = [6(Z), $(7)] = 0 (4.67)

leads to
la(ky), CLT<]€2)] = exp(i(w; — wy)t) /d?’x d®y exp(—ilgl - T+ ’i];g - 7)
{ial(@.1), 0(5.0)] — i [0(2.1), (7. )]} - (4.68)

Since a and ¢ shall not be simply complex numbers, this expression must not be identically
zero. The integrand can be non-zero only for ¥ = ¥, see Egs. (4.53)-(4.55). We therefore
require as ansatz for the canonical commutation relation

[0(Z,1), ¢y, 1)] = i0(Z = 7)) . (4.69)

Thereby follows for the commutation relation of @ and af

—

[a(k), al (k)] = (27)*2wi8(ky — ko) . (4.70)

We can justify the ansatz, by understanding ¢ as canonical coordinate and gZ) as canonical
momentum and x as index.

We can summarize that ¢ and ¢ fulfill the following commutation relations:

[6(Z, 1), ¢(5.1)] = 0O (4.71)
6(@0,65,0)] = 0@ 7). (4.72)

And thereby the commutators of a and a' are
[a',a’] = 0 (4.73)
[a,a] = 0 (4.74)
[a(/zl),aw%;)] — (20)2w18(ky — ka) . (4.75)

Note that there are also definitions of a in the literature which differ by a factor of 4/ (27)32w.
The one-particle states constructed through af,

at(k)[0) = |k) (4.76)
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are normalised as
(k|KY = (2m)*2wi(k — k') . (4.77)

They are no proper states. It would be mathematically better to introduce states using wave
packages, hence

) = [ e FE ). (479)
n-particle states are introduced through
Na'(ky)...at(k,)]0) (4.79)
respectively,
Na'[f1]...a’[f.]]0) . (4.80)

Here the f; are orthonormalised by requiring

[ o 128 1) = . (451)

Here N is a normalisation constant. It has the value N = 1 if all f; are different, and
N = (n!)_% if all f; are equal. If r; of the f; and 7y of the f; are equal, we have

N =(rilrl.)2. (4.82)

Interpretation: The Heisenberg states with one particle and the momentum wave function

f(k) are

_ [Pk T

1= [ 7= SBal Bl (1.83)

And the Schrodinger states are
k1 , S

|f 1) :/(27)3\/ﬂ exp(—iwt) f(k)a' (k)|0) (4.84)
From

(ftlf, =1 (4.85)
follows

o Pk
J 1 g =1 (4.56)

and vice versa.
Remark: We cannot interpret

/ (gﬂ’; F(k) exp(ik - T — iwt) (4.87)
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as space wave function ¢(x) of a particle, because (0|¢(x)¢(y)|0) # 0 also for (z —y)? < 0,
which would have to be interpreted as expansion with a velocity larger than the speed of
light and which would hence contradict causality.

Construction of operators: Operators like energy, momentum, particle number operators or
other operators are constructed from the quantum fields in the following way: The Noether
currents are used, the 0-component is integrated, and the normal order is performed. This
means

Normal order: :a'a:=:ad' : = dla. (4.88)

It will become clear later, why we perform this normal ordering.

Particle number operator: The particle number operator is given by

N = /dl%aTa, (4.89)
where
di = TE o s — ok = L8 L (4.90)
e 0= 2m)3 2uwy '

is a Lorentz-invariant integration measure. Thereby we obtain by using the commutator
relations and the definition of the state |k, ..., k),

Nlk1, o, k) = nlky, .o k) (4.91)

Energy and momentum operators: Starting from the energy-momentum tensor 7% we obtain
the conserved charge, the four-momentum, as (see Eq. (3.67))

P, = / PxT), = / &’z 0°¢0,0 — gL . (4.92)
The energy operator is obtained from
1 Lo
H= /d% T = /d% P pop — L = 3 /d% (: PpOyg : 4+ : VoV : +m? : ¢* :)(4.93)

where the double-dots symbolise the normal order. Usage of

— —

o = /d/;: (exp(iwt) exp(—ik - )al (k) + exp(—iwt) exp(ik - f)a(/@) (4.94)

O = /dl% (z’w exp(iwt) exp(—ik - T)a' (k) — iw exp(—iwt) exp(ik - Z)a(k)

N—

(4.95)

Vo = /d/;: <—il§exp(iwt) exp(—ik - £)al (k) + ik exp(—iwt) exp(ik - f)a(E)) .(4.96)
leads to
m’ / L)@ )0 = 2m)*m? [ dk / dE{5(k — K[at(F)a(k') + a(k)al ()]
+6(k + K [a' (F)a' (') + a(k)a(K)]} (4.97)
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and

/ | oo, DPhms = (2 / dke | di{5(F - B)[at (B)a(R') + a(F)al (R

as well as

/ BrVo(T, )Py = (27)° / dRdF {5 (F — KR - ¥ o (B)a(®) + B - Fa(R)ah (7]
—6(k+ K[k - K d'(B)al(F) + K - ka(k)a(K)] . (4.99)
And thereby we have

=2w?
1 [ - [ - —_—— Lo
H o= o / i / A (2m {[m? + w? + 2] (a'a + aa")s(F — ) +

+[m? = w? + B (ata’ + aa)d(k + K)}
%,_/

/dk/dk’ (2m)"8(k — F? (o (R)a(F') + a(R)a (8
: / ke (ol (B)aF) + a(F)a' ()
= /d%wa*(%)a(lg) + const . (4.100)
Here the constant corresponds to the vacuum energy, which is irrelevant for physical pro-
cesses. This infinitely large constant is subtracted, so that the vacuum has the energy zero.

The trick that we use here, is the normal order, which means (see above) that all creation
operators have to be left of the annihilation operators. Thereby we have

cH = /d/:;% :(ata + adl) : = /dl;;wafa : (4.101)
Thereby we have in the vacuum: (0|H|0) = 0. Analoguously it is found starting from

P= / FPrTh = / APz 0ypV (4.102)
for

P= /d/% kat (F)a(k) . (4.103)

4.3.3 The commutator [¢(x), d(y)]

We compute the commutator [¢(x), ¢(y)], by inserting the Fourier decomposition and using
the commutator relations of the creation and the annihilation operators:

[6(z), 0(v)] = / dkdk! {[a(E), al (F))e= "+ 4 [af (), a(,g,)]em,ikfy}
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- d;; {emika=y) _ cik=w))
(gj;“gé(w m?)H(k0)
= (271r)3 / d'k e(K")5(k* — m?)e~*v)
= iA(z —y), (4.104)
where
(k%) = 0(k%) — 0(—K°) . (4.105)

The Pauli-Jordan distribution has the following properties

1) (O, + m*)A(z —y) = (O, + m*)A(z —y) =0 (4.106)
(mass shell condition k* = m?)
2 Alx —y)=—-Ay — z) 4.107

) (4.107)
3) A(SL’ — y)|mozyo =0 (4.108)
) Az —y) =0, if (x—y)* = (o —50)* — (T —7)* <0 (space-like) (4.109)
) (4.110)

0 S
81‘0A< )|ro=y0 - —5(1’ - y) :

From 4) follows the micro-causality, i.e. [¢(x), ¢(y)] = 0 for (z — y)? < 0.

=~

4.110

ot

4.4 Charged Scalar Field

The field ¢ = ¢' describes self-conjugate particles, i.e. particles which are equal to their
antiparticles. Examples for such particles are the uncharged pion 7° or the Higgs boson.
However, there are also spin-0 particles, which are not equal to their antiparticle, like e.g. the
charged pions 77, 7~ or the Kaon K°, K. These particles cannot be described by a hermitian
field. We therefore look at a doublet of two hermitian fields ¢;, ¢o with gbI =¢; (i =1,2).
The field

P(z) = L(ebl + i) (4.111)

V2

is then not hermitian. The Lagrangian density for a free field ¢ reads

L(p) = L(d1)+ L(2)
= Z u¢z‘8“¢i - m2¢i¢i)

7

= (5@*)(8’%) m*¢le (check!) . (4.112)

[\

[\D|>—t

The equations of motion are obtained from the Euler-Lagrange equation

oL oL

o, — =
"0(0u0) 09

oL oL b
8“8(@@)_8@ =0 = (@O+mdp=0. (4.114)

=0 = (O4+md)p'=0 (4.113)
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The canonical conjugate momentum of ¢ is

oL

= = Oyt = B | 4.115
and the canonical conjugate momentum of ¢' is
oL :
M= _——=00p=0¢. 4.116
FEN Bl (4.116)

The Hamiltonian density operator thereby is
H =16+ — £ = 800! + (Vo) (Vo) +m?sls . (4.117)

The Hamiltonian density operator, respectively the Hamiltonian operator has to be normal
ordered, so that (0|H|0) = 0. Hence

H= / P :{ao¢ao¢T+ (%T)(%Hm?qsw}: . (4.118)
The hermitian fields fulfill

[Hi<t7 f)v Hj (tv g)] = [(bi(tv f)v (bj (tv g)] =0 (4'119)

[0:(t, %), 1L;(t, )] = 160;;0(Z —¥) 1,7=1,2. (4.120)

Or, in general (having the same mass parameter)

(6:(2), 65)] = 6, Az — ). (4.121)
And for the non-hermitian field ¢ we obtain

[6(2), 6 (y)] = iz —y)  (check]) . (4.122)
Differentiation with respect to z, leads to

(Ora8(2)) 6} (y) = 6 (9) (Bu(2)) = 10 Az — ) (4.123)

We set x5 = 3o and obtain with Eq. (4.110)

[T (0, ), 6" (20, §)] = —i6(Z — 7) - (4.124)
And by hermitian adjugation,

00, 0). (o, )] = i6(F — ) = [M(eo, D), 0(wo, )] = ~id(F—7) . (4.125)

The Fourier decomposition of the field ¢, which fulfills the Klein Gordon equation,

(O +m?)p(x) =0, (4.126)
is given by
o(z) = / di[a(F)e™™ +  bi(k) ™. (4.127)
~—~—~

#at,SINCe ¢£ot
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And that of ¢' by

Pl (x) = /dl% b(k)e=™* + af(k)e*™] . (4.128)
Insertion of
1
— — (b +1i 4.129
and expressing ¢1, ¢ through their respective Fourier decomposition then leads to
. 1 S
a(k) = E(al(k) +ias(k)) (4.130)
- 1 -
bi(k) = E(ai(k:) + iad(k)) (4.131)
and with
lai(k), al(K)] = (27)*2wd;;0(k — &) | [ai, a;] = [a],a}] = 0 (4.132)
finally to
la(R),al ()] = [b(F), b1 (R)] = (2m)2w8(F — K (4.133)
all other commutators = 0. (4.134)

The normal ordered 4-momentum operator P* is obtained by (check!)

Pu:/d?’:c :Tg: = /d3:c :{8758#¢+8756H¢T_g2£}:

00d) " 3ane)
= / dk kot (K)a(k) + b (K)b(F)] . (4.135)

And we have the commutator relations (check!)

Pl (B)] =kl (B, [P )] = —kyua(F) (4.136)

P b R)| = kbl (R) s [Py b(R)) = k() (4.137)
The Lagrangian density

£ = 0,6/ (2)06(x) — me (2)(x) (4.138)
is invariant under a U(1) symmetry, i.e. under the phase transformation

o(x) = ¢'(z) =eg(x) (4.139)

o(x) — o' (x) =¢fe™™. (4.140)

The Noether current is obtained using

ot = M =gt 4 St ozt = APA =0 (4.141)
H@) = o) +idd(@) 66— id (4.142)
#'(z) = l@)—irdi(z) 68 = —id (4.143)

(4.144)
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(compare with Eqs. (3.87)-(3.90), where the index k is omitted, as it is a one-parametric
transformation) as

oL oL

e i — —i(bT
7 000" a7
— (@06 + i(9"0)o' (1.145)
The current is normal ordered, so that for the charge density j° it is guaranteed that
J°(@)10) =0, (4.146)
hence
7"(*)normal ordered = @ —i(0"¢")p +i(0")¢" - (4.147)
— i 6t ox): . (4.148)

The charge is given by (check!)

Q= /dsxj(](x)normal ordered — Z'/d?)ﬂj L ¢l (x) 30 ¢(z) : = /dk[aT(E)a(E) - bT<E)b<E)] :
(4.149)

It is (check!)

Q=i[H,Q =0 (4.150)

and thereby  is a conserved quantity. The interpretation of the operators a,a’,b, b’ is
(analoguously to the hermitian case)

al generates a particle of type a with spin 0 and mass m (4.151)
bl generates a particle of type b with spin 0 and mass m (4.152)
a destroys a particle of type a with spin 0 and mass m (4.153)
b destroys a particle of type b with spin 0 and mass m . (4.154)
This means that the field
10} destroys a quantum of type a, generates a quantum of type b (4.155)
o destroys a quantum of type b, generates a quantum of type a . (4.156)

We look at the state space (Fock space). The ground state is given by |0). We demand that

a(k)|0) = b(k)|0) =0, (4.157)
so that
P,10) =0, Q|0) =0. (4.158)

The 1-particle states with sharp 4-momentum £k, are given by

la(k)) = ol (K)|0) (4.159)
b(k)) = bf(k)0). (4.160)
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The charge of these states is (check!)

Q\a(/i» = Qa'(k)|0) = +[a(k)) (4.161)
Qb(k)) = Qb(K)[0) = —|b(k)) . (4.162)
This means that
la(k)) is a 1-particle state of mass m, spin 0 and charge + (4.163)
Ib(K)) is a 1-particle state of mass m, spin 0 and charge — . (4.164)
This is a particle and its antiparticle.
4.5 Quantisation of Spinor Fields (Dirac Fields)
The free Lagrangian density without interaction is given by
L=Yid —m)y where ¢ = pT° . (4.165)
Reminder:
()2 =1. (4.166)
The canonical conjugated momentum in component form is given by (o =1, ...,4)
7 (2) = 5 (gofba) =il =) (4.167)

The solution of the Dirac equation before quantisation is given by an expansion in plane
waves,

Y(r) = / % 3 [exp@kx)/ﬁ;@)vs(%)+exp(—¢kx)as</5’)us(;§)} (4.168)

0@ = [ G 3 [k E) ) + explika) a3 (BB (169
:l:l

2

The fields fulfil the Dirac equation

(i —m)yp = 0 (4.170)

Y(i (,79+m) = 0 (4.171)
From (4.170) follows

(KE+m)vs = 0 Losung zu negativer Frequenz (4.172)

(k—mu, = 0 Lésung zu positiver Frequenz . (4.173)
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4.5.1 Quantisation
For the quantisation the ay, [} are replaced by operators,
s — ag und 3 — bl . (4.174)
The solution of the Dirac equation in quantised form is then given by
b(z) = / Y [exp(mx)bg(%) vs(F) + exp(—ikz) ag (k) uS(E)] (4.175)
s::t%
D(z) = / di [exp(—ikx)bs(z?) 3,() + exp(ikz) al (k) aS(E)] . (4.176)
s::t%
Again the Heisenberg equation Es soll wiederum die Heisenberg Gleichung
O =i[P,, ] (4.177)

shall be fulfilled. From this follows

—.

_[Pmal(l?)_] = kyal(k)
Py bi(k)| = kubi(k)
_PM,aS(E): = —kyas(k)
PM,bS(E): = —kuby(k)

Thereby follows, like for the scalar field,

al0) = bj0) = 0,

(4.182)

as for all states the energy has to be positive. Thereby 1) generates an antiparticle (e.g. the

positron e™) and destroys a particle (e.g. the electron e™).

4.5.2 Operator Algebra

The translation invariance of the action of the Dirac Lagrangian density leads to the energy-

momentum tensor which is given by

™ = Wy — gt @@ —my ]
———
—0 due to Dirac equation

This means that
T = i oy

The momenum operator is given by

PY = / BrTY =i / dBrtory .

(4.183)

(4.184)

(4.185)
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It still has to be normal ordered. Inserting the Fourier expansion leads before normal ordering
for the Hamilton operator to

0= [eaiwigew - [e3 olis .
= [kt S ol () aulF) — (B () (4.186)

ul(k,s)u(k,s’) = 2kodss (4.187)
vi(k,s)v(k,s") = 2kobsy (4.188)
u'(k,s)v(k,s) = 0 (4.189)
u(k,s)vl(k,s) = 0,  with &* = (ko, —k)7 (4.190)

For the creation and annihilation operator we have to deman anti-commutation relations, so
that particles and antiparticles have opposite energies. We hence demand that

{a,(B),al(K)} = 0.,(2m)" 2wr o(k — F') (4.191)
{6, (k). bL(K)} = 6,0(2m) 2w 6k — E) (4.192)
(a,b) = {a,al={bb}=..= (4.193)

Thereby we obtain after normal ordering for the Hamilton operator

"= / diiko S [l () au(R) + b} (F) ()] (4.194)

And for the momentum

/ dk kY [al (k) ag(k) + bl(k) by(k)] (4.195)

s= il

For the charge operator (see Eq. (3.97)) one finds

Qz/d% :jo(a;);:/d%; ;wT(x)¢(x);:/d% [al (F) as(k) — bt (k) by(K)1.196)

Remarks:
1. The (infinitley large) negative constant is dropped because of the normal ordering.

2. From the anti-commutation relation of the creation and annihilation operators follow

by using
> ualk, s)ts(k, s) = ( +m)as (4.197)
s:i%
Va(k,8)0s(k, ) = (F —m)ag (4.198)
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the anti-commutation relations

{a(@ 1), (5, 1)} = {val@ 1), vs(,1)} =0 (4.199)
{¥a(@ 0,057, 1)} = 70507 — 7). (4.200)

And thereby
{Ga(@,1), 0L(7,0)} = asd (T — 7)) . (4.201)

Hence 9 is the canonical conjugated momentum of .

3. Construction of the states: The one-particle state
af[0) = |k, ) (4.202)

is interpretated as electron with momentum k and spin s. The vacuum state is the
state with £ = 0 and s = 0. Two-particle states are constructed by

|1, 503 ko, 50) = al (F1)al, (k2)[0) = —al, (Ko)al, (k1)[0) = —|ka, s0; k1, 81) - (4.203)

The Pauli principle is hence fulfilled. The Pauli principle results from the second
quantisation of the spinor field. The spin-1/2 particles hence obeye the Fermi statistics.
With the identification

1) = aj(k)o),
3) = bi(R)0), |4 =0b3(k)|0) (4.204)

hence
H|c) = +kolc) c=1,2,3,4 (4.205)

is positive definite. And for the charge operator () we have

| Hlep fore=1,2
Qle) = { —le) fire=3,4 - (4.206)

4.6 Feynman Propgagator for a Scalar Field
When we apply the field operator ¢f(z) on an arbitrary Fock state, then

{ it generates a particle with charge + 1

or it destroys a particle with charge — 1 } " de. it "adds™ the charge 41

(4.207)
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Analogously, the field operator ¢(y) takes of the charge +1. For ¢’ > ¢ we look at

o' —t) (0| o(t', ) o' (t, 7) 0) . (4.208)
—— ——
Destruction of charge Generation of charge
+1 at later +1 at
time ¢ and at &’ time ¢ and at 7

Wenn ¢ > t’ betrachte

o(t —t") (0] Pl (t,7) o(t', ) |0) . (4.209)
—— ——
Vernichtung von Ladung Generation of charge
—1 at the later —1 zur
time ¢t and at & the time ¢’ and at 2’

In both cases the charge is increase at (¢, Z) and lowered at (¢', 2"). The so-callded Feynman-Propagator
iAp(z — ') is the sum of the amplitudes (4.208) and (4.209). Hence

iAp(z — ') = 0(t' = t){0]¢(a")¢' (2)]0) + O(t — ¢'){0] ¢' (z)¢(a")[0) . (4.210)
By using the time-ordered product, which for Bose fields is defined by
TA(z)B(y)] = A(z)B(y)0(z0 — yo) + B(y) A(2)0(yo — o) , (4.211)

where A, B are Bose fields, the Feynman propagator can be written as

iAp(z —y) = (0T [¢(2)¢' (y)]0) . (4.212)

We now want to determine the representation of Apr. For this we calculate
©O6(e)o )10) = [ dke e (1213)
0 6 o) = [ dEerien. (421)

This is obtained by inserting the Fourier decomposition of ¢, ¢’ and using the commutation
relations (4.133), (4.134). Insertion of (4.213), (4.214) in (4.210) leads to

1 dgk —q _ ik(x—
Ap(z —y) = / 7639, . {9(370 —Yo)e ey 4 0(yo — 560)€+ i y)}

i) (2m)32w
: d4k 1 —ik(x—
= lim / B T (=) | (4.215)

In order to demonstrate the last line, the integration [ j;o dkq is performed. The denominator
exhibits two roots,

ko = £\ k2 + m2 — ie ~ £ \/ k2 + m2 Fie | (4.216)
——

where € = €/(2(k2+m?)). The ie-prescription corresponds to a deformation of the integration
path. It is for

To > yo: e @) 0 if Tmky — —o0 . (4.217)
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This means that the integration path can be complemented by a large half circle in the lower
half-plain. Thereby on finds that

+o0

Faroso)= [ k(i) + [ dbof(h). (1218)

—00

-0
Because of the residuum theorum on the other hand
%dko f(ko) = (=1) 2mi f (ko) (ko — w)|ko=w - (4.219)

The minus sign results from the fact that the curve is run through in the mathematically
negative direction. Thereby we have

+o0 d?’]{i 1 ]
/ dko f(kO) = —2m /< (ko —W> eizk(xiy)‘k():w

2m)4 k2 — m? + e

Bk 1 o
= (—i — e~ w(@0—0) ik(E-9) 4.220
) [ G ‘ (4.220)
It is for
Yo > o : e Ro@o=w0) 0 if Imky — 400 . (4.221)

Thereby the integration path can be closed in the upper plain. It encloses the pole at

ko= —Vk2 +m2 — i€, i.e.

+oo
j{dko f(ko) = / dko f (ko) +/ dko f (ko) - (4.222)
upper half-circle , —00
-0
And with the residuum theorem
7{ ko (ko) = 2 f (ko) (Ko + ) syess - (4.223)

we obtain

+o0 d?’]{i 1 )
/ dko f(ko) = 2m /< (k(] —i—w) €7Zk(miy)|ko=7w

~ 2m)4 k2 — m? + e

k1 , o Pk 1 .
= (—i)/ ok 2—6““’(“*?’0)6“?(‘”*9) = —i/ L Q—e“k(m@ﬂmél)
™ w s w

where in the last step a variable transformation k — —k was performed. The sum of (4.220)
and (4.224) results in (4.215).

Properties of Ap(x — y)

1. It is
Ap(z —y) =Ar(y — ). (4.225)

It is hence an even distribution.
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2. Ap is the Greens function of the Klein-Gordon equation, as it is
(O, + M) Ap(e — ) = -6 (z — y) (4.226)

The i€ prescription corresponds to a boundary condition, namely: Positive frequencies
+w move forward in time, negative frequencies—w move backward in time. This is why
Apr is also called causal Greensfunktion.

3. The hermitian spin-0 field ¢ = ¢' has the same Feynman propagator:
(0IT (), p(y)]|0) = tAp(z —y) . (4.227)
4. The distribution Ag(x — y) is Poincaré-invariant:

¥ =Ax+0, Y =Ay+b = Ap@'—y)=A2Apx-vy). (4.228)

4.7 'The Fermion Propagator

We have in analogy to the Klein-Gordon field (cf. Eq.. (4.104), where here the anti-commutator
is used)

{Ya(@), ¥5(y)} = (i@ + m)apil(z —y) , (4.229)

because

(wale) st} = [k [ S expikeye., (L) + exp=ike)u, (B, ()

exp(—ik! y)@s' (E Voo (K') + exp(ik'y)ay, (K)al, ()}

_ / ik Z (1t (1, (F) exp(—ik(z — 1)) + s, (B0, (F) explib(z — 1))
= /d/’;‘ (£ +m)apexp(—ik(x —y)) + (f — m)ap exp(ik(z — y)))

= (i m)as [ d(exp(—ik(z — 1) — exp(+ik(z — )
= (s + m)ap(iA(z —y)) . (4.230)
The Feynman propagator is given by the time-ordered product (for fermions!)

Sras( =) = (OIT Yal(2)Ps(y)0) = (010(2° — y° ) (@)s(y) — O(y° — 2°)¥s(y)a(2)|0) .
(4.231)

Moreover, we have
(i@, + m)iAp(x — y)
. . d'k i ~ik(z—y)
=Sp(x—y) = (i@, +m) lim g+ or) i e
4
_ Z/ (d k %—i_ m efik(:vfy)

2m)4 k2 — m? + e

k2:k2 3 d4k ]_ 7'16( 7y)
= PETY) 4.232
Z/(27T)4k—m+iee (4232)
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Thereby
(il — m)Sp(z — y) = 6D (@ — ) . (4.233)

The fermion propagator hence is the Greens function of the free Dirac equation. And causal-

ity holds for {v,v}.

4.8 Quantisation of Spin-1-Fields (Vector Fields)

We now want to quantise vector fields. From electrodynamics, the classical limit is known.
It is given by the Maxwell equations. However, the quantisation of fields, which are defined
through the Maxwell equations, is difficult. The problem results from the degrees of freedom.
The four-potential

A# = ( fi’ ) (4.234)

has four degrees of freedom. The photon has only two degrees, however. We have to achieve
that the non-dynamical degrees of freedom, which do not contribute to the photon, are not
quantised.

We will start by quantising the massive vector field. It has three degrees of freedom.
Examples for massive vector fields are the W= and Z bosons of the weak interaction. Further
examples are the spin-1 mesons p,w, ¢, which are built up by quarks. The reason for the
discrepance in the number of degrees of freedom is an inner symmetry (gauge invariance).

4.8.1 Massive Vector Field

The field A* has four degrees of freedom, the massive vector field has only three degrees,
however. We therefore need an additional condition to reduce the number of degrees of
freedom.

We start by writing up the field equations by departing from the Maxwell equations,
which can be written covariantly. We hence have

0, F" +m*AY =0, (4.235)
with the field strength tensor
Fr = 0orAY — 9" A . (4.236)

This equation is called Proca equation. Usage of the four-divergence on the equation leads
to

0, (0, F" +m>A") = 0,0,(0" A" — & A") + m*d, A" =0 . (4.237)

The first equation is zero, as here a symmetric tensor is combined with an antisymmetric
tensor. This can be checked through explicit calculation:

0,0,("AY — FA") = 9,0,0"A” — 0,0, A" = 0,0,0" AP — 0,0,0" A"
= 0,0,V A" — 9,0,0" A" =0 | (4.238)
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Here, in the first summand, the summation indices p and v were interchanged, which is
allowed, as we sum over all indices. The partial derivatives d,aund 9, can then be exchanged
again because of the Schwarz theorem. Thereby we have m?d,A” = 0. By assuming that
the mass is non-zero, we have the condition

0,A" =0. (4.239)
Insertion in Eq. (4.236) leads to

o, F" =D0A” (4.240)
and thereby to

(O4+m*)A%(z) =0  with 9,4 =0. (4.241)

We hence have found the Klein Gordon equation for each component of A”. Through the
condition d,A" the number of degreees of freedom is reduced to three. The Lagrangian
corresponding to Eq. (4.241) reads

1 2
L=~ FuF" + %AMA“ , (4.242)

where A, represents a real vector field. As ansatz for a solution of Eq. (4.241) we choose
plane waves of the form

3

d3k Ny [~
= |/ —— — ) ; N 2
A, (x) / o) 20 exp(—ikx) €,V (k) a(k) + h.c., with wy = kg k2 + n(d.243)

A=0

Here €5 is a polarisation vector. Applying the additional condition leads to

e (k) =0. (4.244)

)

Thereby we get three linearly independent eV, In the rest system of the particle we have

k¥ = (m,0)T. This leads to
e(()’\) =0, and thereby k”e, (k) =0 . (4.245)

This is fulfilled by the choice

(4.246)

, und €

o~ oo
&
|

— o oo

This is the cartesian standard basis. Alternatively, one can choose the following complex
basis:

und /¥ = (4.247)

_ o O O
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The first two vectors describe the circular polarisation. We have for arbitrary reference
systems
eM (€)X = €N AT = M for AN =1,2,3. (4.248)

And the completeness relation reads

. ok,
> Ve = - <gw - #) . (4.249)
A

For the general solution in quantised form we have
Au(z) = / kY (exp(—ikx) N (B) aM(E) + exp(ikz) O (E) aTW(E)) . (4.250)
A=123

The operator o' (E) generates a particle with momenum k and polarisation A. The following
commutation relations hold,

[A,(7),A,(y)] =0 fiir (z —y)* <0. (4.251)
And for the operators
[a™ (k) at®) ()] = 6an (27)% 2wy, 6 (k — k') . (4.252)

4.8.2 Massless Vector Field (Photon Field)

Gauge freedom

The Maxwell equations read

o F" = j¥ inhomogeneous Maxwell equation (4.253)
O F" = 0 homogeneous Maxwell equation , (4.254)

with the dual field strength tensor

P = %eﬂ"aﬁFaﬁ . (4.255)
The field strength tensor expressed through the potentials reads

F,=0,A,—-0,A, . (4.256)

Thereby the equation (4.254) is automatically fullfilled (check!). The vector potential hereby,
however, is not yet uniquely fixed. We hence have the gauge freedom. Thus F},, is unchanged
upon replacement

Au(z) = A (x) = Au(z) + 0\ (2) (4.257)
where A(z) is an arbitrary scalar field. We can choose the

Lorenz gauge: 0,A" =0 (4.258)
Because, if

9, A" = G(z) £0 (4.259)
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then choose A(x) such that
OA(z) = —G(x) . (4.260)

For the new field A (x) then (4.258) is fulfilled. In the Lorenz gauge the Maxwell equation
(4.253) is equivalent to

gA” = 3" (4.261)
or in the free case (j = 0)

OA” =0. (4.262)
As additional freedom in the choice of the gauge such A’s can be chosen, for which we have

OA(z) =0. (4.263)
Apart from the Lorenz gauge there is also the Coulomb gauge. Here, one demands

Coulomb gauge: V-A=0. (4.264)

This gauge, however, is not covariant. Another example for a gauge is the axial gauge, for
which we have

Axial gauge: A, =0. (4.265)

In the following, the Lorenz gauge will be used.

Lagrangian Formalism

As simplest ansatz for the Lagrangian density we choose

1
L= FuF". (4.266)

We furthermore demand the commutation relations
L I
[AM(ZL‘), Hu(y)]m:yo = —ng,(;(l‘ - y) s [Au(x)v AV(y)]xOZyo = [Hu(x)a HV(y)]xOZyo =0.
(4.267)

The minus sign will be explained later. The canonical conjugate momentum is given by

&C
“w 0 Ap w A0

As we see, the zero component I1° is vanishing. We hence cannot work with this Lagrangian
density. We hence look that the Lagrangian density

1 1
L= —1F = 2N0,A") . (4.269)

The corresponding field equations read

O™ £ AP, A =0 ¢ DA — (1 N)@9,A8 =0, (4.270)
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The equations ressemble at the Klein Gordon equation. The canical conjugate momentum
is obtained as

" = —°A* + 9* A° — \g(0,A") = TI° = —\J,A” #0if A # 0 and 9,A” #0 .
(4.271)
In the following, we set A = 1 (Feynman gauge).
We now do not demand the Lorenz gauge d,A* = 0, but 9,A"|¢) = 0, where |¢)) is a

physical state. The expectation value of the required commutator relation (4.267) is

(WI[A(), Ty (Y)]ao=yo V) = —igu (T = ) (P|1) - (4.272)

This is, however, inconsistent with the requirement 0,A” = 0. The reason is, that because
of TI° = —9, A the left side of (4.272) is identical to 0 (for v = 0).

We now demand

Cupta Bleuler condition: 9, AV¥|phys) = 9, A" ) =0, (4.273)
where
Ay = AP + A0 (4.274)
with
3
ALJF)(x) :/ o 320% )\z%e )‘ exp(—z'kx) ) (4.275)

This is hence the part with positive frequencies. We here use the notation, that a plane wave
travelling to the right is described by exp(—ikz). The part

AP (z) = / o 32wk > e (k) exp(ikz) (4.276)

A=0

contains the negative frequencies. The sum is performed over the four linearly independent
polarisations. For these we have

Orthogonality:  €,(A\)e*(N) = =V with ¢ = —1, ¢V = ¢® = ¢® —1.277)

3
Completeness: Z C(’\)eg\)e,’j()‘) = —Gu - (4.278)

We now use a specific reference system with

cOn —

und €M1 — ( ! ) fiir A\ =1,2,3. (4.279)

1
0
0 €\
0

In case only the zero component €* is present, we call it scalar polarisation. Furthermore,
we have

| =
ol
D
o

I

o

€5 = and (4.280)

e
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The €3 describes the longitudinal polarisation and € » the transversal polarisations.

From the requirement (4.273), which is equivalent to
(9,47 =0 (4.281)
it follows that
(10, A" ) = 0. (4.282)

This is the Lorenz condition for the expectation value.

Insertion of the expansion in plane waves in

[AM(ZL‘), HV(y)]JCo:yo = —iguy5(f— ?j) ;
[aﬂﬁiAM(x)vAV(y)]m:yo = [Au(x)aayjAV(y)]m:yo = [aﬂﬁiAu(x)vayjAV(y)]wo:yo 2640283)

leads to

[a™(k), a" ) (K] = ¢V (27) 2w o (k — k') . (4.284)
For A = 0 the annihilation and creation operators interchange their roles, as ((©) = —1. We
have

[a,a) = [a',a'] =0 . (4.285)

We interpret a® (k) as annihilation operator and a™1(k) as creation operator. The scalar
polarisation is described by A = 0, the longitudinal polarisation by A = 3 and the transversal
polarisation by A = 1,2. We have

for the vacuum state: aM (k)[0) = (4.286)
.I.

|
for the one-photon state: aM(E)[0) = |k, \) . (4.287)

(Here for simplicity we omitted the smearing with the function f (E), which, however, is

necessary for the correct normalisation. Hence, [ dkf (K)at(k)|0) = |k, A).) In the following,
we want to justify this interpretation. For this, we apply the Hamiltonian operator on a
state |k, \'),

3
He 7N = / diwn 37 ¢ 0O (B)a™ (B)a ()0)
A=0

_ / diw S CVai) (F) 2m)22u O §(F — F)]0) = wiel ¥, X3.288)

We have for the massless photon
wi = |k . (4.289)

Thereby wy > 0 and hence the Hamilton operator is positive definite. However, there are
states with negative norm. Because

(kAR A = (0]aM (k)at™ (£)]0) = ¢W <0 for A=0. (4.290)
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Scalar photons hence have the norm -1. However, it follows from

3
kMZe“()‘)a()‘) = Z k™ a) (4.291)
A=0

A=0,3
with the requirement
DAY =0 (4.292)
that
(@ (R) = a® () [phys) = (a(F) = a® () [v) = 0. (4.293)

This is a condition on the scalar and the longitudinal photons. The Gupta Bleuler condition
is not condition on the transversal photons. In particular, we have

(¥]al® a'@a®ly) = (|a"® (0 — a)|p) = 0. (4.294)

This follows from (a(g)(E) —a9(k )) |)) = 0. And for the expectation value of the energy

we get
2
> = <1p |/d/~€2wk aMtg™ 1/1> . (4.295)
A=1

(WIH ) = < |/dk2wk< aMig
Hence, only transversal parts contribute. Through the Gupta Bleuler condition we achieve
that in physical quantities only the physical degrees of freedom contribute. This can be
shown analoguously also for other physical quantities. From 8,AM* ) = 0 follows that
only transversal photons contribute to observable quantities.

Summary

e Apart from the two physical there are two additional degrees of freedom (longitudinal
and scalar).

e One is forbidden by the Gupta Bleuler condition.

e The other one corresponds to an additional gauge freedom, which still exists despite
the Lorenz condition, namely A* — A* + oA with OA = 0.

e In scattering processes the scalar and the longitudinal photons play an important role.
For gauge theories it holds in general that the requirement of covariance leads to un-
physical states (states with negative norm) with so-called ghost particles. In quantum
electrodynamics (QED) the solution is trivial as here the ghosts decouple. In quantum
chromodynamics (QCD) and in the electroweak interaction these states appear in the
calculation. However, for incoming waves without ghosts, there are also only outgoing
waves without ghosts, so that the probability interpretation is guaranteed.
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4.9 The Feynman Propagator for the Photon Field

For the Feynman propagator of the photon field we look at the commutator
(A% (z), A (y)] = iD™ (z — y) (4.296)
The Feynman propagator of the photon field is then given by

| %ﬁ exp(—ik( — y)) = (OITA*@)A"(y)|0) . (4.207)

This is found by inserting the photon field Eq. (4.243) and using the commutator relations
Eqgs. (4.284), (4.285) as well as the completeness relation (4.278). We want to interpret the
propagator in analogy to the scalar field. However, here four types of photons are exchanged,
two transversal ones, a longitudinal one and a scalar photon.

We look at the Feynman propagator in the momentum space in the reference system with
the polarisation vectors

1
. Eo—(n-k
n, = €9 (k) = 8 and ¢ = Fu (0K (4.298)
0

g (n- k)2 — k2

The Feynman propagator in momentum space is given by

v

3
DY = U CEION S (e
A=0

k2 +ie k2 + e &=

1

e
- ZC()‘)G()‘)MG()‘)V+
[A=1

(k* — (n-k)n*)(k* — (n- k)n")
k2 + e 2

2 2 v v v v
_ 1 ZC()\)E(A)ME(A)V + k n“n k“k - k M n(l{?“n + k n“)

K2t i k)R k2 —R2

v~ ~~
% %
DF,C DF,R

1.299)

A=1

4

The first term describes the exchange of transversal photons. Thereby we hence have
Dy = Dyp+ Do + Dy - (4.300)

The second term in local space is

d'k 1 1
Dl = g™ ”0/ —— exp(—ikz) = """ ——= (o) . 4.301
re =9"9" | Gy e xp(—ikz) = g"g = (20) (4.301)
This corresponds to an instantaneous Coulomb potential. The third term Dj, vanishes
as the photon couples to a conserved current. This means that d,j* = 0 and thereby in
momentum space k,j* = 0.



Chapter 5

Interaction, Perturbation Theory

5.1 Free Theory

So far we only looked at the free theory. It contains in the Lagrangian density only terms
quadratic in the fields. By using the Euler Lagrange Equation we obtain from the Lagrangian
density homogeneous linear field equations. These can be solved exactly through Fourier
expansion. This then leads to the computation of the propagator. E.g. a scalar field is
described by the Klein-Gordon equation. The Lagrangian density reads

1 m?
L= 5(0,0)06) ~ -6 (5.1)
Application of the Euler-Lagrange equation leads to the field equation
(O+m*)p=0. (5.2)

The Feynman propagator is given by
d*k 1

Dela 1) = oW = [ G enl—ite—9) . (653

This is so to say the propability amplitude for the propagation of a particle from location
Z to location g. Fields without interaction cannot be detected, however. Therefore, in the
following, we will look at the interaction between fields. However, for this case so far there
is no exact solution possible, only in lattice gauge theory by applying certain assumptions
and for certain Lagrangian densities. The interaction phenomena are therefore led back, by
the help of perturbation theory, to the description through free fields.

5.2 Interaction Terms

The Lagrangian density is split up into a free Lagrangian density £, and a Lagrangian
density L;, which describes the interaction,

L="Lo+ L. (5.4)

The free Lagrangian density is quadratic in the fields, the interaction Lagrangian density
contains terms with more than two fields.

We look as example at electrodynamics. In classical physics, the electromagnetic fields
interact with the electric current,

0, = . (5.5)
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The current j¥ is e.g. caused by electrons. Thereby, an interaction term between photons
(A,) and electrons (1) is constructed. However, £ has to be a Lorentz respectively Dirac
scalar. Possible Dirac scalars are e.g. ¢, ¥y*1) etc. We hence introduce the interaction
term

‘Cl = —61/;7“7/114“ ) (56)

where e is a coupling constant and determines the strength of the interaction. Thereby the
Lagrangian density of quantum electrodynamics (QED) is given by

1 T - .
Loep = _ZFWFW + (i —m)p — epy*p A, + gauge fixing . (5.7)

The first term is the kinetic term for the photon, the second term is the kinetic term for the
electron (Dirac field). The Euler-Lagrange equations of Lggp read

(i —ed —m)ip(z) = 0 (5.8)
O F" =epyp = 7. (5.9)

The second equation has the form which is already known from electrodynamics. Thereby
we can interpret

J = ey (5.10)

as Noether current. It is here the conserved current for a Dirac theory. The two equations
are coupled non-linear field equations! We have to answer the question, how these can be
solved.

Let us remark that Lggp is invariant under a local gauge transformation. Thus ¢(z) can
be replaced by

P(zr) — exp(ia(x))(x)), with a(z) € R, and simultaneously (5.11)
1
Ay(z) — Au(z) — -0,0(x) (5.12)
e
Through this gauge transformation, QED is characterised.
Further examples for interactions are

o ¢'-theory:

2 A

1 m
£=50u0) — 50" — 50" (5.13)

e Yukawa theory (ineraction between a scalar and fermions):
L=L+ LI — ginpo (5.14)

e Scalar electrodynamics

L= FuF* 4 [0, +ieA)d] (0 + ieA)o — m*6'6 (5.15)
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So far we only looked at cubic and quartic terms in the interaction Lagrangian density.
The question is if there are also higher powers like e.g. ¢°. The answer is that products of
fields in the Lagrangian density which have mass dimension > 4, are not renormalisable.
They lead to observables which depend on a cut-off. Equivalent to this is that in interaction
terms the mass dimension of the coupling constant must always be > 0. Remind the mass
dimensions that we derived, were

Pl =1, [A) =1, Wl =5, [tl=-1, 0] =1, .. (5.16)

5.3 Interaction Picture

The Hamiltonian operator can be written, just like the Lagrangian density, as a sum of a
free operator Hy and an operator Hy, which describes the interaction, i.e.

H = Hy+H; . (5.17)

The comparison between Schrodinger, Heisenberg and interaction picture is given in Tab. 5.1.

‘ Picture ‘ States ‘ Operators ‘
Schrodinger picture | i0;|v)° = Hlw)® i0,0° =0

Heisenberg picture i0|) =0 i0,0" = [OF | H|
Interaction picture | i0;|¢)! = H|w)! | i0,01 = [OF, Hy]

Table 5.1: Comparison between Schrodinger, Heisenberg, and interaction picture.

This holds in particular for O = 7, ¢, A, .... The operators fulfill in the interaction picture
hence the equations of motion of the free theory. From this follows that the field operators
have a Fourier decomposition like before. Thus for the field operator of the scalar field in
the interaction picture we have

o'(x) = /(d?’ik [exp(ik:c) al (k) + exp(—ikz) a(E)]

27)3 2wy,

with  wy = ko = \/ k2 +m? . (5.18)

In the following, we will always work in the interaction picture and drop the index I.

5.4 Time Evolution of the States - the S-Matrix

We have to solve the interaction theory approximately in the framework of perturbation
theory. This is given by a power series in the coupling constant. The assumption (hope,
experience) is, that the series converges so that an approximation through the leading terms
in the expansion is possible. Let us look e.g. at the anomalous magnetic moment a of the
electron, which was calculated as

6_2 ? ’ !
a=9 = = 23—0.32... (9> +1.18...(9) —1.51...(9)

T T T T
0.0011596521866 (5.19)




64 Interaction, Perturbation Theory

Here « is the coupling constant a = €?/(47). Experimentally it is found that
a = 0.0011596521884(43).

We want to describe scattering experiments. For this the interaction shall only be active
during a certain period of time [T7,75]. The asymptotic states |¢(t — —o0)) and |p(t —
+00)) fulfill the free equation of motion with H; = 0, hence

|¢p(—o0)) — Interaction area — |p(00)) . (5.20)

The interaction here only takes place between T} and 75. We hence will not describe inter-
action states. If |n) are the eigenstates of Hy, then we can write

6(—00)) = > anln) with Y Ja,[* =1 (5.21)
(+00)) = Y baln) with > [b[*=1. (5.22)

This means that the state is changed by the interaction, but that its norm is conserved. This
corresponds to a rotation in the state space. There exists hence a unitary transformation S
with

|¢(+00)) = S|¢(—00)) . (5.23)

In the following, the so-called S-matrix will be determined.

5.5 Determination of the S-Matrix

Our starting point is the Schrodinger equation
10| p(t)) = Hylp(t)) with the initial condition |¢(—o0)) = |i) . (5.24)

The differential equation can be re-written as an integral equation, from which an iterative
solution will be determined, by repeatedly inserting |¢(t)) with ¢ = 1, to, ... into the equation.
Hence,

t

6) = i)+ (~0) / dty H (1)) (1)) = [i) + (—i) / dty H (1) )

—00 —00

(i / dt Hi (1) / "t Hy ()] 6(82))

—00

_ |¢>+Z(_¢)"/ dtl/l dtg.../n_l dinHi(t) Hi(ts)o Hy(8)]1) . (5.25)

For t — oo we can extract from this the S-matrix. First, we transform the above expression
for t — oo into a more compact form by using:

/ dt; / dto Hy(t) Hy(ts) = / dt, / dty T(Hy(t) Hy(ts)) (5.26)

where the time-ordering operator T', which is defined as

T(H(t)H(t2)) = { ngg;gjgig Z ; 2 ; (5.27)
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was used. Thereby, we obtain

|6(00)) =

n=0

(—nl')" /Z dtl"'/z dtnT(Hy(tr)-.. Hy(tn))]i) - (5.28)

Thereby we obtain for the S-matrix the expression

S=T [exp <—i /: dtHI(t)” =T [exp (z /: d*x L,(x))] : (5.29)

The transition probabilities are given by
z’>(5.30)

(f18)) = {flp(+00))
<f’(1+z/d4xT£[ /d4 /d4yT£1 VL (y) + )

For example in quantum electrodynamics we have a Lagrangian density of the form L ~

ey A, which describes the interaction. We hence have to compute e.g.

(FIT @)y (@) Au(@) (D ()7 P () Au())--.]i) - (5.31)

Required are the matrix elements of the form (f|T'¢1(x1)...on(2,)|i), where the p;(z;) in
general shall be quantum fields in the interaction picture. Moreover, the ¢ shall represent
both bosonic and fermionic fields, ¢; € {¢, A,, ¢,...}. The time evolution is analogous to
the one of the free fields. In the following, we will have a closer look at the time-ordered
product.

5.6 The Wick Theorem

We write
pi(w;) = <P§+)(9Uz‘) + %(_)(901‘) ) (5.32)
with
3
(+) _ d°k > .
@ (zi) = /Mai(k)exp(—zkxi) (5.33)
_ d3k -
‘PE )(xz) = /Maj(k) exp(tkx;) mit (5.34)

we = ko=\k2+m?. (5.35)

The (4) stands for positive, the (—) for negative frequencies. In the following be p; = v;(z;).
We have

+) (=) —gogf)(pgﬂ if i, p; fermionic fields
0 ;= (- (1) . (5.36)
+o; o otherwise
R N I (5.37)

It is

o102 = (D7 + 0N + 057) = 0Pl + 705 + o168 + el (5.38)
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All terms apart from the last one are normal-ordered. This one can be rewritten by using

the (anti-)commutator (*+’ relates to the commutor, -’ relates to the anti-commutator)
relations. Because
o705 = e, o )e £ 05t (5.39)

And thereby

{69 G5Nif 1, 0y fermion fields

. - 5.40
P1¥2 P1¥2 [ngﬂ’ cp(_)] otherwise ( |

In case 1, po are bosonic fields, we can also write for 29 > 29 (note that the commutator is
a c-number)

T

=
vV
NOo

[0, 0571 = (011, 5 7710) = (0] 5 710) = (0]15]0) (0] Tp102]0) . (5.41)

This holds analogously in case ¢y, s, are fermionic (show this!). In case 29 < 29, the indices
1 and 2 are interchange, and one obtains the same equation:

a1 = 1 a1+ +(0[T a1 |0) . (5.42)
And also

1. Be 1, o fermions, then it is(z§ > 2?)
T(prip2) = —paipr = — - 021 = —(0|Tp21(0) = : 102 = +(0[T'014020) . (5.43)

2. Be 1 or (py a boson, then one obtains an analogous result.

It follows hence

T(p1p2) = : p1p2 0 +{0|Tp102]0) Vo1, 0 und Vay, s . (5.44)
The fields ¢; behave like free fields. This means that
(01T ¢i(x)0(y)|0) = D (2 — y) (5.49)

is the Feynman propagators for fields of type i. If o1, o are different fields, then it holds
that

(0|Tp1p2]0) = 0. (5.46)
We introduce the following abbreviation:

P12 = <0|T<P1<P2|O> . (5-47)
11

This is called Wick contraction.
For three bosonic fields it holds

To(z1)p(z)p(rs) = dpla1)p()d(rs) <+ : @(21) 2 (0T ¢(w2)¢(3)]0)
+ ¢(xa) 0 (0T P(xy

|
(x2)]0) . (5.48)
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In general it is
To@).d(w,) = : oer).o(w)
+Z : ¢(x1)¢(x2)MM¢(xn) : (0| To(x)p(x)]0) + ...

k<l

+>° S o(@). bl bl p(zn)  x
p22 kl < /{ZQ
< .. < k?gp

x> 0TSk, )S(ky|0)...(O|T G (ks ) (s, )[0) | - (5.49)
Alle Perm

Be aware of the minus sign for fermionic fields. For example it holds in case of three fields:

o1p203 | — R falls 9, 3 Fermionfelder
L—J= P1P3P2 (5.50)
+ L0 sonst
It general it is
O Ppee-Ppe0n = (= 1)Por0101... 00 (5.51)
1
where p is the number of fermionic interchanges.
We look at an example for n = 4:
T(prp2ip3p1) = Q10203001 + 1 Q10203010 + 1 P1P20304 1 + 1 P1P2P3P0
LI | | I I
T 12030 L p1papsps D p1papsps (5.52)
I | — L1
T I P1pap3Ps s P13t T P1P2P3P
I__I I__I I__I_______I__I I__I______I__I
We look at the vaccum expectation value for ¢; = ¢(x;), hence two identical bosonic fields:
O] :p1.0pn s 10) = 0 (5.53)
O]T(p19290304)|0) = Dp(x1 — 22)Dp(w3 — 24) + Dp(x1 — 24) Dp (12 — 23)
+ DF(xl — {L‘g)DF(ZL'Q — l‘4) (554)

5.7 Computation of S-Matrix Elements

The evaluation of (f|S|i) with S = Texp (i [ d*zLy (z)) leads to S-matrix elements of
the form (f|T¢1(x1)...0n(2,)|7). This is reduced via the Wick theorem to normal-ordered
products and propagators,

To1..0n = Q1.0 +Z D1 Pie Pk ¢+ (all contractions) . (5.55)
1
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We first look at a real scalar field ¢. Be the initial state

i) = |91, P2, D) = al (71)al (P2)...a’ (£,)]0) - (5.56)

And analogously for the final state |f). The scalar field is decomposed into components,
which only contain creation and annihilation operators, i.e.

¢ = ¢+ with (5.57)
oM (z) = /@75)732%&(@ exp(—ipx)z/a(ﬁ) exp(—ipz) and (5.58)
6@ = [ @ el (5:59)

where w = py = /P2 + m2. As ¢(*) only contains annihilation operators, it holds that
o) (x)|0) = 0. (5.60)

And furthermore

[ (2),d'(@)] = [ [a(@") exp(~ip'z),al (§)] = //exp(—ip'x)[a(ﬁ'),aT(ﬁ)]

P

/

d*p exp(—ip'x)d(p — p’) = exp(—ipz) . (5.61)

/
/

Thereby we have
¢ p) = ¢ al (7)/0) = exp(—ipz)|0) (5.62)

and

oD pr.pry = ¢Dal (r)...al(5)]0)
= a'(p1)e™Mal (52)...a’ (51,)]0) + exp(—iprz)al (pb)...a' (5x)|0)

= Y ¢Mdl () al (p)...aleg)..al (7,)]0)  with (5.63)
n=1 I ______ I
o (z)a'(p) = exp(—ipz) . (5.64)
1
From this follows that
O (21)... 0 (xn)|ProPn) =0 for N >n . (5.65)

For example we can have for N scalar fields

(f] 2 pb: i) = (F1oT) 0Dy + (Flop T D) + .+ ..
T g g ) L 5.66
(fl¢—.0 o). .0 i) (5.66)
N- Ny
This expression is only then non-zero, if Ny < n; and N_ < ny. Here n; (ns) is the number
of particles in the initial (final) state and N, (N_) is the number of fields with positive and

negative frequencies, respectively, in the individual expressions above (N, + N_ = N). If
Ni < n; and N_ < ny, then

(F16.. 606D, i) ~ (F]) only #0, i ]7) = |f) . (5.67)



Interaction, Perturbation Theory 69

5.7.1 Modifications for Dirac and Vector fields

We had the Fourier decompositions

o(z) = / d?’ip(a(_')ex (—ipz) + a' exp(ipz)) = o) + ¢ (5.68)
= | Gy, @@ (=i p(ipz)) = :
d3
w0 = | ey 3 (P esplive) + A7) spli) = 410 4 500
(5.69)
Aulr) = / dp Y (ex(D)el) () exp(—ipx) + e\ (D)l (9) exp(ipr)) = AT + A .
A
(5.70)
Analogously as before, we obtain
VP (@)al(p) = us(p) exp(—ipz) (5.71)
| I I
PO@L(P) = (D) exp(—ipz) (5.72)
| I I
a sy (x) = us(p) exp(ipx) (5.73)
| I I
b(P) ) (x) = vy(p) exp(ipz) (5.74)
| I I
A}(;L)c:r\(ﬁ) = e}(;\)(ﬁ) exp(—ipz) (5.75)
1
c,\(ﬁ)Aff) = ef[\)*(p) exp(ipz) . (5.76)
1
We furthermore have to take into account that
¥ (2)al(f)af (72)[0) = ¢ Pajabjo) — v Paja}|0) . (5.77)

I | I I

5.7.2 Example: Quantum Elektrodynamics

Starting point is the interaction Lagrangian

L= —eyA, = _elﬁongﬁwﬁAu = _elﬁawﬁ’%jﬁAu : (5.78)

In the following the spinor indices (a, 8) will be suppressed. We look at Méller scattering,
i.e. the process

e (p1,m1) +e (p2,7m2) = € (p3,73) + € (P4, 74) - (5.79)
This means that we have in the initial and in the final state

i) = af, (1)al, (P2)|0) und |f) = al, (p5)af, (71)[0) - (5.80)
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There are four particles, which participate in the process. We hence have to have at least
four fields ¢ in the T" product, so that Ny = n; und N_ = ny. We hence have to look at
least at £2. We have

)

- iQ—T/d%/d4y<f|T@($)7“¢(fU)Au($))(Qﬁ(y)v”w(y)Ay(y))Iz')+...(5.81)

ISl = <f\i>+<f

iT/d4a: Ly ()

The following remarks are at order:

1. The fields A, have to be Wick-contracted, as there are no photons in the external
states. Otherwise they are in the normal product which vanishes:

O] :AA,: |0) = 0 and (0[A,A,[0) £0. (5.82)
I___1

2. No field ¢ must be Wick-contracted, as for the external states four v are required.

3. Thereby the following possible terms are obtained: a) First term, cf. Fig. 5.1 (left).
b) Second term, cf. Fig. 5.1 (right). Through a fermionic exchange the relative minus
sign compared to the first case is obtained.

P“5 P4 5’\"

Py

Py P X

Figure 5.1: Feynman diagrams, which contribute to the process e"e™ — e"e™ .

4. Third term: This term corresponds to the first one with the interchange x <> y.
5. Fourth term This term corresponds to the second term with the interchange = <> y.

Thereby one obtains an additional factor 2, which cancels the prefactor 1/(2!) in the ex-
pansion of the S matrix. Expressed through formulae, one obtains for the diagrams 1 and
3:

_______ I I n . - t 1 I

e / i / d*y(0]a(3)a(4)T] $(2)r"(x) Au(z) Dly)r"ily) A (v)]at(Dal(2)]0)
I
1

= ¢ [ [ (A0 4,0) - 5@ u(2) explipas + ipar)a(3))”u(1) expl(—ipy + ipay)

(5.83)



Interaction, Perturbation Theory 71

Here a(1) stands for a,, (p1) and u(1) for u,,(p)) etc. We use

_ d'k exp(—ik(z —y))
A@AL) = OTAWAGD) = |t i) G0
Performing the integration leads to
/d4x — (27)*0™ (py — py — k) und /d4y — (21)*W (ps —p1 + k) . (5.85)

This describes the momentum conservation at the vertices. Performing the integration of &
leads to

d'k
/ o) (2m)36 (pg — py — k)@ (p3 — p1 + k) = (27) 6D (p1 +po —ps — pa) . (5.86)

This corresponds to the conservation of the total momentum. Thereby we have

- S\ —/ — v — _'L v
(U +@) = —@m)"6 (4 p2 = pa = pa) (BT w0 ()

with & = p1—p3=ps—pa. (5.88)

(5.87)

(2) 4 (4) is calculated analogously, where 1 <» 2. We thus have for the total matrix element

—igu
(P4 — p2)? + i€
—igu

(2 —ps)+ ACHRICI (5.89)

—€2<27T)45(4) (p1 + p2 — p3 — pa) (ugy ug) (usy"uy)

Fields that are not contracted, do not contribute beause of the normal ordering, as (0|
¢...¢0 = ]0) = 0. All contractions of the fields among each other (propagators) and with
external fields (exp(=£ipx), u(p), €,(p)) have to be performed. At the order e? we had obtained
the contributions Fig. 5.1. The order e® vanishes. The order e* then delivers again a
contribution:

(0lasasT[th1 b1 AL oy by AY sy ibs AL hyyerhs AJJalad|o) .
(5.90)

Here ¢y = ¢(21), AY = A#(21) ete. In the following, the contractions are looked at graph-
ically. The four terms 1A are represented by four vertices, cf. Fig. 5.2. Thereby the
Feynman diagram Fig. 5.3 is obtained. The loop corresponds to the expression

(6 ()t (22) A(2)) (b () (23) A(3)) =  AAY Wath gt = AA(=1)hstgtbatis (5.91)
I T T 1 I—I——— | I_1 11

I T

Here a and (8 are Spinor indices and

D(ws) = P(r2)y" =, (5.92)
VY(r2) = Yo (5.93)
D(zs) = (as)r” =1 (5.94)
Y(ag) = g (5.95)

AA = Aj(xg)A,(z3) . (5.96)
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Figure 5.2: Vertex {1 A.

The expression Eq. (5.91) is a number € C, so that the trace of this number can be performed,

AA(=1) - Tre(ptatbatrs) = Ay(w2) A, (23)(—1) - Te(Sp (w5 — 22)7" - Sp(wa — 25)77) -
LI LI (5.97)

The expression (—1)Tr corresponds to a closed Fermion loop. The following integrations
have to be performed:

[ o | s ] ] 2t~

Propagators
exp(—i(ps — pa)ry) exp(—iki(xe — x1)) exp(—iks(x3 — x4)) exp(—ili(xe — x3))
eXp<—i12(373 - 1’2)) - Functions of ki, ks, l1, l2, p1, D2, P3, pa - (5-98)

Performing the integration over x1, zs, x3 and x4 leads to
/d4]€1 d4k’2 d4l1 d4l2 5(4) (pl — P3 — ]{31) 5(4) (pg — P4 — ]{32) 5(4)(]{32 — ll + lg) 5(4)(]{?1 + ll — lg)

= /d4l1 Ay 0D (py —ps+ 10— 12) 6P (py — pa — 1 + 1)
d*ly
(2m)*

= /d4l1 8 (pa = pa— b +p1—ps + 1) = (2m)*6W (p1 + po — ps — p4)/ (5.99)

o

P4

W

3

Figure 5.3: Feynman Diagramm, which contrtibutes at order e? in e"e™ — e e™.
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Hence for each closed loop, one has to integrate over the respective loop momentum. Here,
this is ;. Further contractions at order e* are shown in the diagrams Fig. 5.4

-
iR

Figure 5.4: Further Feynman diagrams, which contribute at order e*

5.7.3 Feynman Rules of the QED

Thereby we can now list the Feynman rules of quantum electrodynamics:

% Einloufeate Telden:

P
~ Hkkon € ¢ usl[ﬂ 2 “Tc,;\s ey
[V PS
- Yodeon & T{S{F‘} 2 n}‘bi,s e
| - |
k
= Thadon £ €PN 2 g e
¥ oy kA
% Qusloadinde. Wildeeq -
— EBlekicon & ¢ ual“P““ ué_l efemd
BS
(3 !
— osidcon ¢ \’stf') = 'bsf‘i’ Gt
r k
ST TSN S
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% Topedonn:

— BeMcon [Tosaon & p

L o & i
p'-m-n*}, ==

e

Pnolon § |

=1 v ~ [N

> R .
Ktale Ny t v

L3 \fu}‘t}g‘.
— \lodey ee) —mE‘PL = ~e"°rxt*f\mﬁ P

Furthermore, we have the following rules

* At each vertex we have four-momentum conservation.

Multiply the amplitude (see below) by (27)4@(P; — P;), where P; (B;) is the sum
over the momenta of the incoming (outgoing) particles.

*

x For each closed loop an integral over the corresponding four-momentum has to be

performed, (3;34 :

* Each fermion loop receives a factor (—1) and the trace has to be performed.

« When external fermions are interchanged, a factor (—1) has to be added.
We write
S=1+iT. (5.100)
And we have the matrix element
(FIT]i) = (2m)*6@ (Py — P)My; . (5.101)

Here My, is the Feynman amplitude. It is obtained by connecting the external particles
through vertices and propagators and summing up all possibilities. Here only connected
diagrams are taken into account (without proof). The mathematical expression is written
up according to the Feynman rules. Here fermion lines are run through in the opposite
direction of the fermion flow!
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5.7.4 Example: Pair Annihilation

We look at pair annihilation, i.e. the process
e (pl, 81) + €+(p2, 82) — ’}/ﬂ(l{il, )\1) + ’)/V<l€2, )\2) (5102)

The diagrams that contribute to the process are shown in Fig. 5.5.

P4

g f

Figure 5.5: Diagrams contributing to pair annihilation. (Remark: In the second diagram
the momentum of the fermion propagator between the two photon vertices has to read

q,:pl_l{é-)

The total amplitude M is given by the sum of the amplitudes corresponding to the two
diagrams, i.e.

M= M+ M, . (5.103)

For M; we get
7

M = 0lpa) (—ier” Y e (e Yulpn) e (k) e (k) (5.104)

v

The calculation of the amplitude M is left as an exercise.

5.7.5 Example: Compton Scattering

We look at Compton scattering, i.e. the process
e (p1,s1) + 9" (ki, A1) = e (pa, s2) + 77 (K2, A2) (5.105)

The Feynman diagrams that contribute are shown in Fig. 5.6.
The total amplitude M is given by the sum of the two amplitudes corresponding to the two
diagrams, i.e.

M=Mi+Ms,. (5.106)

For M; we get by using the Feynman rules,
i

i —m

My = u(py)(—iey”)

(—iey"Yu(py) € (k1) €02 (ky)  with 1 = pi + ki . (5.107)
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Figure 5.7: Diagram contributing to Compton scattering at order e*. (Remark: The arrow
for the momentum [ has to be in the opposite direction.)

And for My we find
i
= q eyt
Ma = lpa) (~ier")
A contribution of order e* is given by the diagram shown in Fig. 5.7. It contains a loop. The
corresponding amplitude reads
d*k i i i
— (—;p)4 = v o p Iz A1) (fe ) eP2)* (L
M = (mie)! [ il e e e () 2 ) k)

_Z.gpa
. 5.109
” 2 + ie ( )

(—iey”)u(p1) Eg\l)oﬁ) 51(//\2)*(%52) with go = p; — k2 . (5.108)

v
1—m

And we have

Q=p1+hk=p+ks. (5.110)

5.8 The Cross Section

5.8.1 Scattering Cross Section

We look at two bunches of particles, which scatter with each other, cf. Fig. 5.8. For the
number N.,.,; of events it holds

Nevent ~ /)AlApBlB - (5111)
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o Bundy ! tus Tekdhen

A
\e s ﬂ B

— |
Figure 5.8: Particle Scattering.

Here p denotes the particle number density, i.e. the number of particles per volume. And
F is the scattering cross section area. The proportionality factor ¢ is the cross section. We

have

Nevent - F Nevent - F

= - . (5.112)
(pAlAF)<pBlBF) NA'NB

Here N4 p are the particles in the effective area. Be Np = 1, then the scattering experiment

looks as in Fig. 5.9.

Figure 5.9: Particle scattering with Np = 1.

And we have
Nevent
Na
If B is a steel ball, then Ng = Nyene and thereby o = F. Otherwise this is the effection
cross section area the particles which are scattered off the bunch A. We hence have

F. (5.113)

g =

oo Nevent _ % _ Number of events per timeT (5.114)
% ja incoming current density .

The cross section has the dimension of a surface in natural units, 1/mass®.

5.8.2 Phase Space Flux Factor

The S mastrix element for the transition from the inital to the final state is given by

Spi=6p +i(2m) (pr—2p2> (f| T (5.115)
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Through this the Lorentz-invariant 7 matrix is defined. The ¢ function describes the energy-
momentum conservation. We look at the following reaction,

The cross section is given by

o Transition rate (= number of events/time) ' (5.117)

flux of the incoming particles

Nominator and denominator are defined in the given Lorenz-system. For example as can be
at rest, while a; is incoming. Be ¢ # f. We work with momentum eigenstates in the initial
and final state. Alle 1-particle states |p;), |¢;) are normalized to 1 w.r.t. the Lorentz-invariant
measure
d?’q d4q

= —0(qF —m))i(q)) 5.118
We first look at distinguishable paricles by, ..., b, in the final state. Then in the calculation
of Sy; resp.Ty; the used final state

|b1...b,) = |b1) ® ... ® |by) (5.119)
is normalized to 1 with respect to the measure
I, d*q; . (5.120)

In the initial state we have

a1, az) = |a1(p1)) ® |az(p2)) - (5.121)

We assume that we have one particle a; and one particle as, respectively, in one normalization
volume. Be V' the volume (e.g. the laboratory), then we have

. . L 1 o
(ar(P)]ar (p1)) = 2p0(2m)%6(py — pr) = (27)° - 2p?(27r)3 / d*z exp(i(p) — p1)7) = 2pJV .
1%
(5.122)
Thereby

|lai(p1))|*  probability density in momentum space for this state
Vv B % '
We now look at the transition probability for the reaction (5.116). With the requirement of
one particle a; and as, respectively, per normalization volume V' we have
[(2m)*0™(Q — P)P?| Tyl "IT}, dg;

dw; = , (5.124)
¢ 2p2p5V°
—_——

(5.123)

norm of the initial state

with P = p; + po und QQ = 2?21 g;- For the square of the § function we use Fermi’s trick:
We consider the interaction to be turned on in a volume V' and during the time 7. Thereby
we have

[(2m)*6M(Q — P)]* = /V : Az QD1 (214 W(Q — P) = 20)*6(Q - P)V - T

(5.125)
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And thereby we have the transition rate

dw i 1 n B
Tf Va0 (2m)* T0;_,dg; 6(Q — P) | Tl (5.126)
12

This formula holds in each interial system. We now those the rest frame of particle as. Be
m12 the masses of a; ». In the rest frame of a; we have

Py = My (5.127)

and for the momentum of particle a; it holds in this system (= laboratory system) that

1 2 2
piel = ((p1L)* —mi)® = wls, i, ma) (5.128)
2m2
with the function
w(z,y,2) = (22 + ¢ + 22 — 2wy — 2wz — 2yz)2 . (5.129)

This can be seen as following: The center-or-mass energy in the c.m. (center-of-mass) frame
be s. It is given by

s=(p1+p2), (5.130)

where pq, ps are the four-momenta in the c.m. frame. The four-momenta in the laboratory
frame are given by

0
piL = (11” ) and  pap = ( 782 ) (5.131)
piL

Because of Lorentz invance it holds

s=(p1+p2)* = pip+ 201 me +my=mi+2ppms +mj = (5.132)
2 2
0 ST my—my
_ _ 5.133
Pirn 2ms ( )
Since we only assumed 1 particle a; per volume V', the flux of a; in the laboratory frame L
is

1, 1 |piLl 1 w(s,m? m3)
O, = —|i,| = =Ll . 5.134
" V|vlL| Vo Vil 2my ( )
Thereby we have
9 2 2 2 2
V2p02pd = V7 2my 2L M m) _ w(s, m, my) (5.135)

o, Vom, o

air air

And hence we find for the differential cross section

dU}fZ/T _ 1 dgq]'

Du Zu(smbmd) 7 2rp2g

(2m)tot <Z 4 — P —p2> OU@) - ba(@)| T laa(F)az(B2))” . (5.136)

J=1

do
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The various elements are
1

S0 (s ) = flux factor |, (5.137)
and
(b1 (@) b (@)| T lay(Ph)as(52))|> = matrix element . (5.138)
sowie
(2m)6@ (i ¢ —p1— p2> 7 _d; = phase space = dLIPS(n) (5.139)
- gy |

The phase space is universal and Lorentz invarian. Also the matrix element is Lorentz
invariant, depends on the specific process, however. When we integrate over the phase
space, we will write in the following

/ dLIPS(n) = Lorentz-invariant phase space . (5.140)

We can write the flux factor as
. 1 1
Zw(s,m%,mg) = dms|piL| = 4(E12m§ — m%m%ﬁ = 4[(p1Lp2L)2 — mfmgh . (5.141)

The do is the differential cross section, which is integrable over all momentum configurations.

We hence have for the cross section (we omit the index L in the following) im folgenden weg)
1

/ do = 2 2,,,2]%

4[(p1p2)? — mim3)?

Further remarks:

[ 1T P LIPS (o). (5.142)

1. For particles with spin we proceed as follows: For each unpolarised particle in the initial
state, one has to average over its spin states. For each non-observed spin polarisation
of a particle in the final state one has to sum over the corresponding spin states. This
means in this case we have:

/

1
2 2 _ 2
Tril” — E Tril” = g Teil”, (5.143

Spins Spins im Endzustand

where s,,, Sq, is the spin of a; and as, respectively. For the spin sums one has to use
(see exercise sheet)

Y uls)aul(s)y = (P+m)as (5.144)

Y v s)ad(@s)s = (p—m)as (5.145)

Note that the weight factor reads 1/(2s+ 1) only for massive particles. If it is a photon
or a gluon, then the weight factor is 2, as massless particles only have 2 physical
polarisation states.
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2. If ng of the n final state particles are identical, no matter if it is bosons or fermions,
then the state (5.119) is not correctly normalised. The factor 1/y/ng! is missing. This
means that in this case do or dwy; has to be multiplied by 1/n,!. Hence

1

" 2w

do = 5 (Tydg) (20)'59Q = P) Y [Tyl = (5.146)

Spins

3. The cross section usually is given in the unit barn. It holds that

1

o = 0.389 - 1072 barn . (5.147)
(§]

The cross section is connected with the number of events via the so-called luminosity

L:
N=L o. (5.148)

The luminosity can be through a very exactly known reference cross section, which has
been calculated very precisely in theory. For example in electron-positron colliders the
cross section of the Bhabha-scatterin et + e~ — e + e~ is used, at hadron colliders
like the LHC e.g. the production of W bosons, pp — WTW ™, is used. The luminos-
ity hence is roughly spoken a measure for the incoming current. Thus we have for
LEP (1993-1998) an integrated luminosity of about 200 pb™!, for the Tevatron Run II
(4/02-9/11) - DO - 11.9 fb~!/delivered (10.7 fb~! /recorded), LHC ATLAS (1/18-6/18)
20.8 fb~1 delivered (19.5 fb~! recorded), LHC CMS (July '23) 245.54 fb~! delivered
(266.42 fb~! recorded), the high-luminosity phase of the LHC 3000 fb~! shall be gath-
ered per experiment.
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Chapter 6

+

The Process e"e™ — u'

6.1 The Muon

¢ The muon has a mass of

m,, = 105.6 MeV = 200 m, . (6.1)

o All other properties (quantum numbers, interactions etc.) are identical with those of
the electron.

¢ The interaction with the photon is given by (Fig. 6.1) —iev".

P
e = -k
Pp

Figure 6.1: The photon-muon-muon vertex.

o However, the muon is unstable. It decays via the weak interaction as (cf. Fig. 6.2)
poo—=e + v+, (6.2)
Here v, is the anti-electron-neutrino and v, the muon-neutrino. We set m,,_ R 0.

© The computation of the decay width results in

G2 _m5
=L £ _3001-107" GeV , (6.3)

r ——f "¢
: 192 73

where G is the Fermi constant,

1
Gr=1.16637- 107" —— . (6.4)
e

83
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Figure 6.2: The muon decay.

And for the lifetime one gets

h 6.582-107%° GeV - s
— = ~219-107%g. 6.5
T, 3.001 10~ GeV i (6.5)

6.2 The cross section for ete™ — ™
There is only one diagram, which contributes to the process

e~ (p1,s1) + € (p2, 52) = ™ (ps, s3) + 1 (P4, 54) (6.6)

cf. Fig. 6.3. Because of energy-momentum conservation we have for the photon momentum

¢ F’i P& ff E:-
N /7?
ey /
AN
/k v K
e P FLt \ tﬁ

Figure 6.3: The process ete™ — putu™.

k= pi+ps=ps+ps. (6.7)

We introduce the abbreviation u; = u(p, s;) etc. Thereby we get for the diagram by
applying the Feynman rules,

—ig
k? + i€

M = Daa(—i€) 7 5u15 tzs(—ie)s,vap - (6.8)
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ForMT we get

Z.gM/V/

MT = <i€)21_}40’)/g;U37—m’a1n’)/5;)’02w . (69)
Here we have used that
(07" us)t = (007" us)t = uin"yfva = ulror* 7070 va = Uy va (6.10)
=1
because
7 = vl and = uly (6.11)
"= (6.12)
7= Y0 - (6.13)

We calculate the unpolarised cross section. This means, that we average over the polarisa-
tions in the initial state and sum over the polarisations in the final state,

i > M. (6.14)

$1,582,53,54

Application of the relations (5.144), (5.145) leads to

1 64 ’ v o
1 Z M? = 4—]{;4@2 = Me)waVas(P1 + Me) sy Vi Guw G (B3 + M) 7575, (P — 1) po Vo
51,52,53,54
4
e y
= gt L2 = me)yu(br + me) ] - Te[(ps + my)y" (b — my)y"] . (6.15)
Since the trace of an odd number of gamma matrices vanishes, we have

Tr[(ps + my) " (b — mp)y”] = Tr(psypar”’) — mTr(v9") . (6.16)

For the further evaluation we use

Tr(y"y") = 49" (6.17)
P3arDap Tr (Y VYY) = Dawpapdg"? ¢’ + g g — g g¥'P]
= Alps ol +pkpi — ¢" ps - pa] - (6.18)

Thereby, we have for the trace altogether

Alpy P+ phpY — ps - pag —m2g™] . (6.19)

And for the other trace we find analoguously

4[??11/102“ + PiuP2ov — P1 - P29’ — nguu’] . (620)

In the following, the electron mass is set to zero, m. = 0. The uncertainty encountered
thereby is of the order m?/m? = 1/200°. Multiplication of (6.19) and (6.20) finally leads to
(check!)

1

LS IMPE = 1602 pa) 1)+ 2 i) )+ 22 )] (621)

$1,82,53,54
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In the c.m. system, cf. Fig. 6.4, with the c.m. energy /s we have for the four-vectors,

1 1
R R R
pl - 7 O ) p2 - 7 0 )
1 -1
1 1
/s | Bsinfcos¢ /s | —Bsinfcos¢
ps = o [ sin f sin ¢  Pa= T —fsinfsing |’ (6.22)
B cosb — [ cos b
with
Am2
B=1/1— (6.23)
s
ts A
Ps P
L
e- / N e
By
7 f
t_m
Figure 6.4: Center-of-mass frame.
For the individual needed dot-products we thereby have
s
pi-p2 = 5, k= (p1+p2)’=s (6.24)

S S
pb1-pP3 = p2'p421(1—5(3059) und pl'p4:p2'P321(1+5C059)- (6-25)

Thereby we find

i > IMP =1+ B cos’ 0+ (1— 57 (6.26)

$1,82,53,54
Here we used that
1
1
For the differential cross section we still need the phase space. It is for the 2 — 2 process
given by

dLIPS(2) = ! Eps _dPi o i
2= 2w(s,m2,m2) | (2m)32p§ (27r)32pg( ) 0 (pr+ P2 = Ps — pa)

2
My
S

1-6%). (6.27)
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1 d’ps 4 2 2 0y 5(4)
= Toee. | 50 P4 0(py — My ) U\Py D1 T P2 —P3 — P4
o d'p 803 — m3) 0(p5) 0 (p + )

2p3
1 1 d3p3
s _ e 5 — 2 — 2
472 2s | 2pY (P + P2 —ps) m“),

372\/§pg+mi —m?2

872s 20y ~——2\/s 2
N—— d§2
|73 1p9dp)
2pg
1 1
8m2s4y/s 2
s
= —— [ dQ). 6.28
64m2s (6:28)
Here we have used that
w(s,m?=0,m>=0)=s and D3| = \/256 . (6.29)
The thereby one finds for the unpolarised differential cross section
do\"™ g (1 ) '
“9 — - = 2 2(cos? 6 — 1)] . 6.30
<dQ) 64m2s (4 Z M 647‘(‘28[ + £ (cos ) (6.30)
51,52,53,54

The total cross section is obtained through integration over the space angle (2,

1
/dQ = 27r/ dcosé . (6.31)
-1

With the finestructure constant

e? 1
_e 1 6.32
T T 1T (6.32)
and 3 ~ 1 the total cross section is obtained as
4’
— 6.33
o= (6.33)
At a c.m. energy of e.g. /s = 90 GeV one obtains
ar 1\ (1)’
=—(=—==] (=) 0389107 barn ~ 11 pb . 34
0=-3 <137) <90) 0.389 - 107 barn p (6.34)

6.3 The Cross Section for ete~ — Hadrons

Hadrons are particles which participate in the strong interaction. Hadrons are e.g. p,n, m,n, p
etc. They are composed of quarks and gluons.

If one calculates the cross section of the process

et +e~ — hadrons , (6.35)
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e %
AN
v
A 1

Figure 6.5: Feynman diagram for the process e™ +e~ — ¢+ q.

then in first order of the strong coupling constant it is identical with the process
et +e —q+q. (6.36)

The Feynman diagram contributing to the process is depicted in Fig. 6.5. There are 6 quarks,
up (u), down (d), charm (c), strange (s), top (¢) and bottom (b). The Feynman rule for the
v — q — q vertex, Fig. 6.6, reads

2 1
ieQ " with Qu = g(U =u,ct) and Qp = —g(D =d,s,b) . (6.37)

Taking into account the three colors of the quarks one obtains

\/\\J‘f«—‘\f‘v (l;' v O LE_Q g
P

..i_

"l

257

Figure 6.6: The vertex v — ¢ — q.

4 2
o= "N Q2 3. (6.38)
q

And thereby

o(et + e — hadrons) )
R = =3- . 6.39
O_(e+ ‘|‘67 — M+ ‘I‘Mi) ;|QQ| ( )

Note that for 2m, < /s < 2m, we have

R:3-[Qi+Q§+Q§]=3-[(§)2+<%)2+(%)1:2. (6.40)
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For 2m,. < /s < 2my, we have

2\? 10
—924+3.[2) == 6.41
R—2+ (3) : (6.41)

and for 2m;, < /s < 2my

1

R 5 - (6.42)

6.4 Higher Order Corrections to e™ + ¢~ — u™ 4+~

QED corrections of different orders in e to e™ + e~ — p™ + u~ are depicted in Fig. 6.7.

s Ol e®)
'y
0
“ " P
/ WP 'Uik
Rl §
4 }
?
% Briek)

/._\
2
C
i
B A,

% Blet)

i ",

. .- 7
P e G e e QO

Figure 6.7: Higher-order corrections to e™ +e~ — ut + .
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6.5 Corrections to the Photon Propagator

The corrections to the photon propagator are depicted in Fig. 6.8. The Feynman diagrams

3 G
e e af\f\‘v@“-w 4 f‘u’\f‘.@ u%\@» A 4
v m W

P

< AW L ey gy ) Moy |, -iges T y) 206 (W (g)s
g.;‘w. i %L-IH_. -HE, ‘3.-11.._ 3¢ R U_Ui

Figure 6.8: Higher-order corrections to the photon propagator. The last summand below

the picture is wrong. It has to read: Qi“z ill,0(q) Qi“lf illss (g )q’f;z.

contributing to the vacuum polarisation iIl,,(¢) are shown in Fig. 6.9. The vacuum polari-

i P\)E.gl )= (Wn@vw f\f\/@mﬂ; ‘- W@wm
Ry
/\/\/\@LW 1 (‘um@mxm. + ...

Figure 6.9: Diagrams contributing to the vacuum polarisation iI1,,(g).

i

sation tensor I1"”(q) can be rewritten as
I, (q) = Agu + Bquq, - (6.43)

This follows from the Ward identity (see below)

qI1" =0 = ¢, 11" (6.44)
so that
A= —Bq¢® = ¢ll(¢*) . (6.45)

Thereby I1,,,(q) can be expressed through a scalar quantity IT(¢?):

M = (g — 4u0.)11(¢°) - (6.46)

Note, however, that II,, always couples to a conserved current, cf. Fig. 6.10. The equation
¢,3" = 0 follows from 0,7” = 0. The g,q, terms hence do not give any contribution. Thereby
Fig. 6.11 follows by means of the geometric series.
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/
N o NGV 1 1V
DL~ T g S SR

= M) g o g0 §)7=0

Figure 6.10: Coupling to a conserved current.

) ) £ = "i . A v VL
yoonsve A a’uﬂl@ﬂf\/\ﬁ v oL _&H '[JTH at‘imil} 4 L\l"'l“ﬁ‘” J 1

|I'

]
C_E-"'-
5 e
‘g

Figure 6.11: Loop-corrected photon propagator. The first line in the formula is wrong. It
has to read 2[1 + T1(¢?) + (T1(¢?))* + ...].

q%+ie

Ward identity: We look at a T-matrix element with one incoming photon. It is given by
(cf. Fig. 6.12)

T ]oma(R)) = Mk, ) e (k) (6.47)

Because of gauge invariance (A,(x) — A} (z) = A,(r) + 9,A(x)) we can replace the photon
state by an equivalent state without changing the physics. We look at the polarisation vector
€, = €u+ck,, withceC, (6.48)

The polarisation vectors EL and ¢, describe equivalent states,

e“al(k‘)|0) ~ e'“aL(k)|O> : (6.49)
This means that it has to hold that

M, (k, .. ) = M, (k,..)e'", (6.50)
hence

KM, (k,...)=0. (6.51)

This is an important relation to check your calculation.
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Figure 6.12: Diagram with one photon.



Chapter 7

Loop Diagrams

7.1 Example: ¢*-Theory

We consider the scalar ¢* theory with the Lagrangian

Lo (@) —gm? 6 2 1d's with Lww =5 o' (7.1)
We have for the S-matrix up to order n

S = Z%T/dx'/dx”.../dx(")ﬁww(x') Lyww(z")...Loww(@™) . (7.2)
For the 2 — 2 scattering we have to determine the matrix element

(0la(3)a(4) Sa'(1)a’(2)]0) . (7.3)

We have in Born approximation (also tree level = contribution of lowest order in the coupling
constant/at leading order) Fig. 7.1. It is

B’O\:Tl - - . . . . .
\ o Hl | [ . l {
Figure 7.1: Contribution at tree level (leading order).
¢(a')a'(1) = exp(—ipia’) (7.4)
1

We have to consider 4! permutations. Thereby we obtain
Spem = <ix [ d’ explitps-+ pi — pr = pa’) = —i- (20N ps + o~ 1~ ) (75)

And thereby
Tri=—A. (7.6)

93



94 Loop Diagrams

At order \? we have to determine

<0 ‘a(3)a(4)% : <(_4i!;2)2 / da'da’"T [ ¢(a')* : : p(a”)* ] aT(1)aT(2)‘ 0> . (7.7)

Via the Wick theorem we obtain typical contributions:

1. The contractions of a'(1),a’(2) with a(3), a(4) vanish, as because of ps # i

(0la(3)a’(1)|0) ~ d(p5 — 1) = 0. (7.8)
Thereby only the contractions of ¢a, ¢a’ or ¢(x')p(x") are left.

2. Since Ly is normal ordered, there are no contributions, in which ¢(z)p(z’) are
contracted (so-called tadpole diagrams). A non-vanishing contribution is hence only
obtained, if 2 of the operators a, a', respectively, are contracted with 2 fields ¢(z') and
the other two operators are contracted with ¢(z”). We hence have

SlfSchleifen _ (_2)‘)2
2. (41)?

/ dx'dx"T[Term 1 + Term 2 + Term3 | . (7.9)

A contribution to term 1 is given in Fig. 7.2. There are altogether (4!)? possibilities of
contraction, which lead to the same result. For example the contribution in Fig. 7.3 once

-

{olaBG)al) dgix'}dﬁi_&“}c.b{.x'jdg CIJH: dgw“]bu“ dpu“ tz*’u ol lo)

T S WS ’ 1
L_____________l

Figure 7.2: Contribution to term 1.

again gives the same result. A contribution to term 2 is given in Fig 7.4. There are again

(o] aty) alyy: i) (¥ )dpm Jpha c\Dﬁv &)lx“ J:w*) d?w“ hp‘oc“w {\*l o107

o - — B

Figure 7.3: Further contribution of type term 1.

(4!)? possibilities of contraction, which lead to the same result. A contribution to term 3 is
given in Fig 7.5. There are again (4!)% possibilities of contraction, which lead to the same
result.

Evaluation of the first term S; leads to

—i)\)2
s = S0E [aras? explitos’ +par’ = pia” = )] O 6000

(0|7 ¢(2")p(=")|0) . (7.10)
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Figure 7.4: Contribution to term 2.
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Figure 7.5: Contribution to term 3.

We have

<wwwmwm:/<

And thereby

d*p i
2m)4 p? —m? +ie

exp|—ip(a’ — 2")] .

,, 7 7

4 p2—m?+ieq® —m? +ie
- explia’ p3+p4—p—q +wf”( —p1— p2+p+Q)]

Integration over ' und z” leads to two  functions, hence

5 — (—iN)? / dp / dq i | i |
2 (2m)* ) (2m)4 p?2 — m? +ie g2 — m? + ie
(2m)* W (ps + ps—p—q) - 2m)* 6 (=pr —p2+p+q) .
Integration over p leads to
(A
2

S

- (2m) 6 (s + pa — p1 — p2)

/ d* 7 7
(2m)* q* —m? +ie[(q — p1 — p2)? — m? +ie]

(7.11)

(7.12)

(7.13)

(7.14)
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Figure 7.6: Interpretation of S; in local space.

The interpretation of S in local space is depicted in Fig. 7.6. The interpretation of S; in
momentum space is depicted in Fig. 7.7. The contribution of Sy is depicted in Fig. 7.8. The

\
o, b- (OIS
i
L), : r~
(Lo € Cpsezbn) 0= 04009 i ® n.pul&tq,ﬂr'lub

Pe

| LT1'|L£{1 }"’-'[._1

Figure 7.7: Interpretation of S; in momentum space.

contribution of term 1 only depends on

s=(p1+p2)°. (7.15)
The contribution of term 2 only depends on
t=(p1—ps)”. (7.16)
The contribution of term 3 (not shown here) only depends on
= (p1 —pa)? . (7.17)

We have the Feynman rules

1

Propagator: (7.18)

p? —m? + ie
and
Vertex:  (—i)) . (7.19)

At each vertex we have energy-momentum conservation. We have to integrate over loop
momenta. And we have one ¢ function for the overall energy-momentum conservation.
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Figure 7.8: Interpretation of Sy in local space (left) and in momentum space (right).

7.2 Divergence Behaviour

The evaluation of the loop integrals shows that some of them are divergent for four-momenta
— 00. Such divergences are called ultraviolet (UV) divergences. We assume that the diver-
gence behaviour of the integrals can be determined by counting the powers of the momenta
(="power counting”). We look at the following example:

1 1
/ d4qq : (7.20)

2 m24ic (q—pL—p2)? —m?+ic

For fixed py, p2, m and large ¢ the integrand is proportional to 1/(¢?)?. Im momentum space
we get a logarithmic divergence. In local space this corresponds to the square of a singular
function. Next we look at a six-particle reaction, cf. Fig. 7.9, and investigate it w.r.t. possible
divergences. The higher-energy behaviour of the corresponding integral is given by

Figure 7.9: Loop diagram with six external legs.
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[ () 72

This integral is UV-convergent. Also the 8-particle reactions are convergent. We now look
at two-loop contributions to the propagator, cf. Fig. 7.10. The corresponding loop integral

E‘;
- _‘.‘-1 "
¥ P
e —_—
=1 (-in)
| S

T

Figure 7.10: Two-loop contribution to the propagator.

is given by

12 d'q d*r 1 . 1 ‘ 1
(—iN) / (2m)4 / (2m)4 (g2 — m2 +i€) (r2—m2+ie) (p—q+71)2—m?+ie (7.22)

This integral is quadratically divergent. UV-divergences appear only in corrections to the
propagator and the four-particle vertex (modulo subdiagrams). The divergence can, in
a so-called renormalisable theory, be absorbed through a redefinition of the parameters.
The thus defined parameters are the physical parameters, i.e. the parameters, which are
measured in experiment. The unrenormalised parameters are called bare parameters. The
¢* theory is renormalisable. The divergences of the S matrix elements can be aborbed
through redefinition (renormalisation) of the parameters A and m. In contrast, in non-
renormalisable theories, there are at higher orders always new types of divergent scattering
amplitudes.



Chapter 8

Radiative Corrections in Quantum
Electrodynamics

The S matrix is given by

S=T [exp <z /Z d'z Lw(x))] : (8.1)

Expansion of the S matrix in the coupling constants contained in the interactions of Ly, leads
to Feynman diagrams of the corresponding order in the coupling constant. Thus we have
the diagrams contributing to electron-positron scattering at order e depicted in Fig. 8.1.
The divergence behaviour is estimated via power counting.

v (o Ty (T
'
e e pd — OV le— 4
e / ¢ C A\ e
\m\;\m‘v\\i\ e
j ¢t
= / E_Ji t_-r

Figure 8.1: Contributions of order e* to electron positron scattering (no complete list).

99
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(a),(b)
d*k 1111
/W%ﬁ%ﬁ : convergent in the UV-Limit. (8.2)
(c)
/d4k111 logarithmic diverg (8.3)
——— logarithmic divergence. :
2m)* f k2 K
(d)
d*k 11
/(2@4%@: linear divergence. (8.4)
()
11
/ (;i ];;4%% . quadratic divergence. (8.5)
s

In the following we will only look at loop parts, and namely those, which exhibit a UV
divergence. We hence investigate the diagrams shown in Fig. 8.2. In the tree-level parts the

k
_ .
ﬂ\% _ii}_ n avav, v
T —

P{"ai — Pty
k-5

Figure 8.2: Divergent Loop Diagrams.

momenta of the propagators are fixed through the external momenta, cf. Fig. 8.3.

8.1 The Vacuum Polarisation
In Fig. 8.1 (e) the photon propagator

i
(p1 + q1)? + i€

(8.6)
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Figure 8.3: Fixing of the momenta.

of the Born appoximation is replaced through

(. 4

—1Gpp d*k e - ! (—ie.) - ! —Gov
“”@+my+n/@mﬂ}k (A vy wﬁk_m+%hm+%y+%

=ill,o(q)
—1 d*k ) ) —1
— 1 —i . - (—iev,) - , — 7
q2+ie/(27r)4< )Sp{( ) F—p1— g —m+ie (=iew) k—m#—ze} q? +ie (87)
=ill, (q)
with
q=p1+q . (8.8)

The prefactor (—1) stems from the closed fermion loop. We had already seen in Section 6.5
that the vacuum polarisation can be written as

W = (4w — 4u0,)11(¢%) - (8.9)

Because of the coupling with an external conserved current the ¢,q,-term does not contribute.
And for the photon propagator we found using the geometric series (cf. Fig. 6.11)

() (810)

As long as 11, has the form (¢*¢,, — q,.9.,)11(¢*) and II(¢?) is regular at ¢*> = 0, the pole of
the propagator remains at ¢ = 0 and thereby m. = 0.

a) Scattering at small ¢?: We consider the scattering at small ¢?, cf. Fig. 8.4. It is proportional
to

2 1 5 2 1 2
L1 g 4 1_& 811
¢* 1-1TI(¢?) 1-T1(0) ¢* ¢
We here have defined
2
e
1_719[(0) = 63 . Z3 = 62 or 63(1 + (523) = 62 . (812)

The charge eq is called bare charge and e is called physical charge. The corresponding
renormalisation constant Z3 is defined through
1
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\/\AO\: /Eﬂ 4 o
e

Figure 8.4: ee-Scattering.

At leading order we have 675 = I1(0). We now discuss the ¢*>-dependence of the scattering
amplitude. We define

~

II(¢*) = T(¢*) — T1(0) . (8.14)

Thereby we have modulo terms of higher order

PO-()  21-T(0)—1(q?) 201 —T(g) (8.15)

We here give without calculation the result of II(¢?):

fi(g?) = =2 [ (1 =) [~ loa(&) + log(&) o] do (5.16)
with
A=m?>—z(l—2)-¢*. (8.17)

Thereby we have

9 1 2
(¢*) = +—a/ (1l —x)-log [1 —z(1—x)- 9| da . (8.18)
™ Jo

m2

We first look at the behaviour for small ¢ /m?:

- 200 ¢* [* 1 a ¢
(¢*) = —— — (1—x)de=——— . 8.19
@) === L [ —apde - 2 L (819)
The contribution to the potential in the non-relativistic limit is obtained for ¢> = —¢?. Hence
e? 1 a ¢ e 1 a é?
— |+ =——=|==+—=——. 8.20
(j?{+157rm2} §2+157Tm2 (8:20)

For small momentum transfer one hence obtains a change of the potential of the order «/.
In local space we have (a = e?/(47))
a a? 4

—+—— (7). (8.21)

r 15 m?
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One obtains an additional short-range contribution to the the potential and thereby a con-
tribution to the Lamb-shift (splitting between s- and p-level).

In the following the behaviour for large positive/negative ¢*/m? is discussed

i) = 2 1:p(1—x) {m(— q2.)+1n<a;(1—x)—m2;“)] dz

T Jo m? — ie q

T Jo m?

20

- [/le(l — 2)drn (—31—22 —ie) + /01 21— 2)In(e(1 - 2)de | . (3:22)
, y

4

N~
-5
18

N[

With
In(x + i€) = In |z| + inb(x) (8.23)

we have

() = 2 <ln (q—Q) +0(q?) - i — g) | (8.24)

37 m2

Thereby for the propagator holds for large ¢,

62

q? (1 —3-In (%) +> .

The effective charge hence grows with ¢?. The expression diverges when the denominator of
the fraction becomes zero. This is the case for

2
1- % <q—> —0 = ¢*=m2exp <3—7T) . (8.26)

m2 «

(8.25)

This critical case is called Landau pole.

8.1.1 Meaning of the Imaginary Part

We want to investigate in the following the meaning of the imaginary part of the vacuum
polarisation. For this we look at the case ¢* > 0. We have

S[(¢?)] ~ 270‘ 3 Uol z(1 —z) In(m® — ie — ¢*z(1 — z)) dx}
_ Uol r(1—2)70(¢*x(1 — x) — m?) dx] : (8.27)

7

Through the determination of the roots of the expression in the 6 function on obtains as
new integration range

11 4m? 11 4m?
S R L = ey | i 8.28
2 9 2 T3 2 (8.28)
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where ¢? > 4m? has to hold, as otherwise the integral vanishes. Thereby one obtains

_4L .
1 1_xdx_{%<1+2%2) -4 firg® > dmig oo,

_2a/
11 [1-4m2 0 sonst

The interpretation leads to the optical theorem. The total cross section is given by the
imaginary part of the forward scattering amplitude, cf. Fig. 8.5. We remind that the cross

Figure 8.5: Relation between the imaginary part of the forward scattering amplitude and
the total cross section.

section for ete™ — ptp~ with m, = 0,m, = m is given by

4 o 2m? 4m?
olete” = utp™) = % - (1 + T) 1- - (8.30)

8.1.2 Renormalisation of the External Photon Lines

If we couple a photon, starting from an external source, then also the vacuum polarisation
appears, cf. Fig. 8.6. Either in external lines bubbles are not considered and ¢, exp(—ikx)

ﬁ -
i 2 T G.\lltlg‘;{s Phclon A ”Lifm(ﬁn i ldhon Eil&""?'ll\“ k)
W\nse iston G-

Figure 8.6: External photon line.

is replaced by \/Zse, exp(—ikx) (this then leads to e - v/Z3 = eg). Or they are considered,
and one divides by v/Zs.
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8.1.3 The Electron Propagator

In internal (p® # m?) and external electron lines the self-energy diagram Fig. 8.7 appears.
This leads in internal lines to the change of the electron propagator, in external lines it

W
.-—‘-u.‘

i) o )
|

Figure 8.7: The self-energy of the electron.

contributes to the electron wave function renormalisation. We have
d*k (—1) 1
—iX(p) = (—ie)? y
iB(p) = (—ie) /(27T)4k2 —u2+i67 jﬁ—k—m+i67
Here a small photon mass p was introduced. And for the photon propagator the Feynman
gauge was used, hence

v (8.31)

—iG,
) 8.32
k2 + ie ( )
Furthermore holds
L ___b—ktm (8.33)

p—KF—m+iec (p—k)2—m2+ie’
We once again directly give the result. In the result there appears a logarithmic divergence,
which is regularised by subtracting ¥(p? — A?), where i\Q > m? A% > p? and A? > p?
shall hold. We call the regularised 3(p) in the following ¥ (p), and we have
a [* A%z
Y(p) =22 — Xpe = — 2m — 1 da8.34
R ) s

+ pte — pPa(l — ) — e

Here there appear terms ~ 1 and ~ p, which are independent of each other. In contrast, in
the vacuum polarisation the terms ~ g,, and k,k, are dependent on each other.

8.1.4 Renormalisation of the Electron Propagator

For the electron propagator (cf. Fig. 8.8) one obtains by means of the geometric series

ﬁ_im0+ﬁ_im0-[_ii(]5)}-ﬁ_imOJr,_, = ﬁ 1%<%)+(m)2+m
e (1) AT

(8.35)
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A\ g -a
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Figure 8.8: The elecron propagator

We demand that the pole lies at the renormalised mass mpg, hence at m = mpg. Thereby,
one obtains the condition

(b —mo = Z(P)ly=m = 0. (8.36)
With
m=mgy+ om (8.37)
we get from this condition
(p = m + 0m = S(B)lp=m = 6m — S(p)lp=m = 0 (8.38)
and hence
dm = X(P)|p=m - (8.39)
We perform a Taylor expansion of X () around p =~ m and obtain
=m0 =) = h=mo= Wy~ G| =)+ 0= m)
5 Pl
ds
= -m)|1l— — +O0(p—-—m) |, 8.40
(h—m) ( i\, . (¥ )) (8.40)

where we used that m = mg + dm. Close to the pole the propagator has the form (where Z,
is the wave function renormalisation constant):

Z ) >
2 with  Z;'=1- ‘fi— and 07, = ‘fl— (8.41)
ﬁ —-m ﬁ p=m ﬁ p=m
For the divergent part of the mass renormalisation one finds (without calculation)
3a A?
dm =mpg —mog = —mgln (| —; | + const. . (8.42)
4m mg
Thereby, we can write
i B i
P —mo — () (p—mo) —dm+ (Zy" — 1+ O((p —m)?)) - (p — mo)
i
- =om (Zy+ O((p— m)?)) - (B — mo)
B 12
(= mo) - (1 + Z2- O((p — m)?)) = Zy0m
7
- 12 . (8.43)

(= mo —om) - (1+O((p —m)?))
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One calls

the physical mass m! The Z, plays a similar role as Z3. However, Z5 is not compensated
by charge renormalisation but for internal lines through direct compensation with divergent
vertices. For external lines Zs provides the wave function renormalisation.

8.1.5 Vertex Correction

We look at diagram Fig. 8.9. Neglecting the external spinors, we find

2

<]

|
\.-\# P"L
0 Q\
N

.
/d
ek

Figure 8.9: Vertex Correction.

! = —’i62 d'k (_Z) ! !
Au(p,p)—( ) /(2ﬂ)4 (kz—,uerie)% (]j’_k_m+ie)7“]§—k—m+ie

For the regularisation of the infrared divergences (divergences at small energies) a small
photon mass p was introduced. There are two linearly independent external momenta, which
are given by p and p’, where p?> = p'? = m?. We look at the behaviour for —p’ +p = ¢ — 0
with ¢* < 0. We have for A,(p,p) a matrix in spinor space with one Lorentz index, which
only depends on p. Possible forms are m~, f1(p?) or p,fa(p®)1. These two possibilities are
not linearly independent, because in between spinors u(p) and u(p) we have

7(8.45)

antl com-

Dirac mutation
my, = P = 2Dy = Vul = 2Pp — YV - (8.46)

Hence A, (p,p) ~ 7y, in the limit ¢ — 0. The A, is calculated after renormalisation, hence

A, = A, (photon mass= u) — A, (photon mass (regulator mass) = Ag) . (8.47)
We define
u(p) Au(p,p) u(p) = (Z7' — 1)ary,u [+ anomal magnetic moment ~ g,,] . (8.48)

The reasoning ist: Born[y,] + 1-loop correction = Z;!. Furthermore, the Ward identiy

9%(p)

A(p,p) = _Tp“ ) (8.49)
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holds. The Ward identity is of crucial importance for numerous checks of the renormalisation
theory. The identity follows from the comparison of the integrands. Furthermore, we have

0 1 1 1
_ = ) 8.50
Oph <]5—k—m—|—ie> ﬁ—%—m+ie%]6—k—m+ie (8:50)
This is shown diagrammatically in Fig. 8.10. The derivation of the self-energy w.r.t. the

: A
r‘\d q"-ﬁ- = -}

o | T el I S o r"'l-p'“f’ﬂf**

" % g

Figure 8.10: Diagrammatic Representation of the derivation w.r.t. the four-momentum.

external momentum hence corresponds to the replacement of —v, in the internal fermion
propagator. This also holds after renormalisation. Because of

S=0m—[Z;' =14+ 0((p—m)*)](p—m) (8.51)
we have
o) _
o =N, =2y =1 (8.52)
From the Ward identity hence follows that

8.1.6 Greens Function

At the end of this chapter, let us have a few additional remarks on the Greens function and
the scattering matrix element.

Be ¢(x) an interacting field. The c-number “functions” (distributions)
G(1, - 0) = (OT[$(21)-- H(2)][0) (5.5)

are called n-point Greens functions of this field theory (cf. e.g. the 2-point Greens function
of the free theory).

Meaning;:

e From the knowledge of all G(z1,...,2,) (n = 1,...) one could reconstruct the corre-
sponding field theory, i.e. the Fock space and the field operators. In the free theory we
have

n — point-function = Z(products of the free 2-point function) . (8.55)

e The Greens functions hold for off-shell matrix elements. By going on-shell, one obtains
the S-matrix elements Sy;.

e These statements hold analoguously for interacting fields (with or without spin).
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8.2 The Lehmann-Symanzik-Zimmermann (LSZ) Re-
duction Formula

Let us start by a few considerations on the “asymptotic theory”, i.e. the “in” and “out”
states. The consequence of the adiabatic turning on and off of the interaction is

g — —00:  dx) — VZpw(x)
to—= 400 @(x) = VZou(r)
This is a convergence in the weak sense, i.e. it holds only for matrix elements. The fields

Oin(), dout(z) have the same properties as the free scalar field, i.e. they are solutions of the
free Klein-Gordon equation,

(8.56)

(O +m*)Pimout(z) = 0. (8.57)
Hence

mans(@) = [ A e (D)™ + ol ()] (8.59
with

ot = ( FVE? +m? ) . (8.59)

k

This means that the “in” and “out” states are!

Ky ooy b in = af (K1)..al, (K,,)]0) (8.60)
and

K1y ooy Knous = albe (Fr).al e (K)]0) (8.61)
Remark that the “in” and “out” states, respectively fields, are not identical. Because

S|B,out) = |8, i) , also Sal ST1S]0) = al |0) . (8.62)
Since S|0) = |0), we have

ShoutS™" = Pin - (8.63)
The “in” and “out” fields fulfill the usual commutation relations, hence

[Oin(), Gin(y)] = iA(z —y) . (8.64)
The commutator

[Pin(2), Pous (y)] (8.65)
however, is a priori not known. We now look at the meaning of v/Z. We have

(n]Ginout (2)|0) = P70, . (8.66)

INote that the states still have to be normalised properly, i.e. they have to be smeared by a function in
momentum space. We leave this out here for convenience. Note also that the commutation relations between

the in and out operators, [aout (k), a;fn(q)], are not known a priori.
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This means that @i, eut(x) creates/annihilates 1-particle states. For an interacting field,
however, in general

(n — Teilchenzustand |¢(z)]0) # 0 . (8.67)
Therefore we expect that

(1¢()[0) = ¥ Z{1|$in.oue0) - (8.68)

<1

In the following the LSZ reduction formula for the scalar field will be derived. Let us start
with a few preliminary remarks:

e The S-matrix element can be written in the “in”- and “out”-basis as:

Sfi = \<0Utap17---apmj|\q17“"q"’in>4

ﬁna?gtate initiz;rstate
= (0dout(p1)---Gout (Pn )by, (¢1)---af, (4)]0) - (8.69)

e Amplitudes of the form

<OUt7p1"' |a’;r>ut(q1)|q27 ---ain>
—_———
<0|aout(p1) -agut (Pm)
Z (27)32p0;6 (5 — q1) (out, pr...p;...| gz, ..., in) . (8.70)

are called disconnected. Here, we have used that

aout(pm)aTout<q1) = alut(Ql)aout(pm) + (27T>32p0m5(3) (ﬁm - Jl) . (871)

Furthermore p; means, that this particle is missing in the matrix element. Disconnected
means that at least one particle does not participate in the scattering process (‘“runs
through”), cf. Fig. 8.11.

We use that from Glg. (8.58) follows (at an arbitrary time t)

1 A
aly(q) = < / dPwe” " Gy pun () (8.72)
t
and analoguously

1 .
Uout (q) = i /d?’xe’q“”(‘?ggbout(x) ) (8.73)

t

We now look at

Sri = {out,pr.pmlqi--gn, in)
= (out, p1..pmlal (¢1)|g2--.Gn, in) . (8.74)
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Figure 8.11: Example for a disconnected diagram in the scattering process.

We replace (8.72) in (8.74). Furthermore, we choose the time ¢ — —o0, so that in the matrix
element (8.74) the field ¢y, can be replaced by Z~/2¢. Thereby, we have

1 .
Sy = tlim Z’l/z(out,pl...pm\z /d3:cequx@z](b(x)\qg...qn,in} : (8.75)
——00 ‘
We use that (for abritrary integrand) holds
t/
/d?’xe_iqlm(%qﬁ(:p) :/dgxe_iqlx(‘?agb(x) —/ dx()@o/d?’xe_iq”(%¢(:p). (8.76)
¢ ¢ ¢

We now let ' — oo (we have ¢ — —o0) and use that in the matrix element Z712¢ e Oout -
Insertion in Eq. (8.75) leads to

Sfl' = <OUtap1---pm‘aj>ut<q1>|QQ"'qm’ in)

J/

discon. z;;nplitude
+iZ 712 /d4x80[e_iq1x(96<out,pl...pm|¢(x)|q2...qn, in)] (8.77)
In the second term we use that
—O2eTINT = (—A + m?)e 0T (8.78)
sind g2, — ¢ = m?. Thereby, we have

/ dizp]..] = / dhe [(— A ey ) 1 mmmgR( )] (8.79)

A... is transferred to (...) by partial integration and the boundary terms for ¥ — oo are
neglected. Thereby we obtain

Sy = disconnected amplitude

+iZl/2/d4:ceiqlx(D +m?)(out, p1...0m|0(2)|g2...qn, in) . (8.80)
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This means, we have “reduced out” one particle from the “in” state. We can continue with
the reduction and for example “reduce out” the particle with momentum p; from the “out”
state. Then

<OUt7p1---pm‘¢<x>|QQ---Qn‘in>
- <Out pP2-- pm|aout(p1)|q2---Qnain>

= lim APy, (out, pa...pm| ¢(y)d(2) |g2-..Gn, in) . (8.81)

S \/_ 0 )

The (*) can be replaced by the time-ordered product T[¢(x)o(y)], as yo = +o0o. As long as
xo < oo the additional term 0,,0(yo — zo) = 0(yo — o) does not contribute. We do this trick

so that the operator a;,(p1), which will appear, is placed right of ¢(z) and acts on the “in
state. We use analoguously to Eq. (8.76)

| emaTiowow)

= o) [ @wermo+ [ dwdy [ @reraTiowow) (ss2)
yozfoo — o0 /
ﬁ¢—>¢1:»—mm The 4-dim integral is treated analoguously to (8.80).
Thereby we obtain for Eq. (8.81)
(out, p1...pm| ()| q2...qn|in)
= Sout,pg...pm|¢(:p)ain|q2...qn,inz
disconnected amplitude
i , ,
—l—ﬁ/d‘lye”’ly(ﬂy +m?)(out, pa...pm | T[d(y)d(2)]|ga- .-G, i) . (8.83)

One can continue doing this and reduce out all particles. One finally obtains the LSZ
reduction formula for the scalar field theory:

{out, p1...pm|q1.qn, in) = (in, pr...pw[Sq1...¢n, in)
= disconnected amplitudes

. n—+m
’ ; m . n
+ — d4 ....d4l‘nelzj=lpjyj_22r:1%xr

X (Oy, +m?)...(O, +m*)(0[T[¢(y1)....6(xn)]|0) (8.84)
N——————
m-+n ﬁelds
Remarks:

e The LSZ reduction formula is exact: on the right we have the complete (=exact)
Greens function, on the left the exact S-matrix element.

e The disconnected amplitudes contain at least one ¢ function, e.g. §®(p;, — q;) etc.

e If all particles participate in the scattering process, i.e. if p!’ # 4 ! for all 7, 7, then there
are not disconnected amplitudes.
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We continue with the discussion of the formula and simplify the notation: yy, ..., ym, z1, ..., T, —
X1y ooy Tan- We perform the Fourier transformation of the Greens function:

mnd4l PSS L, A
G(l‘l, -~-axm+n) = /H]Jrl (271';46 2=l TG(ll, ...,lm+n) . (885)
We replace this in Eq. (8.84) and use that
2 —m?
i(Qq, +m?) = i(=12 + m?) = - — (8.86)

We here have obtained the inverse scalar propagator in momentum space and thereby obtain

(out, pi...pm[q1...qn, in) = (in, pr...pp[Sq1....n, in)
= disconnected amplitudes
L e i
+ (ﬁ) i i G(qla ooy Qny —P1y -oey _pm)|p?:m2,...,q$:m2 : (887)
The minus sign in front of py, ..., p;, results from the fact that the momenta are outgoing.
Since all particles are “on-shell”, the GG has to be evaluated at p? =m? ¢* =m? for all j,r.

Equation (8.87) means, that G(...) has to have (n 4+ m) poles at m? in the variables P34
The S-matrix element hence is, modulo a normalisation factor Z~("*+™/2 the residuum of
this multiple pole. Less singular terms in G do not contribute to S . See also Fig. 8.12 for
the meaning of the LLSZ reduction formula.
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Figure 8.12: Graphic representation of the LSZ reduction formula. Note that in the figure
caption is should not read (8.84) but (8.87).

A small kinematic remark: The inversion of the Fourier transformation is

Gy, ooy lpgn) = / Id e 2 o Gay, g, oy Tgn) - (8.88)
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Because of translation invariance the G only depends on differences between the coordinates,
e.g. G=G(xg— 21, ., Typin — 1). We write L1z + ... + lpynToman = 21 Z::{n I + Iz —
1) + oo + by (T — 1) and thereby obtain

Gl oodan) = 22D (1 + oo+ L) G ooy L) - (8.89)



Chapter 9

On the Path to the Standard Model -
Gauge Symmetries

The principle of local gauge invariance is essential for quantum field theory. We start by
looking at the example of QED. The Dirac Lagrangian for a free fermion field ¥ of mass m

reads
Lo =V (iv"0, —m)V . (9.1)

It is invariant under a transformation with a unitary matrix U = ¢~ € U(1). This means
that applying the transformation

U (r) — exp(—ia)¥(z) = ¥ —ia¥ + O(a?) (9.2)
and for the addjoint spirnor ¥ = W40,
U(z) — exp(ia)V¥(z). (9.3)
the Lagrangian £, goes over into itself. We distinguish
- global gauge transformations: «a =const.
- local gauge transformations: o = a(x).

The Noether current of the above global gauge symmetry reads

oL §¥ 60 oL

M= aaas

OF L OF OF (D) = A 4
50,0 60 T dabo,0) (i) = (9:4)
with

" = 0. (9.5)

It implies charge conservation.
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9.1 Coupling to a Photon

When we include the coupling to a photon, the Lagrangian reads
L = Uy"(id, — qA,)¥ —m¥¥ = Ly — qj" A, , (9.6)

with j# given in Eq. (9.4). Applying the following gauge transformation to the external
photon field A,,,

Aulw) = A (@) = Au@) + B,A() (9.7)
the Lagrangian goes over into

L—L=Ly—qi"A,— qj"0. A . (9.8)
~—
qUyr O, A

This means that £ is not gauge invariant. The transformations of the fields ¥ and ¥ have to

be changed such that the Lagrangian becomes gauge invariant. This is done by introducing
an z-dependent parameter a, hence o = a(x). Thereby

10, ¥ — texp(—ia)(0,V) + (0,a) exp(—ia)¥ , (9.9)
so that
Lo — Lo+ Uy" ¥, . (9.10)

This term cancels the additional term in Eq. (9.8) if
a(x) =g\ (z) . (9.11)
Thereby the complete gauge transformation reads

U — U(z)=U(z)¥(x) with U(z) = exp(—igA(z)) (U unitary(9.12)
U — V(z)=U(x)U(2) (9.13)

Aur) = Aux)+ 9N (x) = U(x)A,(z)U (z) — éU(x)@uUT(x) . (9.14)
The Lagrangian transforms according to

L—L = UyWU 9, (UV) — qPU 'H* (UAMU‘l — éUaMU—l) UV —mUU 'UP

= U0,V + Uy (U 1i(9,U))¥ — qUy* WA, + U (i(0,U U)W — mIW
= L4y, (UU)¥ =L . (9.15)

Minimal substitution p, — p, — ¢A, leads to
10, — 10, — qA, =1D,, . (9.16)

Here D, (x) is the covariant derivative. The expression covariant means, that it transforms
exactly as the field

U(x) — U(x)U(x) and D,V(z) = U(x)(D,¥(z)) . (9.17)
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This means
(D) =D, V' =D, UV = UD,V , (9.18)
so that the covariant derivative transforms according to

D, = UD,U ™" = exp(—igA)(d, +iqA,) exp(igh) = 9, + iqd, A + iqA,,
= O, +iqA, . (9.19)

Thereby
L =Uy"iD, ¥ —mb¥ (9.20)

is obviously gauge invariant.

The kinetic energy of the photons is given by

1
Liin = 1 B mit Fr = orAY — 0" AF . (9.21)
The field strength tensor F*” can be expressed through the covariant derivative. We choose

the following ansatz for the tensor of rang 2,
(D,,D,| = [0, —iqA,, 0, —iqA,| = —iq[0,, A,] — iq[A,, 0,] = —iq(0, A, — 0, A,)9.22)

Thereby, we have for the field strength tensor
o= Lpr DY | (9.23)
q
Its transformation behaviour is given by

é[UD“U‘l, UD'UY = éU[D“,D”]U‘l — UpmyL (9.24)

The unitary group U(1) is an Abelian gauge group as for f, g € U(1) it holds that fog = gof.

9.2 Representation of Non-Abelian Groups

Be G a group with the elements g1, gs... € G. An n-dimensional representation of G is given
by the map G — C™™ g — U(g). It is a map of abstract elements of the group onto
complex n X n matrices, so that U(g192) = U(g1)U(g2) holds and hence the group properties
are preserved.

A U € SU(N) can be written as U = exp(i#*T®). In general, each group element,
which can be obtained from the identity element through continuous transformation of the
parameters, can be written has exp(i#*T*), where §* are real parameters and 7% are linearly
independent operators. The set of all linear combinations of 6T forms a vector space
with the basis elements #*T“. They are also called generators of the group. In the case of
the SU(N) the generators are hermitian. For the SU(2) we have U = exp(ic - J). The
group SU(N) has N? — 1 generators T°. For the SU(2) these are the angular momentum
operators J;. The N? — 1 real parameters 6 are given by & in the SU(2). The fundamental
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representation of the SU(2) reads J; = 0;/2 and in the general case T = \%/2.
Independent of the representations the generators fulfill the following commutator relation
[T, T" = ifebeTe . (9.25)
The f®¢ are the structure constants of the SU(N) Lie algebra. The commutation relation

hence defines the algebra, which is associated with the group. The generators are not
uniquely normalized. We have

Te(T*T?) = Tré™, (9.26)

where Tx is the Dynkin index. It depends on the representation. For the fundamental
representation it is mostly chosen as

Trn=Tp=1/2. (9.27)
From Eq. (9.25) follows

[T, T\ T¢ = if™TiT° = if*Tx=Te([T T"T). (9.28)
The structure constants ¢ are hence totally anti-symmetric and define (N? — 1)(N? — 1)-
dimensional matrices Tj = —if{ = —if**. For the SU(2) we have

(i, Jj] = €k - (9.29)
The generators of Lie groups fulfill the Jacobi identity

(T[T, T¢]] + [T°, [T, T + [T¢, [T, T"]] = 0 . (9.30)
Using (9.25), one obtains

0 = (—ifo)(—if) + (=) (—ifl) + if ™ (—if') (9.31)
And thereby

0= (T°T") e — (T°T") i + i f™ (T s . (9.32)
We thus have obtained an N? — 1-dimensional representation of the SU(N) Lie algebra,

[T, T%) = ifeeTe . (9.33)

This is the adjoint representation. There are the following SU(N) representations,

e d = 1: trivial representation (singulet).

e d = N: fundamental representation (A*/2), anti-fundamental representation (—A\**/2).
The generators are N x N matrices.

e d = N?—1: adjoint representatioin. The generators are (N2 —1) x (N? — 1)-matrices.
The indices of the representation run over the same range as the number of generators,
which forms the dimension of the group. In the adjoint representation hence the
dimension of the vector space, in which the matrices act, is equal to the dimension of
the group.

If a representation r and its complex conjugate representation 7 with

Te = —(T%)" (9.34)

T

are equivalent, hence T = UT*U", then the representation is called real. The fundamental
representation of SU(2) is real, but not the one of SU(3). This is why the anti-quarks have
an anti-colour. The adjoint representation of the SU(3) is real.
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Casimir operators Casimir operators allow to characterise representations independently
of the chosen basis. The quadratic Casimir operator is defined by

> 1T = Co(R)1 (9.35)

where C5(R) depends on the representation, but not on the basis of the generators 7.

9.3 The Matrices of the SU(IN)

The elements of the SU(N) in general are represented through

a

A
U = exp (i@‘l?) with 0 e R. (9.36)

Here the A*/2 are the generators of the group SU(N). For the SU(2) the \* are given by
the Pauli matrices o' (i = 1,2,3) and 6 is a 3-component vector. For an element of the
group SU(2) we hence have

U = exp (zﬁ%) . (9.37)

For a general U we have

) . @ T _ . a)\a
U'=exp | —if 0} =U""=exp|—i0 5 ) (9.38)

The generators hence have to be hermitian, i.e.
(AT = A", (9.39)

In addition, for the SU(N) it has to hold that

det(U) =1 . (9.40)
With

det(exp(A)) = exp(Tr(A)) (9.41)
we get

det <exp (i@“;)) = exp (i@“Tr <§)) =1, (9.42)

From this follows that

Tr(\) = 0. (9.43)
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The generators of the SU(N) have to be traceless. The group SU(N) has N? — 1 generators
A% with Tr(A*) = 0. For the SU(3) these are the Gell-Mann matrices

010 0 —i 0 1 0 0
A= 100 =111 0 0 A3=10 -1 0
000 0 0 0 0 0 0
0 01 00 — 000
Ay = 000 M=100 0 =10 01
1 00 t 0 0 010
00 O 1 1 0 0
YRS 00 — d=—0=| 01 0 (9.44)
0 7 0 V3 00 =2
The matrices A*/2 are normalised as
a )b 1
(22 2 —§ (9.45)
2 2 2
For the Pauli matrices (i = 1,2, 3) we have
Tr(o}) =2 und  Tr(oyoy) = Tr(ioz) =0 . (9.46)

Multiplied by 1/2 they form the generators of the group SU(2). The generator matrices
fulfill the completeness relation

AL\ 1 1

ij Nkl
A SATRNNE I SR N S N 9.47
2 2 2 (5”5’” Naja’“) (9:47)

because

DAL 1 1 1. 1

) = ~60m; 0k = =0 — =0k = 0. 9.48
0 5 5 25l5k 2N5 Okl 25kl 5 Okt (9.48)

The gauge group underlying quantum chromo dynamics (QCD) is the SU(3). The QCD
describes the strong interaction between colour charged particles. The quarks are in the
fundamental representation of the SU(3). The Feynman rule for the interaction between
one gluon and two quarks contains the T = A{;/2, with i,j = 1,..., N. (N. = 3) and
a =1,...,8 N, denotes the number of the quark colours. The gluons are in the adjoint
representation of the SU(3), which is expressed through the matrices (F'%)p, = —i f.

9.4 Non-Abelian Gauge Theories, SU(N) Symmetries

In the following we consider a Lagrangian which is invariant under transformations of the
group SU(N), where

SU(N) ={U e CVN|UUT =1 AdetU =1} . (9.49)
Each U € SU(N) can be written as
U =exp(i0, T, 0, e R. (9.50)

From UUT = 1 follows that 7% = (T*)!, from det U = 1 follows with det U = ™) that
Te(T%) = 0.
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Fermion Fields Starting point is the Lagrangian for N Dirac fields ¢;(z) (i = 1,.., N),

L= )" Gi(iy"d, —m)y = U(iy"d, —m)¥  with U = (¢, ¥n, .., dy) . (9.51)

i=1...N

The Lagrangian is invariant under a global SU(N) gauge transformation (the index a runs
overa=1,..,N?—1)

U — U =exp (i"T") U = (14+i6°T* + O((6*)*)) ¥ =U¥ = and ¥ — ¥ =TVU (9.52)
respectively, (i,7 =1,...,N)

Yi(x) = Upi(x) . (9.53)

The generators T are

fundamental representation: (7);; = (&), d=N
adjoint representation (T)pe = —zf“gc d=N?-1 (9.54)
trivial representation T°=0<U(0) =

Examples:

o U — ( fz ): SU(2) transformations in the isospin space, proton-neutron doublet.

o U= ( Vee ) : SU(2)r, weak interaction on left-handed fermions.
L
o U= (q1,q,q)7, quarks, SU(3)¢. Here, each ¢; (i = 1,2, 3) is a four-component spinor.
The QCD Lagrangian is invariant under SU(3)¢ transformations.

Representation of the Gauge Fields The gauge fields are in the adjoint representation
of the SU(N). Thereby, we have N* — 1 gauge fields G (z) (o = 1,..., N> = 1). In a non-
Abelian gauge theory also the gauge fields carry charge (e.g. in the QCD the colour charge),
in an Abelian gauge theory, however, not (the photon does not have an electric charge). The
adjoint representation of the SU(N) is given by the matrices (7)., which are obtained from
the structure constants of the group,

(T")pe = —if“bc , a,byc=1, L N?—1. (9.55)

Fermion Gauge Boson Interaction In analogy to QED we can write the interaction
between fermions and gauge bosons as

N
Ling = Z Di(iu(DH[G1)ig — Mo ) - (9.56)
ij=1
The covariant derivative is given by

N2-1
(DH[G))yj = 650" —ig > Gh(x)Ty = 6;;0" —ig(G")i; - (9.57)

a=1
The T can be different, but G}, is identical in all D,. For example in supersymmetry

(SUSY),

squark, quark T = 2" (d=N)

gluino, gluon  (T%)y. = —if® (d = N?—1) (9.58)
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Gauge-Invariant Lagrangian Let us now look at local symmetries, hence 0% = 0(z).
The transformation of ¥ is given by W' = UW. We want to achieve that the Lagrangian
is invariant under these gauge transformations. This is fulfilled if the covariant derivative
transforms exactly as ¥, hence (D, V) = U(D, V). Thereby

(D,V) =D,V =D, UV = D,U=UD, . (9.59)
This if fulfilled, because
O, —igG, = D, =UDU ' =U(d, —igG)U ' =UU"'0,+U(0,U ") —igUGU " =

(9.60)
g, = ‘U@U ) +UGU™", (9.61)
g
Important: G;f is independent of the representation U. With infinitesimal
U = exp(iT*0") = 1 +iT°0" + O(6*?) (9.62)
we have
1 R a — - narmaN oYe e ;
g, = GIT"= ;U(—Z)T (0,0U " + (1+i0"T*)G,T°(1 —z@bTbZ
asTetiGs, (TT° — TT?) 0a10(02)
ifa‘c,bTb
1
= 7" (5%9*’ + G 4 i(—if)0GE) (9.63)
N~ 5,25) >
The field strength tensor is defined as F* ~ [D*, D¥]. Let us look at the commutator,
[D*,D"] = [0, —igT"GS, 0, — igT°Gy) = —igT°0,G, — igT*(—0,GY) + (—ig)*GLGY [T, T"]
———
Z‘fabcTc
= —igT*(9,Gy — 0,G + g f** GGS) = —igT"F},, = —igF, . (9.64)
fabc
—Fa,

The F};, are independent of the representation of the 7. We have for the transformation
behaviour

F, é[p’u, D] = é[UDMU‘l, UD, U™ = UF, U™ (9.65)
homogenuous transformation
And with Eq. (9.63)
a _ 1a . - rbac\ nb ¢
(FW)' = Fy, +i(=if")0F;, + ... (9.66)

Furthermore, from this follows that

FWFe = 2Te(F,F*) | = 2Te(F* T F,,T") = 2F* F,, Te(T*T") = F*"°F,
N——

1sab
50

is gauge invariant (9.67)
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Thereby we have for the kinetic Lagrangian

1 1
Lrin,a = —ZFQWFSV = —QTT(]:W}—W) - (9.68)

This Lagrangian for the gauge fields is also called Yang-Mills Lagrangian. It contains cubic
and quartic terms in the the gauge fields. This leads in QCD to the 3-gluon and the 4-gluon
vertices. Remark that the gauge fields as in the case of the photon have to be massless. A
mass term bilinear in the G, would break the SU(N) gauge invariance.

9.5 The QCD Lagrangian

Example: QCD is invariant under the colour SU(3). The 6 quark fields carry colour charge
and are in the fundamental representation,

wa
U, = | Y qg=u,d,c, s t,b. (9.69)
qu

They form triplets. The 8 gluons G* are in the adjoint representation. The QCD Lagrangian
reads

1 =

Locp = —G™ Gy, + > Wy (iv" Dy — my) ¥, (9.70)

q=1...6

with

G, = 0,G) — 0,G} + gf“chZGi . (9.71)

The quark masses have the values
m, ~ 1.7...3.1 MeV mg ~ 4.1...5.7 MeV ms ~ 100 MeV (9.72)
me ~ 1.29 GeV my ~ 4.19 GeV my ~ 173 GeV . (9.73)

9.6 Chiral Gauge Theories

Let us look at

L;=U(ir"D, — m)V . (9.74)

In the chiral representation the 4 x 4 ~ matrices are given by

S5 %)
o= <é _01) , (9.76)

where o; (i = 1,2,3) are the Pauli matrices. With

w= (X)) and w—wi e () =) (977
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JinH (of Af 0 of Dyx t 1k
Uiyt D, U = i(p", x") 0 Do )= oot Dy + x'iol, Dy x . (9.78)
n

(52535
o' D, x

The gauge interaction holds independently bouth for

\I/L:<g):%(1—75)111 and \DR:(g):%(H%)\p. (9.79)

The ¥, and Ui can have different gauge representations. But
m¥¥ = m(p', x") ( f; ) = m(p"x + x'p) = m(VU Wp + UpVy) . (9.80)

The mass term mixes W, and Wg. This implies symmetry breaking if Wy and Vi have
different representations.

What about a mass term for gauge bosons? Let us look at

1 5 m?
L=—- FEe +— A AL . (9.81)
4 - 2 >
— ——
gauge invariant not gauge invariant

For example for the U(1)
(A A" = (A, + 0,0)(A* + 0"0) = A, A" +2A4,0"0 + (0,0)(0"0) . (9.82)

The mass term for A* breaks the gauge symmetry.



Chapter 10

Spontaneous Symmetry Breaking

Die Symmetrie einer Lagrangedichte ist spontan gebrochen, wenn die Lagrangedichte sym-
metrisch ist, aber das physikalische Vakuum nicht der Symmetrie gehorcht. Wir werden
sehen, daf}, wenn die Lagrangedichte einer Theorie invariant unter einer exakten kontinuier-
lichen Symmetrie ist, welche nicht die Symmetrie des physikalischen Vakuums ist, eines oder
mehrere masselose Spin-0 Teilchen auftreten. Diese werden Goldstone Bosonen genannt.
Wenn die spontan gebrochene Symmetrie eine lokale Eichsymmetrie ist, fiihrt das Zusammen-
spiel (induziert durch den Higgsmechanismus) zwischen den Mochtegern-Goldstone Bosonen
und den masselosen Eichbosonen zu den Massen der Eichbosonen und entfernt die Goldstone
Bosonen aus dem Spektrum.

10.1 Beispiel: Ferromagnetismus
Es handelt sich um ein System wechselwirkender Spins,

H=->J;S-5;. (10.1)

.3

Das Skalarprodukt der Spinoperatoren ist unter Rotation ein Singulett, ist also rotation-
sinvariant. Im Grundzustand des Ferromagneten (bei gentigend niedriger Temperatur, un-
terhalb der Curie-Temperatur) zeigen alle Spins in dieselbe Richtung. Dies ist der Zustand
niedrigster Energie. Der Grundzustand ist nicht mehr rotationsinvariant. Bei Drehung des
Systems entsteht ein neuer Grundzustand derselben Energie, der sich aber vom vorigen

unterscheidet. Der Grundzustand ist also entartet. Die Auszeichnung einer bestimmten
Richtung bricht die Symmetrie. Es liegt spontane Symmetriebrechung (SSB) vor.

10.2 Beispiel: Feldtheorie fiir ein komplexes Feld

Wir betrachten die Lagrangedichte fiir ein komplexes Skalarfeld
L= (0,0)(0"¢) — ’¢*¢ — A(¢*¢)* mit dem Potential V = p®¢*¢ + A(¢*¢)*(10.2)

(Hinzufiigen hoherer Potenzen in ¢ fiithrt zu einer nicht-renormierbaren Theorie.) Die La-
grangedichte ist invariant unter einer U(1)-Symmetrie,

» — exp(ia)e . (10.3)
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Figure 10.1: Das Higgspotential.

Wir betrachten den Grundzustand. Dieser ist gegeben durch das Minimum von V,

4
= 2%

0 fir p?>0

¢*6 =~ fiir p® <0

0 (10.4)

— i@ = o1
Der Parameter A muf} positiv sein, damit das System nicht instabil wird. Fiir 4? < 0 nimmt
das Potential die Form eines Mexikanerhutes an, siehe Fig. 10.1. Bei ¢ = 0 liegt ein lokales
Maximum, bei

I
|6l =v =1/~ (10.5)

ein globales Minimum. Teilchen entsprechen harmonischen Oszillatoren fiir die Entwicklung
um das Minimum des Potentials. Fluktuationen in Richtung der (unendlich vielen degener-
ierten) Minima besitzen Steigung null und entsprechen masselosen Teilchen, den Goldstone
Bosonen. Fluktuationen senkrecht zu dieser Richtung entsprechen Teilchen mit Masse m > 0.
Die Entwicklung um das Maximum bei ¢ = 0 wiirde zu Teilchen negativer Masse (Tachy-
onen) fithren, da die Kriimmung des Potentials hier negativ ist.

Entwicklung um das Minimum bei ¢ = v fiihrt zu (wir haben fiir das komplexe skalare
Feld zwei Fluktuationen ¢; und ¢5)

1 . 1 . P2
= v+ — +1 =lv+— +i1— = 10.6
. 1
P = 02+\/§w1+§(¢§+¢§). (10.7)
Damit erhalten wir fiir das Potential
VP L S A S (10.8)
4\ 2\
1 2 pt
Vo= (\/ﬁvgol + 5(@% - go%)) e (10.9)

Vernachlassige den letzten Term in V', da es sich nur um eine konstante Nullpunktsver-
schiebung handelt. Damit ergibt sich fiir die Lagrangedichte

1 1 A
L= 5(%@1)2 + 5(%@2)2 — 20020 — V20 (@2 + p2) — Z(s@? + 3)?. (10.10)
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Die in den Feldern quadratischen Terme liefern die Massen, die in den Feldern kubischen und
quartischen Terme sind die Wechselwirkungsterme. Es gibt ein massives und ein masseloses
Teilchen,

My, =20VA und my, =0. (10.11)

Bei dem masselosen Teilchen handelt es sich um das Goldstone Boson.

10.3 Das Goldstone Theorem

Seien

N = Dimension der Algebra der Symmetriegruppe der vollstandigen Lagrangedichte.
M = Dimension der Algebra der Gruppe, unter welcher das Vakuum nach der
spontanen Symmetriebrechung invariant ist.

= Es gibt N-M Goldstone Bosonen ohne Masse in der Theorie.

Das Goldstone Theorem besagt, dafl es fiir jeden spontan gebrochenen Freiheitsgrad der
Symmetrie ein masseloses Goldstone Boson gibt.

Sei ¢;(x) ein Satz von Operatoren mit nichttrivialem Transformationsverhalten unter einer
Symmetriegruppe G. Das Transformationsverhalten ist gegeben durch

@) = Tgoa) mit Q= [ ™) wnd 05 ~0. (10.12)

Die T* sind die Darstellungsmatrizen der Generatoren. Ist der Vakuumerwartungswert
(VEV) < 0|¢;(x)|0 > eines dieser nichttrivial transformierenden Felder ungleich null, dann
existieren masselose Anregungen.

Beweis:
Falls < 0[¢;|0 ># 0 gibt es ein T* mit 0 #< 0|T¢;|0 >, da der Satz von Generatoren 7
linear unabhéangig ist. Damit gilt

0 #£< 0|T2;]0 >=< 0][Q%, 4|0 > . (10.13)

Es existiert also ein Ladungsoperator ) und ein Feld ¢(x), fir die < 0|[Q, ¢(2)]|0 ># 0.
Daraus ergibt sich Q|0 ># 0. Das Vakuum hat also eine Ladung # 0. Es transformiert
sich nichttrivial unter Symmetrietransformationen. Da es auf x nicht ankommt, wahle den
Nullpunkt. Damit

dQ d
T=0 = 2101),60)] =0. (1014)

Und damit also
< 0|[Q(t), »(0)]|0 >=C #0. (10.15)

Es ist

7°(y) = exp(—iP - y);°(0) exp(iP - y) , (10.16)
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wobei P* der Impulsoperator ist. Sei die Translationssymmetrie spontan gebrochen,

C = Z/d?’y {< 0] exp(—iP - y)5°(0) exp(iP - y)|n >< n|p(0)]0 >
i 0l¢(0)|n >< n| exp(—iP - y);j°(0) exp(iP - y)|0 >}
= 3 [ @ (<0 expliP )l >< nl(0)0 >
i 0l¢(0)|n >< n| exp(—iP, - y)7°(0)|0 >]}
= 2m)*) _{[< 05°(0)[n >< n|$(0)]0 > exp(iE,1)
— < 0[¢(0)|n >< n|5°(0)]0 > exp(—iEnt)]é(g)(ﬁn)} . (10.17)
Hier wurde
/ APy exp(£iP,7) = (27)%0®(B,) (10.18)
verwendet. Da
exp(—iE,t) = exp(—iM,t) (10.19)

kann der Beitrag zu C' = const. nur von M,, = 0 kommen. Der Vakuumzustand |n >= |0 >
tragt nicht bei, da sich beide Terme wegheben. Das heisst

Es gibt einen Zustand |n >%# [0 > mit M, =0 und < n|¢(0)[0 >## 0 #< n|j°(0)|0 *10.20)
Der Beweis verlangt
e Manifeste Lorentz-Kovarianz
e Vollstandigkeit der physikalischen Zustande.

Diese Bedingung kann von Eichtheorien nicht erfiillt werden. Um beispielsweise die Elektro-
dynamik zu quantisieren, mufl zwischen dem Lorentz-kovarianten Gupta-Bleuler Formalis-
mus mit unphysikalischen indefiniten metrischen Zusténden oder der Quantisierung in einer
physikalischen Eichung, wo manifeste Lorentz-Kovarianz verloren geht, gewahlt werden.

Fiir Eichtheorien gilt das Goldstone Theorem nicht: Masselose skalare Freiheitsgrade wer-
den von den Eichbosonen absorbiert, um ihnen Masse zu geben. Das Goldstone Phénomen
fithrt zum Higgs Phanomen.

10.4 Chirale Symmetriebrechung in der QCD

Die Masse der Pionen ist sehr klein, 0 ~ m, ~ 10~ 'mp. Es stellt sich die Frage, warum.
Da Pionen nur u- und d-Quarks enthalten, betrachten wir nur diese beiden Quark-Flavours.
Fiir die Masse der u- und d-Quarks haben wir m, 4 = O(5 MeV) < Agep. Betrachten wir
nun die Lagrangedichte fiir verschwindende u- und d-Quarkmassen,

L =uilju+ diljd . (10.21)
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Mit ¢ = (u,d)” konnen wir die Lagrangedichte ich einen links- und rechtshindigen Anteil
aufspalten,

vr=3( = wd =) (10.22)
Also

L= uiDu,+d.Jid, . (10.23)
Sie ist invariant unter einer SU(2)-Symmetrie

s=L,R
ur, . i Uur, UR . ) i UR
( dy ) — exp (z@L- 2) ( d, ) ( dr ) — exp (z@R 2) ( dp ) (10.24)

Die Lagrangedichte ist separat symmetrisch fiir die links- und rechtschiralen Terme. Sie ist
also symmetrisch unter einer SU(2), x SU(2)g. Es gibt die erhaltenen Stréme

(m@wggn+%)<3) und (m@ygéu_yg(Z) (10.25)

Addition und Subtraktion der Stréme fithrt auf den Vektor- (V) und den Axialvektorstrom
(Ap)
A i3 o (u o
V. = (u, d)fyﬂ5 < d ) und A, = (1, d)%%5 ( J ) i=1,2,3. (10.26)

Damit verbunden sind 6 erhaltene Ladungen. Die Felder selbst konnen keinen von null
verschiedenen VEV haben. (Farbneutralitidt des QCD-Vakuums). Allerdings kann das Kon-
densat aus Quark und Antiquark einen nichtverschwindenden VEV besitzen,

< 0|a(z)u(z)]0 >=< 0|d(x)d(x)|0 >0 . (10.27)

Dieser erhilt zwar die SU(2)-Symmetrie, bricht aber die axiale Symmetrie spontan. Diese
SSB fiihrt auf drei masselose Goldstonebosonen, die Pionen 7%, 7~ und #°. Es handelt sich
um pseudoskalare Mesonen. Dabei

1 1
7t = —(m +im) und o= ﬁ(m — iTy) . (10.28)

V2
Ferner (i,j = 1,2,3)
<O (R) £ 0 = < 0]exp(iP - y)AL(0) exp(—iP - y)|w (k) >
= < 0]A4},(0) exp(—ik - y)|7’ (k) >
= exp(—ik-y) < 0|AL(0)|7Tj(k3) >
= if.6" exp(—iky)k, . (10.29)

Dies ist die Grundlage, um die Lebensdauer fiir Pionen auszurechnen. Dabei ist f, die
Zerfallskonstante des Pions.

Die Dimension von SU(2), x SU(2)g ist d; = 6. Diese wurde heruntergebrochen auf die
SU(2) mit Dimension dy = 3. Die Anzahl der Goldstone Bosonen entspricht der Anzahl der
spontan gebrochenen Generatoren d; — dy = 3. Wir haben also drei masselose Pionen.

In Wirklichkeit sind die u- und d-Quarks nicht masselos. Die chirale Symmetrie ist also
nicht nur spontan, sondern auch explizit gebrochen. Da die betroffenen Quarkmassen jedoch
sehr klein sind, ist auch die Masse der Pionen recht klein.
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10.5 Spontane Brechung einer O(IN) Symmetrie
Wir betrachten die Lagrangedichte fiir N reelle skalare Felder
1 .
L= —(0,0:)(0"¢y) =V : it v 7 =V(¢-¢10.30
i;N2< 16i)(9"6:) (ZZNas ) i (ZZNas ) (6 610.30)

Die Lagrangedichte ist symmetrisch beziiglich einer O(N) Transformation ¢; — O;;¢; (i,7 =
1...N). Bei O handelt es sich um orthogonale N x N Matrizen. Das Minimum von V' sei bei
6] = v #0, 2B. V= A(¢? —v*)2. Wir entwickeln ¢ um das Minimum. O.B.d.A.,

0 ¥1 ©1
0 ¥2 P2

o=\ |+ = : (10.31)
0 PN-1 PN-1
v YN U+ QN

Und
F=v"+on+ Y @} (10.32)
i=1...N

Die Richtung N bzw. ¢y ist damit ausgezeichnet. Die restlichen N —1 Felder sind nach wie
vor invariant unter einer N — 1-dimensionalen Rotation. Fur das Potential erhalten wir

2 2
V=2 <2UQON + > go?) = Ao} + Aoy Y @F A < > <p§> . (10.33)

i=1...N i=1...N i=1...N

Die in den Feldern kubischen und quartischen Terme beschreiben die Wechselwirkungen. Der
in ¢y quadratische Term ist der mit ¢y assoziierte Massenterm. Die Masse zum Quadrat
ist

m? =8\ . (10.34)

Es handelt sich hier um ein massives Higgs Boson, welches einen nichtverschwindenden VEV
v besitzt. Die iibrigen N — 1 Felder sind masselos, m; = 0 fiir = 1...N — 1. Es handelt sich
um die Goldstone Bosonen. Die urspriingliche Symmetrie O(NN) mit N (N —1)/2 Generatoren
wurde heruntergebrochen auf die Symmetrie O(N — 1) mit (N — 1)(N — 2)/2 Generatoren.
Die Anzahl der Goldstone Bosonen dg entspricht der Anzahl der gebrochenen Generatoren,
also

[IN(N=1)— (N=1)(N-2)]=N—1. (10.35)

(NN

Wir haben also N — 1 Goldstone Bosonen.
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10.6 Spontan gebrochene Eichsymmetrien

Wir betrachten als Beispiel die Lagrangedichte eines komplexen skalaren Feldes ®, welches
an ein Photonfeld A, koppelt, die invariant ist unter U(1). Die lokalen Transvormationen
sind gegeben durch

O — exp(—ieA(x))P(x) und Ay — AL+ 0N . (10.36)
Die Lagrangedichte lautet
1
L =1[(0, —ieA,)D"|[(0" +icA")D] \—;f@*(b — )\(CID*CID)i—ZFH,,F“” . (10.37)
—-V(®)

(Bemerkung: Um die Lagrangedichte zu quantisieren mufi noch ein FEichfixierungsterm
eingefithrt werden.) Fiir pu? < 0 kommt es zu spontaner Symmetriebrechung der U(1).
Dann hat das Feld einen nichtverschwindenden VEV,

_#2
<O[RJ0>=0v =1/ (10.38)

Die Fluktuationen um das Minimum (Entwicklung um das Minimum) sind gegeben durch

_ i i = (v M ex LM U L r)+ix(x
0= vt Tt tien) = (0 D Ve (1) (< ok Do) +ixteo) oo
Damit
D@ = (9, +ied,)P(z) = %(8%01 +10u4p2) + ieA v + %Au(_S@ +ip1)

— exp Gﬁ) {au +ie (AM + 5%;)} (v + %)(10.40)

Um bilineare Mischterme in den Feldern zu vermeiden, fithren wir folgende Eichtransforma-
tion durch,

A;:AM+@< (10.41)

Vi)

Damit ergibt sich fiir die kinetische Energie (nenne A" ab jetzt A)

(D,®)"(D'd) = %(aMH)(aﬂﬂ) +e*A, A" <v + ﬂ) = %(aMH)(aﬂﬂ) + (e*v?) A, A"

\/Q ~——
e
H2
+e2A,AY (\/ﬁvH + 7) . (10.42)
Wechselwirvkungsterme
Und die gesamte Lagrangedichte lautet
1 " 1, b2 v (3 H?
L = 25(@[{)(8 H)—l—ﬁmAAMA +e"A,A 21}H—|—7
1 A
= 2 2 2 3 Trr4d
S Fuw P = 202 H V2uAH SH (10.43)

2
My

NI
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Hierbei wurde der konstante Term Av*, welcher lediglich den Nullpunkt des Vakuums ver-
schiebt, weggelassen. Die Massen des Higgsteilchens H und des Photons ergeben sich zu

my = 2e*? (10.44)
mi = 4 7. (10.45)

Es tritt also ein massives Photon (Eichboson) und ein massives skalares Feld, das Higg-
steilchen, auf. Das Goldstone Boson tritt als Freiheitsgrad nicht in Erscheinung. Die Anzahl
der Freiheitsgrade ist aber erhalten geblieben. Denn bei ungebrochener U(1)-Symmetrie
ist das Photon masselos und besitzt 2 physikalische Freiheitsgrade, die zwei transversalen
Polarisationen. Die unphysikalische skalare und longitudinale Polarisation tragen im Gupta-
Bleuler-Formalismus nicht bei. Das komplexe skalare Feld (entspricht einem geladenen
Teilchen) ® besitzt 2 Freiheitsgrade. Bei gebrochener U(1)-Symmetrie haben wir ein mas-
sives Photon mit 3 Freiheitsgraden (mit longitudinaler Polarisation) und ein massives reelles
Higgs Boson mit einem Freiheitsgrad. Das Goldstone Boson wurde aufgegessen, um dem Pho-
ton Masse zu geben, d.h. um den longitudinalen Freiheitsgrad des massiven Eichteilchens
zu liefern.

Nochmal: In Eichtheorien treten die Goldstone Bosonen nicht in Erscheinung. Sie sind
Mdchtegern (im Englischen would-be) Goldstone Bosonen. Bei SSB werden sie direkt in die
longitudinalen Freiheitsgrade der massiven Eichbosonen absorbiert. Es gilt bei Eichtheorien:
Seien

N = Dimension der Algebra der Symmetriegruppe der vollstandigen Lagrangedichte.
M = Dimension der Algebra der Gruppe, unter welcher das Vakuum nach der
spontanen Symmetriebrechung invariant ist.
n = Die Anzahl der skalaren Felder
=

Es gibt M masselose Vektorfelder. (M ist die Dimension der Symmetrie des Vakuums.)
Es gibt N — M massive Vektorfelder. (N — M ist die Anzahl der gebrochenen Generatoren.)
Es gibt n — (N — M) skalare Higgsfelder.

10.7 Addendum: Goldstone Theorem - klassische Feldthe-
orie

Proof of the Goldstone theorem in classical field theory:

The Lagrangian
1
L=5009)" = Vi(p) (10.46)

is invariant under the rotation
o = 6—iaaRa(p a=1,...,N, (10.47)

which can infinitesimally be written as

¢ =@ —iaRp (10.48)
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From the invariance it follows that
v ov
0V =—~0p=—ia—Rp =10 Ya, o (10.49)
Iy dp
so that
0*V oV
R —R = 10.50
After spontaneous symmetry breaking we have the ground state
oV
— =0 for o=v#0 (10.51)
dyp
from which follows the Goldstone equation:
IV 0 for p=w (10.52)
dpdp o '
and
0?V
= M2 (10.53)
dpdy
is the mass matrix of the system. Expanding ¢ about the ground state
p=v+¢ (10.54)
we have
0
1 ov 1, 0%V
= —(0p)?* -V — '+ = "+ ..
L= 500) [(v)+&p90+2 a(pa‘”]
1 1, 0%V
= (8¢ —=¢ "+ 10.55
The Goldstone equation is thus the condition equation for the masses
M?Rv =0 (10.56)

e The equation is fulfilled if the generators R*, a = 1,2, ..., M leave the vacuum invariant:

R = 0.

e The remaining generators R*, a = M + 1,..., N form a set of linearly independent
vectors R%. These are eigen-vectors of the zero-eigenvalues of the mass matrix M?2.

The zero-eigenvalue is hence N — M times degenerated. Q.e.d.
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Appendix A

Addendum: Mathematische
Hintergrundinformationen

A.1 Gruppen

Sei ein Paar (G, *) mit einer Menge GG und einer inneren zweistelligen Verkiipfung/Gruppen-
multiplikation. * : G X G — G, (a,b) — a * b heiBt Gruppe, wenn folgende Axiome erfiillt
sind

—_

. Die Gruppe ist abgeschlossen. D.h. wenn g,h e G = g* h € G.
2. Assoziativitdt: (g1 * g2) * g3 = g1 * (g2 * g3).

3. 3 Finselement e mit der Eigenschaft gxe =exg=¢g VgeG.
4. Zu jedem g gibt es ein Inverses g~ mit g 'xg=gxg ' =e.

Abelsche Gruppe: Eine Gruppe heifit abelsch, wenn g« h = h * g.

Kontinuierliche Gruppen: Sie besitzen unendlich viele Elemente und werden durch n Pa-
rameter beschrieben. Bei Liegruppen ist n endlich. Alle einparametrigen Liegruppen sind
abelsch. Typisches Beispiel: U(1) mit den Elementen e und ¢ als Parameter.

A.2 Algebra

Ein linearer Raum (Vektorraum) wird zu einer Algebra A, wenn eine binédre Operation (Mul-
tiplikation) zweier Elemente m,n existiert, so dal mn € A. Es gelten die Linearitits-
beziehungen (k,m,n € A)

k(cim 4+ con) = cithkm + cokn
(cym + can)k = cymk + conk . (A1)

Dabei sind ¢y, ¢ reelle (komplexe) Zahlen. Man spricht je nach Fall von reeller (komplexer)
Algebra.

Eine Algebra heifit kommutativ, wenn

mn =nm . (A.2)
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Sie heifit assoziativ, wenn

k(mn) = (km)n . (A.3)
Sie heifit Algebra mit Einselement, wenn sie ein Einselement 1 besitzt mit

Im=ml=m. (A.4)

Sei A eine assoziative Algebra mit Einselement und B C A eine Menge von Elementen b', b?
etc. Die Algebra heifit von B erzeugt, wenn jedes meA durch ein Polynom endlichen Grades
in den Elementen b° geschrieben werden kann,

m=cl+ Z,,: > i DO (A.5)
k

k=1 1i1,i2,...,0

wobei die Koeffizienten c¢; 4, i, komplexe Zahlen sind. Die Elemente der Menge B heiflen
Generatoren von A. Das Einselement gehort nicht zu den Generatoren.

A.2.1 Clifford-Algebren
Eine Clifford-Algebra Cy wird von N Generatoren &, €2, ..., &N erzeugt, fiir die

gafb + fbfa — 25ab

mit a,b=1,..., N.
Die Dimension der Clifford-Algebra Cy ist 2/V. Es existiert ein enger Zusammenhang zwis-

chen Clifford-Algebren und den Quantisierungsbedingungen fiir Fermionen.

Im allgemeinen lassen sich Clifford-Algebren fiir beliebige symmetrische Metriken ¢™"
definieren. So gilt insbesondere fiir die pseudoeuklidische Metrik
gap = diag(1,1,...,1, -1, ..., —1) | (A.6)
——

———
N M

Clifford-Algebra Cy p: {I™, I} = 2¢™"1.

Die Anzahl der Generatoren ist d = N + M.

A.3 Liealgebren

Eine Algebra ist ein Vektorraum, der von den Generatoren A, B, ... aufgespannt wird:
beliebige Linearkombinationen von Generatoren ergeben wieder Generatoren. Eine Algebra
verfiigt iiber ein Produkt zwischen den Generatoren. Im Fall der Liealgebra ist das Produkt
der Kommutator

Ao B:=[A B], (A.7)

mit den folgenden Eigenschaften
AoB = —BoA (A.8)
(AoB)oC+ (CoA)oB+(Bo(C)oA = 0. (A.9)

Liealgebren sind nicht assoziativ. Die Beziehung (A.9) heifit Jacobi-Identitdt.



