
Theoretische Teilchenphysik II

V: Prof. Kirill Melnikov, U: Dr. Ming-Ming Long, U: Dr. Andrey Pikelner

Exercise Sheet 13 WS-2023 Due date: 05.02.24

Vacuum stability in Higgs-Yukawa theories(100 Points)

The goal of the current exercise is to analyze the form of the scalar potential of a Standard-Model-like
theory after taking into account radiative corrections. For very large values of a scalar field it can be
approximated with the tree-level expression and modified (running) coupling constant that depends
on the field itself. Shape of the potential is determined by the running scalar field self-coupling and
our first step is to derive renormalization group equations in such a theory and determine evolution
of the self-coupling.

Exercise 13.1: (60 points) Consider the heory of a scalar Higgs-like field ϕ interacting with single
fermion field ψ

L = iψ̄ /∂ψ +
1

2
(∂µϕ)

2 −m2
ψψ̄ψ − yψ̄ψϕ− λϕ4. (1)

(a) (10 points) Starting with the Lagrangian given in Eq. (1) in terms of bare parameters con-
struct it’s renormalized version with counterterms. Summarize all needed Feynman rules for
calculation of loop corrections in this theory.

(b) (10 points) Identify all Green functions needed for one-loop calculation of beta-functions
of all coupling constants present in the Lagrangian. Draw all diagrams needed for one-loop
renormalization of the theory. Since we are interested in divergent diagrams only, calculate
degree of divergencies of all needed diagrams.

(c) (10 points) Explain which counterterms and corresponding renormalization constants are
needed for renormalization of the theory at one-loop. Combine diagrams from the previous
item into groups needed for each renormalization constant calculation.

(d) (20 points) Working in dimensional regularization calculate divergencies of all needed one-loop
diagrams and determine renormalization constants.

(e) (10 points) From the set of renormalization constants derive beta-functions for all coupling
constants of the theory and check that it has the following form

βλ =
∂aλ(µ)

∂ logµ
= 72a2λ + 8aλay − 2ay, βy =

∂ay(µ)

∂ logµ
= 10ay, (2)

where aλ = λ(µ)/(4π)2 and ay = y(µ)2/(4π)2. In contrast to examples studied in lectures
now we have a coupled system of equations.

It turns out that the scalar potential of the theory changes because of radiative corrections; these
changes can be accommodated by writing V (ϕ) = λϕ4 as V (ϕ) = λeff(ϕ) ϕ

4, where λeff(µ) = λ(µ)
is the running coupling constant. Different dependencies of λ on ϕ may change the behavior of V (ϕ)
in a dramatic fashion by e.g. forcing it to develop a minimum at ϕ ̸= 0.

Exercise 13.2: (15 points) Solve equations in Eq. (2) numerically for values of µ between from
µ = 100GeV and the Planck scale µ = Mpl ∼ 1018GeV. Explain why the solutions of the system
in Eq. (2) depend only on the single ratio of two coupling constants x = aλ/ay at µ = 100 GeV .
Take ay = 1 and for several different values of x plot λ(µ) as a function of µ. Show that behavior
at large values of µ is very sensitive to initial values of the coupling constants.
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Exercise 13.3: (25 points) In more complicated theories such as the Standard Model, it is possible
that the scalar potential develops a new minimum at finite values of ϕ. There is a narrow region of
input parameters when such a situation to become possible. Our goal is to study this high-sensitivity
phenomenon with a system of renormalization group equations that are similar to equations in the
full SM

µ
∂aλ
∂µ

= (24a2λ + 12aλat − 6a2t )

+ (312a3λ + 144a2λat − 80aλasat + 3aλa
2
t + 32asa

2
t − 30a3t ), (3a)

µ
∂at
∂µ

= (9a2t − 16asat)− (24a3t − 12a2λat + 216a2sat + 24aλa
2
t − 72asa

2
t ), (3b)

µ
∂as
∂µ

= −14a2s − (52a3s + 4a2sat), (3c)

where aλ = λ/(16π2), at = y2t /(16π
2), as = g2s/(16π

2) are the appropriately normalized self-coupling
of the Higgs field, the top quark Yukawa coupling and the strong coupling constant.
Solve RG equation (3) numerically and plot λ(µ) in the range between µ =Mt and Planck scale

µ =Mpl ∼ 1018GeV. As input conditions use

λ(Mt) = 0.136493, yt(Mt) = 0.976427, gs(Mt) = 1.164602, (4)

where vlaue of yt corresponds to the top quark mass Mt = 170GeV. Make similar plots for
yt = 1.14874 and yt = 1.20617 corresponding to Mt = 200GeV and Mt = 210GeV respec-
tively. Notice that a relatively small change in input parameters leads to significant changes in the
high-energy behavior of the Standard Model potential.

In complicated theories like the Standard Model, different effects become competing, and it be-
comes crucial to reduce errors in input parameters used for analysis and include higher-order correc-
tions to evolution equations (3), for more details see[1, 2].
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