Theoretische Teilchenphysik II

V: Prof. Kirill Melnikov, Ü: Dr. Robbert Rietkerk, Dr. Lorenzo Tancredi

Exercise Sheet 12

Due 25.1.2017

Problem 1 - Spinor-helicity methods and the forward-backward asymmetry

The goal of this exercise is to apply spinor-helicity methods to perform realistic computations.

- 1. Consider the annihilation of a e^+e^- pair to a $\mu^+\mu^-$ pair in the Standard Model (assume all fermion masses to be zero), $e^-(p_1)e^+(p_2) \to \mu^-(p_3)\bar{\mu}^+(p_4)$. Such a process can occur through an exchange of a photon or a Z boson. The interaction of charged leptons with photons is given by the vertex $ie\gamma_{\mu}$, while their interaction with Z-bosons by $ie/(2\sin(2\theta_W))(g_V\gamma_{\mu} + g_A\gamma_{\mu}\gamma_5)$, where $g_V = (1-4\sin^2\theta_W)$ and $g_A = 1$.
- 2. Split the above vertices into vertices that describe interactions of vector bosons with fermions of definite helicities. Show, that the amplitude $e^+e^- \rightarrow \gamma + Z \rightarrow \mu^+\mu^-$ can be written by

$$\mathcal{M}_{Z+\gamma} = \frac{ie^2}{s} \Big(A_{LL} \bar{v}_{p_2} \gamma^{\mu} \omega_L u(p_1) \bar{u}(p_3) \gamma_{\mu} \omega_L v(p_4) + A_{RL} \bar{v}_{p_2} \gamma^{\mu} \omega_R u(p_1) \bar{u}(p_3) \gamma_{\mu} \omega_L v(p_4) + A_{LR} \bar{v}_{p_2} \gamma^{\mu} \omega_L u(p_1) \bar{u}(p_3) \gamma_{\mu} \omega_R v(p_4) + A_{RR} \bar{v}_{p_2} \gamma^{\mu} \omega_R u(p_1) \bar{u}(p_3) \gamma_{\mu} \omega_R v(p_4) \Big)$$
(1)

where $\omega_{L,R} = (1 \pm \gamma_5)/2$ are projectors on different helicity states. Express the coefficients A_{ij} through the couplings $g_{A,V}$.

- 3. Calculate all the relevant helicity amplitudes in terms of spinor products.
- 4. Calculate the sum of the helicity amplitudes squared. Show that this sum can be written as

$$\sum_{\text{hel}} |\mathcal{M}|^2 = X_1 (1 + \cos^2 \theta) + X_2 \cos \theta, \qquad (2)$$

where θ is the μ^- production angle relative to e^- direction. Express $X_{1,2}$ in terms of A_{ij} .

5. Since the cross-section for $e^+e^- \to \mu^-\mu^+$ is obtained from $\sum |\mathcal{M}|^2$ by intergrating over the scattering angle and since

$$\int_{-1}^{1} d\cos\theta \,\cos\theta = 0,\tag{3}$$

the scattering cross-section is proportional to $X_1(s)$. To study $X_2(s)$, one can define a **forward-backward asymmetry**

$$A_{FB} = \frac{\int_{0}^{1} d\cos\theta \, d\sigma/d\cos\theta - \int_{-1}^{0} d\cos\theta \, d\sigma/d\cos\theta}{\int_{0}^{1} d\cos\theta \, d\sigma/d\cos\theta + \int_{-1}^{0} d\cos\theta \, d\sigma/d\cos\theta},\tag{4}$$

which gives the fractional difference in the number of negatively charged muons which are produced in the forward and backward hemispheres, defined w.r.t. electron direction of motion. Calculate the forward-backward asymmetry in terms of $X_{1,2}$. 6. Find A_{FB} in the small energy limit $s \ll M_Z^2$ and in the Z-resonance limit $s \to M_Z^2$, where the photon exchange can, effectively, be neglected.