Theoretische Teilchenphysik II

V: Prof. Kirill Melnikov, Ü: Dr. Robbert Rietkerk, Dr. Lorenzo Tancredi

Exercise Sheet 5

Due 23.11.2016

Problem 1 - Renormalization of the Yukawa Theory (see Peskin-Schröder, Ex. 10.2)

Consider the pseudo scalar Yukawa Lagrangian

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi \right)^2 - \frac{1}{2} m^2 \phi^2 + \overline{\psi} \left(i \partial \!\!\!/ - M \right) \psi - i g \,\overline{\psi} \,\gamma^5 \,\psi \,\phi \tag{1}$$

where ϕ is a real scalar field and ψ is a Dirac fermion. Notice that this Lagrangian is invariant under the parity transformation $\psi(t, \vec{x}) \rightarrow \gamma^0 \psi(t, -\vec{x}), \phi(t, \vec{x}) \rightarrow -\phi(t, -\vec{x})$, in which the field ϕ carries odd parity.

- 1. Determine the superficially divergent amplitudes and work out the Feynman rules for renormalized perturbation theory for this Lagrangian. Include all necessary counterterm vertices.
- 2. Show that the theory contains a superficially divergent 4ϕ amplitude. This means that the theory cannot be renormalized unless one includes a scalar self-interaction

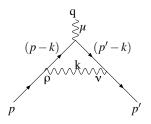
$$\delta \mathcal{L} = \frac{\lambda}{4!} \phi^4,$$

and a counterterm of the same form. Are there any further interactions required?

3. Compute the divergent part (the pole as $d \to 4$) of each counterterm, to the one-loop order of perturbation theory, implementing a sufficient set of renormalization conditions. You don't need to worry about finite parts of the counterterms. Since the divergent part must have a fixed dependence on the external momenta, you can simplify this calculation by choosing the momenta in the simplest possible way.

Problem 2 - The value of Z_1 in 1-loop QED

In the following exercise we will calculate the QED renormalization constant Z_1 at 1-loop order. Let us consider the 1-loop correction to the QED vertex as shown below.



As it was discussed in class, the value of Z_1 is fixed by imposing that the amputated electron-photon interaction vertex be equal to $-i e \gamma^{\mu}$ for zero photon momentum, i.e. $q^{\mu} = 0$.

- 1. Using standard techniques for computing Feynman integrals, compute the 1-loop value of the QED vertex in dimensional regularisation, in the limit of $q^{\mu} \rightarrow 0$, $-i e \Lambda(p, p')_{p' \rightarrow p}$.
- 2. Imposing the renormalization condition $-i e \Lambda(p, p')_{p' \to p} \to -i e \gamma^{\mu}$, extract the value of δ_1 , and therefore that of Z_1 .
- 3. Compare this value with the one for Z_2 obtained in class. Are they equal or different? Why?