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Axial-Vector-Vector (AVV) anomaly in Pauli-Villars and dimensional
regularizations (100 Points)
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Figure 1: One-loop diagrams contributing to the AVV current correlator.

In lecture 14, we studied the diagrams shown in Fig. 1, that describe a one-loop contribution to
the correlator of an axial current ψ̄γργ5ψ and two vector currents ψ̄γµψ, and argued that they violate
the conservation of the axial current. To obtain these results, we used a particular way to deal with
divergent integrals.
An alternative way is to compute the correlator using some regularization procedure. The goal

of this exercise is to perform such a computation employing the Pauli-Villars and the dimensional
regularization schemes.
The usage of regularization allows us to perform calculations in a more canonical way, as opposed

to a method described in class. However, a choice of the regularization procedure breaks some
internal symmetries of the theory the very moment a regulator is introduced. The only question is
then whether the broken symmetry is restored when the regularization is lifted at the end of the
calculation. We will show that for the axial-vector current, this is not the case.

Pauli-Villars regularization (40 Points)

Exercise 11.1: (40 points) Full contribution to the one-loop AVV anomaly contains two diagrams
connected by permutation of two vector external legs:

Γρ|µν(p, q) = Tρ|µν(p, q) + Tρ|νµ(q, p). (1)

From power counting arguments, one can see that these two diagrams are UV-divergent and to deal
with these divergences we can introduce Pauli-Villars regularization. To do so, we add to diagrams
in Fig. 1 two similar diagrams where massless fermions are replaced with fermions with the mass
M and multiply the massive-fermion contribution with an additional minus sign. Symbolically the
regularized version of the quantity Γ in Eq. (1) reads

Γ =

∫
d4k

(2π)4
I(k, p, q,m = 0) → Γreg =

∫
d4k

(2π)4
[I(k, p, q,m = 0)− I(k, p, q,m =M)] . (2)

The Lagrangian of the theory with a new massive field lacks the original chiral symmetry and is
the source of the anomalous behavior of the correlator.

(a) (10 points) Verify Ward identities for the vector current

pµΓρ|µν,reg = 0, qνΓρ|µν,reg = 0. (3)
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(b) (30 points) Calculate the anomalous contribution of (pρ + qρ)Γρ|µν,reg.
Hint: use substitution γ5(/p+ /q) = γ5(/k + /p−M) + (/k − /q −M)γ5 + 2Mγ5 to highlight the
contribution of the anomaly explicitly.

Show that the final result for (pρ + qρ)Γρ|µν,reg is proportinal to M2J(M), where J(M) is
convergent scalar integral with massive propagators. Calculate remaining integral keeping only
leading term in the large mass M and verify that final result for anomaly is non-zero and is
independent of regulator mass M .
Hint: use loop momentum rescaling k →Ml to extract leading term of expansion.

Dimensional regularization (60 Points)

Exercise 11.2: (20 points) A clear alternative to Pauli-Villars is the dimensional regularization. If
dimensional regularization is used, the anomaly of the axial current arises in a different way, as we
now discuss.
If we use the dimensional regularization to compute the AVV correlator, we need to define the

matrix γ5 matrix in d = 4 − 2ε dimensions. Recall that in four dimensions, γ5 is defined by two
equations

{γ5, γµ} = 0, tr (γ5γµγνγργσ) = 4iϵµνρσ. (4)

Here ϵµνρσ is a strictly four-dimensional object.

(a) (10 points) Assume direct generalization of the four-dimensional γ5 to the arbitrary d space-
time dimensions case. Using anticomutativity of γ5 with γµ and cyclicity of the trace, calculate
the following traces and explain using the obtained results why the chosen procedure is incor-
rect.

d tr (γ5) (5)

(d− 2) tr (γ5γµγν) (6)

(d− 4) tr (γ5γµγνγργσ) (7)

Hint: use insertion of the γµγµ = d into the trace.

(b) (10 points) The above question reveals a conflict between the anticommutativity of γ5 and
the cyclicity property of the trace. One has to give up one of these two properties.

A very natural way is to declare that γ5 is not continued to d-dimensional space time which
means that γ5 that appears in the axial and the axial-vector currents is given by

γ5 = iγ0γ1γ2γ3. (8)

In such a way, the anticommutativity doesn’t hold anymore while the cyclicity does. Show that
with γ5 defined in this way the following equations hold,

γ̂µγ̂ν γ̂µ = (6− d)γ̂ν , (9)

γ̂µγ̄ν γ̂µ = (4− d)γ̄ν , (10)

γ̄µγ̂ν γ̄µ = −4γ̂ν , (11)

tr (γ5) = 0, (12)

tr (γ5γµγν) = 0, (13)

tr (γ5γ̂µγνγργσ) = 0, (14)

tr (γ5γµγνγργσ) =

{
4iϵµνρσ, {µ, ν, ρ, σ} ∈ {0, 1, 2, 3}
0, otherwise

, (15)

where γ matrices are split into the four-dimensional (with a bar) and rest (d− 4)-dimensional
(with a hat) part,

γµ = γ̄µ + γ̂µ, (16)
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with
{γ̄µ, γ5} = 0, [γ̂µ, γ5] = 0. (17)

And γ̄µ, γ̂µ themselves satisfy

{γ̄µ, γ̄µ} = ḡµν , {γ̂µ, γ̂µ} = ĝµν , (18)

where the metric tensor is split as well,

ĝµν =

{
gµν µ, ν ≥ 4

0 µ, ν < 4
, ḡµν =

{
gµν µ, ν < 4

0 µ, ν ≥ 4
, (19)

We also introduce the decomposition of momentum as follows for later usage,

pµ = p̄µ + p̂µ. (20)

Exercise 11.3: (40 points) To complete the contribution of the anomalous correlator in dimensional
regularization, we consider the sum of massless AVV diagrams in Fig. 1. By explicit calculation show
that (pρ + qρ)Γρ|µν in dimensional regularisation is finite and non-vanishing. Note that the external
momenta and Lorenz indices are assumed to be four-dimensional.

(a) (20 points) Compute the fermion traces using dimension splitting rules defined above.

(b) (10 points) Show that the vector Ward identities Eq. (3) hold. Can you use the Noether
theorem to derive a conserved vector current in this case? Explain it.

(c) (10 points) Show that the final result for (pρ+ qρ)Γρ|µν has no poles in dimensional regulator
parameter ε but non-zero. Explain what type of symmetries are violated by the chosen scheme
of regularization and the treatment of the γ5 matrix.

You may find the following equations helpful.

ḡµν γ̄ν = gµν γ̄ν = ḡµνγν = γ̄µ, ḡµν p̄ν = gµν p̄ν = ḡµνpν = p̄µ,
ĝµν γ̂ν = gµν γ̂ν = ĝµνγν = γ̂µ, ĝµν p̂ν = gµν p̂ν = ĝµνpν = p̂µ,
ḡµν γ̂ν = ĝµν γ̄ν = 0, ḡµν p̂ν = ĝµν p̄ν = 0,
ḡµν ḡνρ = gµν ḡνρ = ḡµνgνρ = ḡµρ ḡµν ḡµν = gµν ḡµν = ḡµνgµν = 4,
ĝµν ĝνρ = gµν ĝνρ = ĝµνgνρ = ĝµρ ĝµν ĝµν = gµν ĝµν = ĝµνgµν = d− 4,
ḡµν ĝνρ = ĝµν ḡνρ = 0, ḡµν ĝµν = ĝµν ḡµν = 0,
γ̄µγ̄µ = γµγ̄µ = γ̄µγµ = 4, p̄µp̄µ = p̄µpµ = pµp̄µ = p̄2

γ̂µγ̂µ = γµγ̂µ = γ̂µγµ = d− 4, p̂µp̂µ = p̂µpµ = pµp̂µ = p̂2

γ̄µγ̂µ = γ̂µγ̄µ = 0, p̄µp̂µ = p̂µp̄µ = 0.

3


