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Chapter 1

Preliminary Remarks

1.1 Organization

- Webpage of the lecture: https://ilias.studium.kit.edu/ilias.php?baseClass=

ilrepositorygui&ref_id=2607451

- Lecture times: Tuesday, 14-15h30, and Friday, 9h45-11h15; Room: Otto-Lehmann
Hörsaal;
Exercises: Thursday, 9h45-11h15 (10/1) and 11h30-13h00 (8/2).

- Exercise responsibles: Dr. Marco Bonetti, Dr. Duarte Fontes

- Criteria for successfully passing the exercise class and to obtain the exercise certificate
are (both of them must be satisfied): 40% of the total points for all exercise sheets in
the semester and presentation of at least one full exercise at the blackboard during an
exercise class. You can submit your solutions in teams of at most two students.

- New exercise sheets will be published on the website on Mondays by 12:00. The
solutions can be submitted until the following Monday at 12:00, either as a digital
upload via ILIAS, or by putting it into the mailbox at the entrance of building 30.23
with the label “Theoretical Particle Physics II 2025 Exercise Solutions”. The discussion
of the exercise sheet will take place in the exercise classes in the week of the submission.

- Due to public holidays, the following exercise classes will be moved to the previous
Tuesdays, same time slot, in building 30.23 (Physikhochhaus), room 11/12: 01.05.25
to Tuesday 29.04.25; 29.05.25 to Tuesday 27.05.25; 19.06.25 to Tuesday 17.06.25.

1.2 Literature

• M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory (Addison-
Wesley, 1995)

• T.-P. Cheng, L.-F. Li, Gauge Theory of Elementary Particle Physics (Oxford University
Press)

• C. Itzykson, J.-B. Zuber, Quantum Field Theory (McGraw-Hill)
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2 Preliminary Remarks

• P. Ramon, Field Theory: a modern primer

• M. Böhm, A. Denner and H. Joos, Gauge Theories of the Strong and Electroweak
Interaction (Teubner, 2001)

• Chris Quigg Gauge Theories of the Strong, Weak and Electromagnetic Interactions
(Benjamin/Cummings, 1983)

• G. Dissertori, I. Knowles, M. Schmeling, Quantum Chromodynamics (Oxford Univer-
sity Press)

• O. Nachtmann, Elementary Particle Physics (Springer 1990)

• L. H. Ryder, Quantum Field Theory (2nd ed., Cambridge University Press, 1996)

• R. K. Ellis, W. J. Stirling and B. R. Webber, QCD and Collider Physics (Cambridge
University Press 1996)

• P. H. Frampton, Gauge Field Theories (Benjamin/Cummings)

Here literature on (among others) renormalization is:

• C. Itzykson, J.-B. Zuber, Quantum Field Theory (McGraw-Hill)

• P. Ramon, Field Theory: a modern primer

• M. Böhm, A. Denner and H. Joos, Gauge Theories of the Strong and Electroweak
Interaction (Teubner, 2001)

• W.J.P. Beenakker, Electroweak corrections: techniques and applications

And literature about path integrals e.g. is:

• Gert Roepstorff, Path Integral Approach to Quantum Physics (Springer)

Further literature for interested readers:

• Martinus Veltman Facts and Mysteries in Elementary Particle Physics (World Scien-
tific, 2003)

• V. D. Barger and R. J. N. Phillips, Collider Physics (Addison-Wesley, 1997)

• Eds. Roger Cashmore, Luciano Maiani, Jean-Pierre Revol Prestigious Discoveries at
CERN (Springer, 2004)

1.3 Disclaimer

The present script, Theoretical Particle Physics II, summer term 2025, KIT, by Prof. Dr.
M.M. Mühlleitner, is not free of mistakes.

The script is intended only for KIT-internal use to accompany the lectures. Redistribu-
tion, processing and other use of the script is prohibited.



Chapter 2

Introduction

Elementary particle physics means physics at the smallest scales, respectively at the highest
(relativistic) energies. Look e.g. at the wave-particle duality and the de Broglie relation,

E = hν ; E ↑ ⇔ ν ↑ ⇔ λ ↓ smallest scales . (2.1)

The basis of the description of high-energy physics is quantum field theory. It is the synthesis
of quantum mechanics and special relativity. In quantum mechanics, we use wave equations.
These cannot describe processes where the number or the type of the particles change.
Moreover, relativistic wave equations exhibit inconsistencies (e.g. negative energy solutions).
In quantum field theory we identify particles with modes of a field, and the field itself is
quantised (“2nd quantisation”). This allows us to describe the creation and annihilation
of particles. Particles are excitations of relativistic fields. Photons e.g. are the excitations
of electromagnetic fields. In the description of the fundamental interactions between the
particles symmetries play an important role. Symmetries mean the invariance under certain
transformations. The Standard Model of particle physics is based on gauge symmetries.

Why do we do high-energy physics? - We want to find answers to our basic questions
about the universe:

1. What is the universe made of?

2. How did the universe evolve?

3. What are the fundamental building blocks of matter, and which forces hold them
together?

What is the status of elementary particle physics today?

1. The known matter can be described by a few fundamental particles.

2. The diverse interactions are described by fundamental forces between the particles.

3. The physics laws can be described mathematically using a few fundamental principles
(except for gravity).

3



4 Introduction

2.1 Conventions

Natural units: In theoretical particle physics we use natural units (Planck units). We set
the speed of light c and the Planck constant h equal to 1. The energy unit (which is not
fixed by this choice) which is used, is the electron volt: 1 eV = 1.6 · 10−19 J.

1. We set the speed of light c equal to 1:

c = 3 · 108 m
s
≡ 1 ⇒ 1 s = 3 · 108 m (2.2)

2. The Planck constant is set equal to 1:

ℏ =
h

2π
= 6.6 · 10−25GeV s ≡ 1 ⇒ 1 s = 1.5 · 1024GeV−1 . (2.3)

And

ℏc = 1 ⇒ 1m = 5.1 · 1015GeV−1 . (2.4)

Furthermore,

m =
Erest

c2
= Erest (2.5)

m =
1 eV

c2
=

1.6 · 10−19

(3 · 108)2
kg = 1.78 · 10−36 kg !

= 1 eV ⇒ 1 kg = 5.6 · 1026GeV (2.6)

3. The elementary electric charge e > 0 is given by the Sommerfeld fine-structure constant
α:

e2

4π
= α ≈ 1

137....
⇒ e = 0.3. (2.7)

The charge e is dimensionless.

All physics units are hence given in terms of powers of energy. The exponent is the (mass)
dimension. He therefore have

[Length] = [Time] = −1 , [Mass] = 1 , [e] = 0 . (2.8)

Minkowski Metric A metric space is a vector space with a metric. We have the contravari-
ant four-vector

xµ =


x0

x1

x2

x3

 =

(
t
x⃗

)
(contravariant) . (2.9)
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The dual space of the vector space contains as elements the covariant four-vectors

xµ =


x0
x1
x2
x3

 =

(
t
−x⃗

)
(covariant) . (2.10)

The transition between contra- and covariant is mediated by the Minkowski metric gµν ,

xµ = gµνx
ν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

( t
x⃗

)
=

(
t
−x⃗

)
. (2.11)

The scalar product (which is invariant under Lorentz transformations - see next section) is
given by

x · y = xµy
µ = xµgµνy

ν = x0y0 − x⃗ · y⃗ . (2.12)

For the length of a Lorentz vector,

x2 = x20 − x⃗2 , (2.13)

we have the classifications

x2 > 0 time-like
x2 = 0 light-like
x2 < 0 space-like .

(2.14)

It is

gµν = gµν und gνµ = δνµ . (2.15)

Derivatives can also be written in a Lorentz-covariant way. We have

∂µ ≡
∂

∂xµ
, (2.16)

∂

∂xµ
=

(
∂
∂t

∇⃗

)
. (2.17)

We will use in the following the “slash” notation for the contraction with γ matrices,

p/ = pµγ
µ , ∂/ = ∂µγ

µ . (2.18)

Levi-Civita-Tensor The Levi-Civita tensor is defined through

eµνρσ =


+1 for even permutations
−1 for uneven permutations
0 sonst

(2.19)

We have here

ϵ0123 = +1 ⇒ ϵ0123 = g0µg1νg2ρg3σϵ
µνρσ = g00g11g22g33ϵ

0123 = −ϵ0123 = −1 . (2.20)
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We also have (σ2 is the second Pauli matrix)

ϵab =

(
0 1
−1 0

)
= iσ2 , d.h. ϵ12 = 1 . (2.21)

Einstein Sum Convention We sum over doubly appearing indicies, i.e.

aibi =
∑
i

aibi . (2.22)

Mostly, we have

aµbµ =
3∑

µ=0

aµb
µ . (2.23)

For four-vectors, the Greek indices run from 0 to 3, and the Latin indices frun from 1 to 3.

2.2 Lorentz Group and Poincaré Group

2.2.1 The Lorentz Transformation

In classical physics and special relativity the tensor concept plays a central role. According
to the covariance principle, physics laws can be expressed through tensor equations:

Physics laws ⇔ Tensor equations . (2.24)

Physics laws are invariant under coordinate transformations. A tensor equations relates
vectors (tensors of rank 1) and tensors of higher rank. In quantum field theory we also deal
with fermions. They have spin of half unit and are fundamentally different from bosons with
unit spin. They are described through spinors. The covariance principle for fermions is

Physics laws ⇔ Spinor equations . (2.25)

A typical example is the Dirac equation. Once the transformation properties of objects like
tensors, spinors are known, we can construct invariant quantities, i.e. Lorentz invariants, from
them. The Lagrangian density e.g. is a Lorentz-invariant quantity. From the Lagrangian
density we can then derive the equations of motion.

All linear transformations in Minkowski space,

xµ → x
′µ = Λµνx

ν (2.26)

with x′µy
′µ = xµy

µ for all x, y , (2.27)

are called Lorentz transformations. They form the Lorentz group. It corresponds to the
pseudo-orthogonal group O(3, 1). This means for the 4× 4 matrices that Λ ∈ O(3, 1). From
(2.27) it follows that

gµνx
′µx

′ν = gµνΛ
µ
ρx

ρΛνσx
σ = gρσx

ρxσ ⇒ (2.28)

gρσ = gµνΛ
µ
ρΛ

ν
σ . (2.29)

And hence

ΛTgΛ = g ⇒ det g = det(ΛTgΛ) ⇒ detΛ = ±1 . (2.30)
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We hence have

x′ 2 = x2 . (2.31)

The “length”
√
x2 =

√
t2 − x⃗2 hence remains invariant in Minkowski space. The d’Alembert

operator is a Lorentz-invariant differential operator, given by

∂µ∂
µ =

∂2

∂t2
−∆ = 2 . (2.32)

Another important Lorentz-invariant quantity is the product of the four-momentum

pµ =

(
p0
p⃗

)
=

(
E
p⃗

)
, (2.33)

hence

p′ 2 = p2 = E2 − p⃗2 . (2.34)

We say, that a particle is on its mass shell, when we have

p2 = m2 . (2.35)

We have used here the convention introduced above that c = 1. In the non-relativistic limit,
we have |p⃗| ≪ m so that we can perform an expansion in |p⃗|/m,

E =
√
m2 + p⃗2 = m

(
1 +

p⃗2

m2

) 1
2

= m+
p⃗2

2m
+O

(
p⃗4

m3

)
. (2.36)

For velocities close to the speed of light, in the ultra-relativistic limit, we have |p⃗| ≫ m.
Then the mass can be neglected, and we have E ≈ |p⃗|.

The Lorentz group can be classified following two properties: the sign of the determinant,
det Λ, and the sign of Λ0

0. The Lorentz transformations

1. L↑+ = {Λ ∈ L : det Λ = +1, Λ0
0 > 0} are called proper orthochronous.

2. L↓+ = {Λ ∈ L : det Λ = +1, Λ0
0 < 0} are called proper non-orthochronous.

3. L↑− = {Λ ∈ L : det Λ = −1, Λ0
0 > 0} are called improper orthochronous.

4. L↓− = {Λ ∈ L : det Λ = −1, Λ0
0 < 0} are called improper non-orthochronous.

They form the Lorentz group

L = L↑+ ∪ L
↓
+ ∪ L

↑
− ∪ L

↓
− . (2.37)

The proper orthochronous Lorentz group does not allow for space space reflection (det Λ =
+1) and the time coordinate cannot change the sign.

The proper orthochronous Lorentz group

L↑+ = {Λ ∈ O(1, 3)|detΛ = 1,Λ0
0 > 0} (2.38)
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contains rotations and boosts. The rotations are given by

Λ(0, φ⃗) =


1 0 0 0
0
0 R(φ⃗)
0

 (2.39)

with the axis
φ⃗

|φ⃗|
and the angle φ = |φ⃗| and the rotation matrix elements R(φ⃗)ij .

A pure boost into a reference system which moves with a relative velocity v in the direction
of the xi = x-axis is given by (ν = artanhv)

Λ(ν⃗, 0) =


cosh ν − sinh ν 0 0
− sinh ν cosh ν 0 0

0 0 1 0
0 0 0 1

 . (2.40)

2.2.2 The Poincaré Group

Tensors or (relativistic) bosons are objects which transform according to the tensor represen-
tation of the Lorentz group. Spinors or (relativistic) fermions are objects which transform
according to the spinor represenation of the Lorentz group. Hence, by studying the Lorentz
group, we can distinguish between bosons and fermions and assign particles to one of the
two categories. But to completely treat the world of elementary particles we need to study
the Poincaré group.

The Poincaré group is the group of Lorentz transformations and translations in Minkowski
space. It describes the structure of our space-time, and all its irreducible representations
are characterised by mass and spin, hence by the fundamental properties of the elementary
particles.

Poincaré transformations in Minkowski space are composed of a Lorentz transformation
with Λµν and a translation by aµ. We hence have the translation group T and the Poincaré
group P given by

T = {xµ → x
′µ = xµ + aµ : aµ ∈ R4} (2.41)

P = {xµ → x
′µ = Λµνx

ν + aµ : Λµν ∈ L, aµ ∈ R4} (2.42)

All generators of symmetries relevant for physics have to be invariant under Poincaré trans-
formations. There is only one extension of the space-time symmetry that is compatible with
relativistic quantum field theory. This is superymmetry, which relates fermions and bosons.



Chapter 3

Gauge Symmetries

The principle of local gauge invariance is essential for quantum field theory. We start by
looking at the example of quantum electrodynamics (QED). The Dirac Lagrangian for a free
fermion field Ψ of mass m reads

L0 = Ψ̄(iγµ∂µ −m)Ψ . (3.1)

It is invariant under a transformation with a unitary matrix U = e−iα ∈ U(1). This means
that applying the transformation

Ψ(x)→ exp(−iα)Ψ(x) = Ψ− iαΨ+O(α2) (3.2)

and for the adjoint spinor Ψ̄ = Ψ†γ0,

Ψ̄(x)→ exp(iα)Ψ̄(x). (3.3)

the Lagrangian L0 goes over into itself. We distinguish

- global gauge transformations: α =const.

- local gauge transformations: α = α(x).

The Noether current of the above global gauge symmetry reads

jµ =
∂L

∂(∂µΨ)

δΨ

δα
+
δΨ̄

δα

∂L
∂(∂µΨ̄)

= iΨ̄γµ(−iΨ) = Ψ̄γµΨ , (3.4)

with

∂µj
µ = 0 . (3.5)

It implies charge conservation.

3.1 Coupling to a Photon

When we include the coupling to a photon, the Lagrangian reads

L = Ψ̄γµ(i∂µ − qAµ)Ψ−mΨ̄Ψ = L0 − qjµAµ , (3.6)

9



10 Gauge Symmetries

with jµ given in Eq. (3.4). Appyling the following gauge transformation to the external
photon field Aµ,

Aµ(x)→ A′µ(x) = Aµ(x) + ∂µΛ(x) (3.7)

the Lagrangian goes over into

L → L = L0 − qjµAµ − qjµ∂µΛ︸ ︷︷ ︸
qΨ̄γµΨ∂µΛ

. (3.8)

This means that L is not gauge invariant. The transformations of the fields Ψ and Ψ̄ have to
be changed such that the Lagrangian becomes gauge invariant. This is done by introducing
an x-dependent parameter α, hence α = α(x). Thereby

i∂µΨ→ i exp(−iα)(∂µΨ) + (∂µα) exp(−iα)Ψ , (3.9)

so that

L0 → L0 + Ψ̄γµΨ∂µα . (3.10)

This term cancels the additional term in Eq. (3.8) if

α(x) = qΛ(x) . (3.11)

Thereby the complete gauge transformation reads

Ψ → Ψ′(x) = U(x)Ψ(x) with U(x) = exp(−iqΛ(x)) (U unitary) (3.12)

Ψ̄ → Ψ̄′(x) = Ψ̄(x)U †(x) (3.13)

Aµ(x) → Aµ(x) + ∂µΛ(x) = U(x)Aµ(x)U
†(x)− i

q
U(x)∂µU

†(x) . (3.14)

The Lagrangian transforms according to

L → L′ = Ψ̄γµU−1i∂µ(UΨ)− qΨ̄U−1γµ
(
UAµU

−1 − i

q
U∂µU

−1
)
UΨ−mΨ̄U−1UΨ

= Ψ̄γµi∂µΨ+ Ψ̄γµ(U−1i(∂µU))Ψ− qΨ̄γµΨAµ + Ψ̄γµ(i(∂µU
−1)U)Ψ−mΨ̄Ψ

= L+ iΨ̄γµ∂µ(U
−1U)Ψ = L . (3.15)

Minimal substitution pµ → pµ − qAµ leads to

i∂µ → i∂µ − qAµ ≡ iDµ . (3.16)

Here Dµ(x) is the covariant derivative. The expression covariant means, that it transforms
exactly as the field,

Ψ(x)→ U(x)Ψ(x) and DµΨ(x)→ U(x)(DµΨ(x)) . (3.17)

This means

(DµΨ)′ = D′µΨ
′ = D′µUΨ

!
= UDµΨ , (3.18)

so that the covariant derivative transforms according to

D′µ = UDµU
−1 = exp(−iqΛ)(∂µ + iqAµ) exp(iqΛ) = ∂µ + iq∂µΛ + iqAµ

= ∂µ + iqA′µ . (3.19)
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Thereby

L = Ψ̄γµiDµΨ−mΨ̄Ψ (3.20)

is obviously gauge invariant.

The kinetic energy of the photons is given by

Lkin = −1

4
FµνF

µν with F µν = ∂µAν − ∂νAµ . (3.21)

The field strength tensor Fµν can be expressed through the covariant derivative. We choose
the following ansatz for the tensor of rang 2,

[Dµ, Dν ] = [∂µ − iqAµ, ∂ν − iqAν ] = −iq[∂µ, Aν ]− iq[Aµ, ∂ν ] = −iq(∂µAν − ∂νAµ) . (3.22)

Thereby, we have for the field strength tensor

F µν =
i

q
[Dµ, Dν ] . (3.23)

Its transformation behaviour is given by

i

q
[UDµU−1, UDνU−1] =

i

q
U [Dµ, Dν ]U−1 = UF µνU−1 . (3.24)

The unitary group U(1) is an Abelian gauge group as for f, g ∈ U(1) it holds that f◦g = g◦f .

3.2 Groups

Be a pair (G, ∗) with a set G and an inner binary connection/group multiplication. ∗ :
G×G→ G, (a, b) 7→ a ∗ b is called group if the following axioms are fulfilled

1. The group is closed. This means, if g, h ϵ G ⇒ g ∗ h ϵ G.

2. Associativity: (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3).

3. ∃ Identity element e with the property g ∗ e = e ∗ g = g ∀ g ϵ G.

4. For each g there is an inverse g−1 with g−1 ∗ g = g ∗ g−1 = e.

Abelian group: A group is called Abelian, if g ∗ h = h ∗ g.
Continuous groups: They contain an infinite number of elements and are described by n
parameters. The elements depend in a continuous and differentiable way on a set of real
parameters θa, a = 1, ..., n, where n is the dimension of the group. For Lie groups n is finite.
We chose g(θ = 0) = e. All one-parameter Lie groups are Abelian. A typical example is
U(1) with the elements eiϕ and ϕ as parameter.
Examples of Lie groups:

(i) O(N): orthogonal group, dimension N(N−1)
2

. We have MMT = 1 so that detM = ±1.
We have the SO(N) for detM = 1.
(ii) U(N): unitary group, dimension N2. We have UU † = 1. We have the SU(N) for
detU = 1. Its dimension is N2 − 1.
(iii) SL(N,C): complex matrices A, detA = 1, dimension 2N2 − 2. E.g. the symplectic
group Sp(2n,C).
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3.3 Representations of Non-Abelian Groups

Be G a group with the elements g1, g2... ∈ G. An n-dimensional representation of G is given
by the map G → C(n,n), g → U(g). It is a map of abstract elements of the group onto
complex n×n matrices, so that U(g1g2) = U(g1)U(g2) holds and hence the group properties
are preserved.

A U ∈ SU(N) can be written as U = exp(iθaT a). In general, each group element,
which can be obtained from the identity element through continuous transformation of the
parameters, can be written as exp(iθaT a), where θa are real parameters and T a are linearly
independent operators. The set of all linear combinations of θaT a forms a vector space with
the basis elements θaT a. They are also called generators of the group. In the case of the
SU(N) the generators are hermitian. For the SU(2) we have U = exp(iω⃗ · J⃗). The group
SU(N) has N2−1 generators T a. For the SU(2) these are the angular momentum operators
Ji, i = 1, 2, 3. The N2− 1 real parameters θa are given by ω⃗ in the SU(2). The fundamental
representation of the SU(2) reads Ji = σi/2 and in the general case T a = λa/2.

Independent of the representations the generators fulfill the following commutator relation

[T a, T b] = ifabcT c . (3.25)

The fabc are the structure constants of the SU(N) Lie algebra. The commutation relation
hence defines the algebra, which is associated with the group. The generators are not
uniquely normalized. We have

Trace(T aT b) = TRδ
ab , (3.26)

where TR is the Dynkin-Index. It depends on the representation. For the fundamental
representation it is mostly chosen as

TR ≡ TF = 1/2 . (3.27)

From Eq. (3.25) follows

[T a, T b]T c = ifabdT dT c ⇒ ifabcTR = Trace([T a, T b]T c) . (3.28)

The structure constants fabc are hence totally anti-symmetric and define (N2 − 1)(N2 − 1)-
dimensional matrices T alk ≡ −ifalk ≡ −ifalk. For the SU(2) we have

[Ji, Jj] = ϵijkJk . (3.29)

The generators of Lie groups fulfill the Jacobi identity

[T a, [T b, T c]] + [T b, [T c, T a]] + [T c, [T a, T b]] = 0 . (3.30)

Using (3.25), one obtains

0 = (−if bcl)(−ifalk) + (−ifalc)(−if blk) + ifabl(−if lck) . (3.31)

And thereby

0 = (T bT a)ck − (T aT b)ck + ifabl(T l)ck . (3.32)

We thus have obtained an N2 − 1-dimensional representation of the SU(N) Lie algebra,

[T a, T b] = ifabcT c . (3.33)

This is the adjoint representation. There are the following SU(N) representations,
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• d = 1: trivial representation (singlet).

• d = N : fundamental representation (λa/2), anti-fundamental representation (−λ∗a/2).
The generators are N ×N matrices.

• d = N2 − 1: adjoint representation. The generators are (N2 − 1)× (N2 − 1)-matrices.
The indices of the representation run over the same range as the number of generators,
which forms the dimension of the group. In the adjoint representation hence the
dimension of the vector space, in which the matrices act, is equal to the dimension of
the group.

If a representation r and its complex conjugate representation r̄ with

T ar̄ = −(T ar )∗ , (3.34)

are equivalent, hence T ar̄ = UT ar U
†, then the representation is called real. The fundamental

representation of SU(2) is real, but not the one of SU(3). This is why the anti-quarks have
an anti-colour. The adjoint representation of the SU(3) is real.

Casimir operators Casimir operators allow to characterise representations independently
of the chosen basis. The quadratic Casimir operator is defined by∑

a

T aT a = C2(R)1 , (3.35)

where C2(R) depends on the representation, but not on the basis of the generators T a.

3.4 The Matrices of the SU(N)

The elements of the SU(N) in general are represented through

U = exp

(
iθa

λa

2

)
with θa ∈ R . (3.36)

Here the λa/2 are the generators of the group SU(N). For the SU(2) the λa are given by
the Pauli matrices σa (a = 1, 2, 3) and θa is a 3-component vector given by ω⃗ for the SU(2).
For an element of the group SU(2) we hence have

U = exp

(
iω⃗
σ⃗

2

)
. (3.37)

For a general U we have

U † = exp

(
−iθa

(
λa

2

)†)
!
= U−1 = exp

(
−iθaλ

a

2

)
. (3.38)

The generators hence have to be hermitian, i.e.

(λa)† = λa . (3.39)

In addition, for the SU(N) it has to hold that

det(U) = 1 . (3.40)
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With

det(exp(A)) = exp(Tr(A)) (3.41)

we get

det

(
exp

(
iθa

λa

2

))
= exp

(
iθaTr

(
λa

2

))
!
= 1 . (3.42)

From this follows that

Tr(λa) = 0 . (3.43)

The generators of the SU(N) have to be traceless. The group SU(N) has N2− 1 generators
λa with Tr(λa) = 0. For the SU(3) these are the Gell-Mann matrices

λ1 =

 0 1 0
1 0 0
0 0 0

 λ2 =

 0 −i 0
i 0 0
0 0 0

 λ3 =

 1 0 0
0 −1 0
0 0 0


λ4 =

 0 0 1
0 0 0
1 0 0

 λ5 =

 0 0 −i
0 0 0
i 0 0

 λ6 =

 0 0 0
0 0 1
0 1 0


λ7 =

 0 0 0
0 0 −i
0 i 0

 λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 . (3.44)

The matrices λa/2 are normalised as

Tr

(
λa

2

λb

2

)
=

1

2
δab . (3.45)

For the Pauli matrices (i = 1, 2, 3) we have

Tr(σ2
i ) = 2 und Tr(σ1σ2) = Tr(iσ3) = 0 . (3.46)

Multiplied by 1/2 they form the generators of the group SU(2). The generator matrices
fulfill the completeness relation

λaij
2

λakl
2

=
1

2

(
δilδkj −

1

N
δijδkl

)
, (3.47)

because

0
!
=
λaii
2

λakl
2

=
1

2
δilδki −

1

2N
δiiδkl =

1

2
δkl −

1

2
δkl = 0 . (3.48)

The gauge group underlying quantum chromo dynamics (QCD) is the SU(3). The QCD
describes the strong interaction between colour charged particles. The quarks are in the
fundamental representation of the SU(3). The Feynman rule for the interaction between
one gluon and two quarks contains the T aij = λaij/2, with i, j = 1, ..., Nc (Nc = 3) and
a = 1, ..., 8. Nc denotes the number of the quark colours. The gluons are in the adjoint
representation of the SU(3), which is expressed through the matrices (F a)bc = −ifabc.
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3.5 Non-Abelian Gauge Theories, SU(N) Symmetries

In the following we consider a Lagrangian which is invariant under transformations of the
group SU(N), where

SU(N) = {U ∈ CN×N |UU † = 1 ∧ detU = 1} . (3.49)

Each U ∈ SU(N) can be written as

U = exp(iθaT
a) , θa ∈ R . (3.50)

From UU † = 1 follows that T a = (T a)†, from detU = 1 follows with detU = eTr(lnU) that
Tr(T a) = 0.

Fermion Fields Starting point is the Lagrangian for N Dirac fields ψi(x) (i = 1, .., N),

L =
∑
i=1...N

ψ̄i(iγ
µ∂µ −m)ψi = Ψ̄(iγµ∂µ −m)Ψ with Ψ̄ = (ψ̄1, ψ̄2, ..., ψ̄N) . (3.51)

The Lagrangian is invariant under a global SU(N) gauge transformation (the index a runs
over a = 1, ..., N2 − 1)

Ψ→ Ψ′ = exp (iθaT a)Ψ =
(
1 + iθaT a +O((θa)2)

)
Ψ = UΨ = and Ψ̄→ Ψ̄′ = Ψ̄U−1(3.52)

respectively, (i, j = 1, ..., N)

ψi(x)→ Uijψj(x) . (3.53)

The generators T a are

fundamental representation: (T a)ij =
(
λa

2

)
ij

d = N

adjoint representation (T a)bc = −ifabc d = N2 − 1
trivial representation T a = 0⇔ U(θ) = 1 .

(3.54)

Examples:

• Ψ =

(
p
n

)
: SU(2) transformations in the isospin space, proton-neutron doublet.

• Ψ =

(
νe
e

)
L

: SU(2)L, weak interaction on left-handed fermions.

• Ψ = (q1, q2, q3)
T , quarks, SU(3)C . Here, each qi (i = 1, 2, 3) is a four-component spinor.

The QCD Lagrangian is invariant under SU(3)C transformations.

Representation of the Gauge Fields The gauge fields are in the adjoint representation
of the SU(N). Thereby, we have N2 − 1 gauge fields Ga

µ(x) (a = 1, ..., N2 − 1). In a non-
Abelian gauge theory also the gauge fields carry charge (e.g. in the QCD the colour charge),
in an Abelian gauge theory, however, not (the photon does not have an electric charge). The
adjoint representation of the SU(N) is given by the matrices (T a)bc, which are obtained from
the structure constants of the group,

(T a)bc = −ifabc , a, b, c = 1, ...N2 − 1 . (3.55)
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Fermion Gauge Boson Interaction In analogy to QED we can write the interaction
between fermions and gauge bosons as

Lint =
N∑

i,j=1

ψ̄i(iγµ(D
µ[G])ij −mjδij)ψj . (3.56)

The covariant derivative is given by

(Dµ[G])ij = δij∂
µ − ig

N2−1∑
a=1

Gµ
a(x)T

a
ij ≡ δij∂

µ − ig(Gµ)ij . (3.57)

The T a can be different, but Ga
µ is identical in all Dµ. For example in supersymmetry

(SUSY),

squark, quark T a = λa

2
(d = N)

gluino, gluon (T a)bc = −ifabc (d = N2 − 1)
(3.58)

Gauge-Invariant Lagrangian Let us now look at local symmetries, hence θa = θa(x).
The transformation of Ψ is given by Ψ′ = UΨ. We want to achieve that the Lagrangian
is invariant under these gauge transformations. This is fulfilled if the covariant derivative
transforms exactly as Ψ, hence (DµΨ)′ = U(DµΨ). Thereby

(DµΨ)′ = D′µΨ
′ = D′µUΨ⇒ D′µU = UDµ . (3.59)

This if fulfilled, because

∂µ − igG ′µ = D′µ = UDµU
−1 = U(∂µ − igGµ)U−1 = UU−1∂µ + U(∂µU

−1)− igUGµU−1 ⇒
(3.60)

G ′µ =
i

g
U(∂µU

−1) + UGµU−1 . (3.61)

Important: G′aµ is independent of the representation U . With infinitesimal

U = exp(iT aθa) = 1 + iT aθa +O(θa2) (3.62)

we have

G ′µ = G′bµT
b =

i

g
U(−i)T a (∂µθa)U−1 + (1 + iθaT a)Gc

µT
c(1− iθbT b)︸ ︷︷ ︸

GcµT
c+iGcµ (T

aT c − T cT a)︸ ︷︷ ︸
ifacbTb

θa+O(θ2)

= T b (
1

g
∂µθ

b +Gb
µ + i(−ifabc)θaGc

µ)︸ ︷︷ ︸
G′b
µ

. (3.63)

The field strength tensor is defined as Fµν ∼ [Dµ, Dν ]. Let us look at the commutator,

[Dµ, Dν ] = [∂µ − igT aGa
µ, ∂ν − igT bGb

ν ] = −igT b∂µGb
ν − igT a(−∂νGa

µ) + (−ig)2Ga
µG

b
ν [T

a, T b]︸ ︷︷ ︸
ifabcT c

= −igT a (∂µGa
ν − ∂νGa

µ + g f bca︸︷︷︸
fabc

Gb
µG

c
ν)

︸ ︷︷ ︸
=:Faµν

= −igT aF a
µν ≡ −igFµν . (3.64)
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The F a
µν are independent of the representation of the T a. We have for the transformation

behaviour

F ′µν =
i

g
[D′µ, D′ν ] =

i

g
[UDµU

−1, UDνU
−1] = UFµνU−1 (3.65)

homogenuous transformation

And with Eq. (3.63)

(F a
µν)
′ = F a

µν + i(−if bac)θbF c
µν + ... (3.66)

Furthermore, from this follows that

F aµνF a
µν = 2Tr(FµνFµν)

= 2Tr(F aµνT aF b
µνT

b) = 2F aµνF b
µν Tr(T

aT b)︸ ︷︷ ︸
1
2
δab

= F µνaF a
µν


is gauge invariant (3.67)

Thereby we have for the kinetic Lagrangian

Lkin,A = −1

4
F aµνF a

µν = −
1

2
Tr(FµνFµν) . (3.68)

This Lagrangian for the gauge fields is also called Yang-Mills Lagrangian. It contains cubic
and quartic terms in the the gauge fields. This leads in QCD to the 3-gluon and the 4-gluon
vertices. Remark that the gauge fields as in the case of the photon have to be massless. A
mass term bilinear in the Ga

µ would break the SU(N) gauge invariance.

3.6 The QCD Lagrangian

Example: QCD is invariant under the colour SU(3). The 6 quark fields carry colour charge
and are in the fundamental representation,

Ψq =

 ψq1
ψq2
ψq3

 q = u, d, c, s, t, b . (3.69)

They form triplets. The 8 gluons Gµ are in the adjoint representation. The QCD Lagrangian
reads

LQCD = −1

4
GaµνGa

µν +
∑
q=1...6

Ψ̄q(iγ
µDµ −mq)Ψq , (3.70)

with

Ga
µν = ∂µG

a
ν − ∂νGa

µ + gfabcGb
µG

c
ν . (3.71)

The quark masses have the values

mu ≈ 1.7...3.1 MeV md ≈ 4.1...5.7 MeV ms ≈ 100 MeV (3.72)

mc ≈ 1.29 GeV mb ≈ 4.19 GeV mt ≈ 173 GeV . (3.73)
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3.7 Chiral Gauge Theories

Let us look at

Lf = Ψ̄(iγµDµ −m)Ψ . (3.74)

In the chiral representation the 4× 4 γ matrices are given by

γµ =

((
0 1
1 0

)
,

(
0 −σ⃗
σ⃗ 0

))
=

(
0 σµ−
σµ+ 0

)
(3.75)

γ5 =

(
1 0
0 −1

)
, (3.76)

where σi (i = 1, 2, 3) are the Pauli matrices. With

Ψ =

(
χ
φ

)
and Ψ̄ = Ψ†γ0 = (χ†, φ†)

(
0 1
1 0

)
= (φ†, χ†) (3.77)

we get

Ψ̄iγµDµΨ = i(φ†, χ†)

(
0 σµ−
σµ+ 0

)(
Dµχ
Dµφ

)
︸ ︷︷ ︸ σµ−Dµφ

σµ+Dµχ


= φ†iσµ−Dµφ+ χ†iσµ+Dµχ . (3.78)

The gauge interaction holds independently bouth for

ΨL =

(
0
φ

)
=

1

2
(1− γ5)Ψ and ΨR =

(
χ
0

)
=

1

2
(1 + γ5)Ψ . (3.79)

The ΨL and ΨR can have different gauge representations. But

mΨ̄Ψ = m(φ†, χ†)

(
χ
φ

)
= m(φ†χ+ χ†φ) = m(Ψ̄LΨR + Ψ̄RΨL) . (3.80)

The mass term mixes ΨL and ΨR. This implies symmetry breaking if ΨL and ΨR have
different representations.

What about a mass term for gauge bosons? Let us look at

L = −1

4
F aµνF a

µν︸ ︷︷ ︸
gauge invariant

+
m2

2
AaµAaµ︸ ︷︷ ︸

not gauge invariant

. (3.81)

For example for the U(1)

(AµA
µ)′ = (Aµ + ∂µθ)(A

µ + ∂µθ) = AµA
µ + 2Aµ∂

µθ + (∂µθ)(∂
µθ) . (3.82)

The mass term for Aµ breaks the gauge symmetry.



Chapter 4

Path Integrals

Theoretically, processes in the world of elementary particles can be formulated through two
approaches. We have introduced in TTP1 the canonical quantisation. In this approach, fields
become operators and have a Fourier representation with creation and annihilation operators.
The particle interpretation as excitations of fields is obvious in this formalism. The canonical
formalism is based on quantum mechanics. It is suitable to show basic properties of the
fields like e.g. the spin-statistics theorem. The computation of interaction amplitudes and
the quantisation of non-Abelian gauge theories is rather complicated, however.

Starting point in the path integral formalism is the principle of minimal action. The
integration is performed over all possible field configurations. The fields are here functions
and no operators. The contributions that do not cancel each other, stem for weak couplings
from paths near the minima of the action. The computation of the interaction amplitudes
is relatively simple in this formalism and the symmetries of the fields are obvious. The
path integral formalism is closer to the wave character of the elementary particles. The
convergence of the path integrals is not proven in a mathematically strict way, however.

4.1 Path Integrals in Quantum Mechanics

The Lagrangian function L is the fundamental object in classical mechanics. It is the starting
point for the construction of the classical action,

S ≡
∫ t2

t1

dtL(q, q̇) , (4.1)

where q(t) is the generalised coordinate and q̇(t) ≡ dq/dt is the generalised velocity. The
equations of motion follow from the Hamilton principle of the minimal action which means
that the variation

δS = δ

∫ t2

t1

dtL(q, q̇) = 0 (4.2)

vanishes considering the additional conditions that the variatons of the generalised coordi-
nates at the endpoints t1 and t2 vanish. The physical path is hence that specific trajectory
(cf. Fig. 4.1), which connects the q1 ≡ q(t1) and q2 ≡ q(t2) and along which the action is
stationary. An important generalisation to quantum mechanics as weighted sum over the
paths has been developed by Feynman. We have in quantum mechanics

19
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Figure 4.1: A possible trajectory between the fixed starting and end points q(t1) and q(t2).

< t2|t1 > ∼
∫
Dq exp iS (4.3)

In quantum field theory, the theory is defined by the path integral

W ∼
∫
DϕeiS (4.4)

S =

∫
d4xL (4.5)

The integral is performed over all field values ϕ at each point x,

W ∼ lim
ϵ→0

∫
dΠαdϕα exp

{
i
∑
β

ϵ4L(ϕβ)

}
(4.6)

Quantum mechanics: Without restriction of generality, we discuss quantum mechanics in

one space dimension. Be q the space coordinate. A state in the Schrödinger picture is
connected to a state in the Heisenberg picture through

|ψ, t >S = exp

(
− i
ℏ
Ĥt

)
|ψ >H . (4.7)

The space operator in the Heisenberg picture is related to the one in the Schrödinger picture
as

Q̂H(t) = eiĤtQ̂Se
−iĤt . (4.8)

We define:

|q, t >= exp

(
i

ℏ
Ĥt

)
|q > . (4.9)

Thereby

ψ(q, t) =< q|ψ, t >S=< q| exp(−
i
ℏ Ĥt) |ψ >H=< q, t|ψ >H . (4.10)
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We are interested in the state at the position qf at the time tf ,

ψ(qf , tf ) = < qf , tf |ψ >H=

∫
dqi < qf , tf |qi, ti >< qi, ti|ψ >H

=

∫
dqiK(qf , tf ; qi, ti)ψ(qi, ti) . (4.11)

The whole information on the dynamics of the system is in the integrand K(qf , tf ; qi, ti). It
is called propagator. We now look at the transition matrix element (in the following, we set
ℏ = 1)

< q′, t′|q, t >=< q′|e−iĤ(t′−t)|q > . (4.12)

We devide it up into (n+ 1) partial intervals τ = (t′ − t)/(n+ 1) (cf. Fig. 4.2).

Figure 4.2: Partial intervals.

We use the completeness relation 1 =
∫
dq|q >< q| and obtain for Eq. (4.12)∫

dqn...dq1 < q′, t′|qn, tn >< qn, tn|qn−1, tn−1 > ... < q1, t1|q, t > . (4.13)

We look more closely at the matrix element

< qj+1, tj+1|qj, tj > = < qj+1|e−iĤτ |qj >=< qj+1|1− iĤτ +O(τ 2)|qj >
= δ(qj+1 − qj)− iτ < qj+1|Ĥ|qj > +O(τ 2) . (4.14)

With the Hamilton operator Ĥ = P̂ 2/(2m) + V (Q̂) we obtain

< qj+1|
P̂ 2

2m
|qj > =

∫
dpdp′ < qj+1|p′ >< p′| P̂

2

2m
|p >< p|qj >

=

∫
dpdp′

1
√
2π

2 e
i(p′qj+1−pqj) p

2

2m
δ(p− p′) =

∫
dp

2π
eip(qj+1−qj) p

2

2m
. (4.15)

And

< qj+1|V (Q̂)|qj >= V (qj) < qj+1|qj >= V (qj)δ(qj+1 − qj) =
∫

dp

2π
eip(qj+1−qj)V (qj) . (4.16)
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Thereby, we obtain for the matrix element

< qj+1|Ĥ|qj >=
∫

dp

2π
eip(qj+1−qj)H(p, qj) . (4.17)

And finally

< qj+1, tj+1|qj, tj >=
∫
dpj
2π

eipj(qj+1−qj)e−iτH(pj ,qj) . (4.18)

Thereby, we have for the transition matrix element (4.12)

< q′, t′|q, t >= lim
n→∞

∫
Πn
j=0

dpj
2π

(
Πn
j=1dqj

)
ei

∑n
j=0[pj(qj+1−qj)−τH(pj ,qj)] . (4.19)

With the symbolic notation

lim
n→∞

∫
Πn
a=1dqaΠ

n
b=0

dpb
2π

=

∫
Dq(t)Dp(t) , (4.20)

which is the definition of the functional integral (=”integration over functions”), we have

< q′, tf |q, ti >=
∫
Dq(t)Dp(t) ei

∫ tf
ti

dt[pq̇−H(p,q)] , (4.21)

where q(ti) = q and q(tf ) = q′. The quantum mechanical transition matrix element is given

by the∞-dimensional integral over the classical “paths”. For H = p2

2m
+V (q), the integration

over p can be performed. With the formula∫ ∞
−∞

dx e−ax
2+bx+c = e

b2

4a
+c

√
π

a
(4.22)

we obtain from Eq. (4.19)

< q′, tf |q, ti >= lim
n→∞

(
1

2π

)n+1(
2πm

iτ

)n+1
2
∫

Πn
j=1dqj e

i
∑
j [τ

m
2

(
qj+1−qj

τ

)2
−V τ ]

. (4.23)

In the continuum limit we obtain

< q′, tf |q, ti >= N
∫
Dq ei

∫ tf
ti

dtL(q,q̇) , (4.24)

where N is a normalization factor. In an analogous calculation we obain for

< q′, t′|Q̂(t0)|q, t >=
∫
DqDp q(t0)ei

∫ t′
t dτ [pq̇−H] . (4.25)

Because

< qj, tj|qj|qj−1, tj−1 > = < qj|qj exp(−iĤ(tj − tj−1))|qj−1 >
= < qj|Q̂ exp(−iĤ(tj − tj−1))|qj−1 >
= < qj| exp(−iĤtj) exp(iĤtj)Q̂ exp(−iĤ(tj − tj−1))|qj−1 >
= < qj, tj|Q̂(tj)|qj−1, tj−1 > . (4.26)
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Let us look at A =< q′, t′|Q̂(ta)Q̂(tb)|q, t >. If ta > tb:

A =

∫
(Πdqj) < q′, t′|qn, tn >< qn, tn|qn−1, tn−1 > ... < qj1 , tj1|Q̂(ta)|qj1−1, tj1−1 >

... < qj2 , tj2|Q̂(tb)|qj2−1, tj2−1 > ... < q1, t1|q, t > . (4.27)

And we obtain (calculation as above)

A =

∫
DqDp q(ta)q(tb) ei

∫ t′
t dτ [pq̇−H]︸ ︷︷ ︸

P

. (4.28)

If tb > ta, P now is

P =< q′, t′|Q̂(tb)Q̂(ta)|q, t > . (4.29)

The path integral formula hence corresponds to the matrix element of the time-ordered
product (a ≡ 1, b ≡ 2) T [Q̂(t1)Q̂(t2)]. We then have in general

< q′, t′|T [Q̂(t1)...Q̂(tN)]|q, t >=
∫
DqDp q(t1) q(t2)...q(tN) ei

∫ t′
t dτ [pq̇−H] . (4.30)

We now want to have the vacuum-to-vacuum amplitude in the presence of an external
“source” J (cf. Fig. 4.3), which describes the creation and annihilation of particles. We
replace the Lagrangian density by

L→ L+ ℏJ(t) q(t) (ℏ = 1) , (4.31)

where J denotes the source. Our goal is to obtain < 0, t =∞|0, t = −∞ >J .

Figure 4.3: External source J turned on between t and t′.

We have the path integral formula

< Q′, T ′|Q, T >J = N
∫
Dq ei

∫ T ′
T dt[L+Jq]

=

∫
dq dq′ < Q′, T ′|q′, t′ >J=0< q′, t′|q, t >J ̸=0< q, t|Q, T >J=0 .(4.32)
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N is a normalisation factor, which comes from the p integration. We have

< Q′, T ′|q′, t′ >J=0=< Q′|e−iĤT ′
e+iĤt

′ |q′ >=
∑
m

ϕm(Q
′)ϕ∗m(q

′)e−iEm(T ′−t′) , (4.33)

where we have inserted 1 =
∑

E |Energie >< Energie|. And analogously

< q, t|Q, T >J=0=
∑
n

ϕn(q)ϕ
∗
n(Q)e

iEn(T−t) . (4.34)

We use a trick and rotate the time axis a little bit, t→ te−iδ, and take the limit T ′ →∞e−iδ
and T → −∞e−iδ. This means that in the sum only the contributions of the ground state
E0 < Ei are left over so that we obtain

lim
T ′ → +∞e−iδ
T → −∞e−iδ

< Q′, T ′|Q, T >J = ϕ∗0(Q)ϕ0(Q
′)e−iE0(T ′−T )

∫
dq dq′ϕ∗0(q

′, t′)ϕ0(q, t) < q′, t′|q, t >J . (4.35)

This integral is equivalent to < 0, t′|0, t >J . We now also take the limits t′ → ∞, t → −∞
and obtain

< 0,∞|0,−∞ >J = lim
T ′ → +∞e−iδ
T → −∞e−iδ

< Q′, T ′|Q, T >J

ϕ∗0(Q)ϕ0(Q′)e−iE0(T ′−T )

with < Q′, T ′|Q, T >J= N
∫
Dq ei

∫ T ′
T dt [L(q,q̇)+J(t)q(t)] (4.36)

Remark: Instead of rotating the t-axis the contribution of the ground state can also be
isolated through H → H − i ϵ

2
q2, ϵ > 0, ϵ→ 0, i.e. L→ L+ i

2
ϵq2. Thereby, we finally have

< 0,∞|0,−∞ >J ∼ Z[J ] generating functional

where Z[J ] ≡
∫
Dq ei

∫∞
−∞ dt [L+J ·q+ i

2
ϵq2] (4.37)

We define the functional derivative for a functional F [f ], which maps Cn(M) → C, where
the space of the functions is given by M = R,C:

δF [f(x)]

δf(y)
≡ lim

ϵ→0

F [f(x) + ϵδ(x− y)]− F [f(x)]
ϵ

. (4.38)

We then have e.g.

δf(x)

δf(y)
= δ(x− y) . (4.39)

For the nth derivative of Z[J ] with respect to J we obtain

δnZ[J ]
δJ(t1)...δJ(tn)

∣∣∣∣
J=0

= (i)n
∫
Dq q(t1)...q(tn)ei

∫∞
−∞ dt [L+ i

2
ϵq2]

∼ (i)n < 0|T [Q̂(t1)...Q̂(tn)|0 > (4.40)
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4.2 Scalar Fields

A 1-dimensional quantum-mechanical system corresponds to a field theory in 0 space dimen-
sions. (In quantum mechanics we have the operators Q̂(t), P̂ (t), Ĥ(t).)

In scalar field theory we have the scalar fields ϕ̂(x⃗, t) and the momentum Π̂(x⃗, t) and the
Hamilton and Lagrangian densities Ĥ(ϕ̂, Π̂), L̂(ϕ̂, ∂µϕ̂). We take as an example the classical
Lagrangian of the ϕ4 theory

L =
1

2
∂µϕ∂

µϕ− m2

2
ϕ2 − λ

4!
ϕ4 . (4.41)

The vacuum-to-vacuum amplitude of the quantum field theory with presence of a “source”
J(x) is given by

< 0,∞|0,−∞ >J∼ Z[J ] (4.42)

with the generating functional

Z[J ] =
∫
Dϕ ei

∫∞
−∞ d4x [L(x)+ 1

2
iϵϕ2(x)+J(x)ϕ(x)] . (4.43)

The fields ϕ are classical fields. And

Dϕ = Πx⃗,tdϕ(x⃗, t) . (4.44)

In order to define the functional integrals, we discretise space and time.
We have the partial derivative

∂ϕ

∂x

∣∣∣∣
(x⃗n,tn)

= lim
a→0

ϕ(xn + a, yn, zn, tn)− ϕ(xn, yn, zn, tn)
a

. (4.45)

For the integral over the Lagrangian density we obtain∫
d4xL(ϕ) ≈

∑
lattice points

a4 L(ϕ(x⃗n, tn)) . (4.46)

The measure Πxdϕ(x) becomes

Dϕ = ΠN4

j=1dϕ(xj) . (4.47)

The functional integralZ[J ] then becomes anN4-dimensional, hence a usual finite-dimensional
integral, which can be determined (e.g. on a computer) → numerical simulations of lattice
field theory. Finally, we perform the limit

a) L→∞, i.e. N =
L

a
→∞ infinite-volume limit

b) a→ 0 continuum limit . (4.48)

We obtain the Green function of the scalar quantum field theory through the functional
derivative:

1

in
δnZ[J ]

δJ(x1)...δJ(xn)

∣∣∣∣
J=0

=
1

N

∫
Dϕϕ(x1)...ϕ(xn)ei

∫
d4x [L+ iϵ

2
ϕ2]

= < 0,∞|T [ϕ̂(x1)...ϕ̂(xn)]|0,−∞ >J=0 (4.49)
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with

N =

∫
Dϕ ei

∫
d4x [L+ iϵ

2
ϕ2] . (4.50)

In order to demonstrate (4.49), we first need some formulae for the functional integration
over c-number functions. We consider first integrals over finite dimensions:
1) 1-dimensional Gauß formula, xϵR:∫ ∞

−∞
e−

1
2
ax2 dx =

(
2π

a

)1/2

. (4.51)

2) Real integral over n dimensions:∫
Πn
j=1dxj e

− 1
2

∑n
k=1 ak x

2
k =

(2π)n/2√
Πkak

. (4.52)

Be

A =


a1

a2
.
.
an

 , (4.53)

and we use for the scalar product the notation

∑
k

akx
2
k = (x⃗, Ax⃗) x⃗ =


x1
.
.
.
xn

 . (4.54)

We define the measure

(dx) ≡ dnx

(2π)n/2
. (4.55)

Then we have

∫
e−

1
2
(x⃗,Ax⃗)(dx) =

1√
detA

. (4.56)

The formula holds for any real, symmetric and positive matrix A.

3) Generalisation to arbitrary quadratic forms of the type

Q(x⃗) =
1

2
(x⃗, Ax⃗) + (⃗b, x⃗) + c , (4.57)

where A is a positive matrix. Q can be written as

Q = Q(x⃗0) +
1

2
(x⃗− x⃗0, A(x⃗− x⃗0)) (4.58)

with x⃗0 = −A−1⃗b. Thereby we have
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∫ ∞
−∞

e−[
1
2
(x⃗,Ax⃗)+(⃗b,x⃗)+c](dx) =

e
1
2
(⃗b,A−1b⃗)−c
√
detA

. (4.59)

4) Complex variables. Be z = x+ iy ϵC and z∗ = x− iy. Thereby dx dy = −1
2
i dz dz∗. Using∫

e−a(x
2+y2)dx dy =

2π

2a
(4.60)

we obtain∫
e−az

∗z dz∗√
2π i

dz√
2π i︸ ︷︷ ︸

≡(dz∗)(dz)

=
1

a
. (4.61)

With n complex variables z⃗, A as positive definite Hermitian matrix and the definition of
the measure (dz) ≡ dnz

(2π i)n/2
, analogously (dz∗), we have

∫
(dz∗) (dz) e−(z⃗

∗,Az⃗) =
1

detA
. (4.62)

We generalise the equations (4.56),(4.59),(4.62) to infinite-dimensional functional integrals

x⃗ = (xi) ϵRn → ϕ(x) ϵF(M4) , (4.63)

x is a continuous index, ϕ a real function. The scalar product is defined as

(ϕ1, ϕ2) =

∫
d4xϕ1(x)ϕ2(x). (4.64)

The generalisation of Eq. (4.56) is

∫
Πx

(
dϕ(x)√

2π

)
e−

1
2

∫
d4y ϕ(y)Aϕ(y) =

1√
detA

, (4.65)

where A is a positive operator and ϕ a real function. If ϕ(x) is a complex function, then

∫ (
Πx

dϕ∗(x)√
2πi

dϕ(x)√
2πi

)
e−

∫
d4y ϕ∗(y)Aϕ(y) =

1

detA
, (4.66)

The generalisation of Eqs. (4.56),(4.59),(4.62) is, written up more precisely, in case of complex
fields (analogously for real fields)

∫ (
Πx

dϕ∗(x)√
2πi

dϕ(x)√
2πi

)
e−

∫
d4x1 d4x2 ϕ∗(x1)A(x1,x2)ϕ(x2) =

1

detA
, (4.67)
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where A(x1, x2) is a positive operator, which is independent of ϕ.

We now apply this to the real scalar field theory. Be the classical Lagrangian

L0 =
1

2
(∂µϕ ∂

µϕ−m2ϕ2) . (4.68)

The normalised generating functional is

Z0[J ] =
1

N

∫
Dϕ ei

∫
d4x [L0+ iϵ

2
ϕ2+Jϕ] . (4.69)

The exponent is∫
d4x [− i

2
ϕ(2+m2 − iϵ)ϕ+ iJϕ] +

i

2

∫
Border of M4

dnµϕ ∂
µϕ︸ ︷︷ ︸

=0 ifϕ(x) decreases fast enough.

. (4.70)

We use Eq. (4.59), generalised to functional integrals: Set A = i(2 + m2 − iϵ), b = −iJ ,
c = 0 ⇒

Z0[J ] =
1

N
e
i
2

∫
J(x)(2+m2−iϵ)−1J(y)d4x d4y ·[det i(2+m2 − iϵ)]−1/2︸ ︷︷ ︸∫

Πx
dϕ(x)√

2π
e−

i
2

∫
d4xϕ(2+m2−iϵ)ϕ

(4.71)

Remarks:
1) The factors 1/

√
2π in the nominator and N cancel each other.

2) Since Z0[0] = 1, we have N = [det i(2+m2 − iϵ)]−1/2.
3) The inverse of the differential operator (2+m2 − iϵ) is

(2+m2 − iϵ)−1 = −∆F (x− y) , (4.72)

where ∆F is the Feynman propagator (=causal 2-point Green function), which is defined as

(2x +m2 − iϵ)∆F (x− y) = −δ4(x− y) . (4.73)

Hence

∆F (x− y) = lim
ϵ→0

∫
d4k

(2π)4
1

k2 −m2 + iϵ
e−ik·(x−y) . (4.74)

Thereby we finally have

Z0[J ] = e−
i
2

∫
J(x)∆F (x−y) J(y)d4xd4y . (4.75)

Thus, for example the 2-point Green function is

< 0|T [ϕ̂(x) ϕ̂(y)]|0 > =
1

i2
δ2Z0[J ]

δJ(x) δJ(y)

∣∣∣∣
J=0

=

{
1

i2
δ

δJ(x)

[(
−i
2

∫
d4x2∆F (y − x2) J(x2)−

i

2

∫
d4x1 J(x1)∆F (x1 − y)

)
e−

i
2

∫
...

]}
J=0

=
−1
i
∆F (x− y) = i∆F (x− y) , (4.76)

where we used ∆F (x− y) = ∆F (y − x).
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4.3 Grassmann Variables

In the following, we will treat anti-commuting fields in the path integral formalism. For this
we need “anti-commuting numbers”. These are called Grassmann variables. We start by
looking at their properties, before we use them.

Usual numbers: xi with [xi, xj] = 0 commuting

Grassmann numbers: ηi with {ηi, ηj} = 0 anti-commuting

The Grassmann numbers are hence defined through the algebra {ηi, ηj} = ηiηj + ηjηi = 0
for all i, j. This leads to the nil-potence of the Grassmann variables,

η2i = 0

Properties:

1) Functions f(ηi) of the Grassmann variables

Be f an analytic function, then the Taylor expansion of f(ηi) only contains a finite number
of terms. For example

f(η) = f0 + f1η as η2 = 0. f(η1, η2) = f0 + f1η1 + f2η2 + f12η1η2 (4.77)

2) Derivatives

The derivative (=left-derivative) of a Grassmann variable is defined through

∂

∂ηi
ηj = δij ,

∂

∂ηi
a = 0 where a is a c number. (4.78)

Remark: The derivative operators are anti-commuting among each other and with Grassman
variables (∂/∂ηj, ηj). For example

∂

∂ηi
(η1η2) = δi1η2 − δi2η1 . (4.79)

Remark: Sometimes it is also useful to define a right-derivative.

∂R

∂ηi
(η1η2) = (η1η2)

←
∂

∂ηi
= η1δi2 − η2δi1 . (4.80)

Since the derivative operator itself is anti-commuting, we have{
∂

∂ηi
,
∂

∂ηj

}
= 0⇒ ∂2

∂η2i
=

(
∂

∂ηi

)2

= 0 , (4.81)

which means that the derivatives are nil-potent, just like the ηi. This implies that the
integral over Grassmann variables cannot be defined as the inverse of the derivative, as the
derivative does not have an inverse.

3) Integration

The integral is defined such that it delivers the same as the derivative.

a) 1 Grassmann variable η

Be f an analytic function of η, f(η) = a0 + a1η. Then we have d
dη
f = a1 and d2

dη2
f(η) = 0.

The integration rules are hence given by
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∫
dη a = 0, for a c-number a∫
dη aη = a (4.82)

⇒
∫

dηf(η) =

∫
dη(a0 + a1η) = a1

b) n Variables ηi

∫
dηj = 0 ,

∫
dηj ηi = δij (4.83)

c) Be η, η̄ independent Grassmann variables, i.e.∫
dη =

∫
dη̄ = 0∫

dηη =

∫
dη̄η̄ = 1 . (4.84)

We have

e−η̄η = 1− η̄η + (η̄η)2

2
+ ...︸ ︷︷ ︸

0, as η2=η̄2=0

= 1− η̄η

⇒
∫
dη̄ dη e−η̄η =

∫
dη̄ dη −

∫
dη̄ dη η̄η = 0 +

∫
dη̄ η̄

∫
dη η = +1 . (4.85)

d) Generalisation to several variables

Be

η =

(
η1
η2

)
η̄ =

(
η̄1
η̄2

)
and η̄η = η̄1η1 + η̄2η2 (4.86)

then

(η̄η)2 = 2η̄1η1η̄2η2 (4.87)

and higher powers

(η̄η)P = 0 for p ≥ 3 (4.88)

Hence

e−η̄η = 1− (η̄1η1 + η̄2η2) + η̄1η1η̄2η2 . (4.89)

With the definition

dη̄dη ≡ dη̄1dη1dη̄2dη2 (4.90)

we find∫
dη̄ dη e−η̄η = 0 +

∫
dη̄1 dη1 dη̄2 dη2 η̄1η1η̄2η2 = +1 . (4.91)
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Change of variables

Sei

η = Bc and η̄ = c̄H (4.92)

where B,H are 2 × 2 c-number matrices, with detH ̸= 0, detB ̸= 0. (η, c are Grassmann
numbers.) We have

η1η2 = (B11c1 +B12c2)(B21c1 +B22c2) = (B11B22 −B21B12)c1c2 = detB c1c2 (4.93)

We have to demand that

dη1dη2 = (detB)−1dc1dc2 (4.94)

so that the integration rule∫
dη1dη2 η1η2 =

∫
dc1dc2 c1c2 (4.95)

is preserved. Thereby we find

(det(BH))−1
∫
dc̄dc e−c̄HBc = 1 (4.96)

Be A = HB. Then detA = detHB = detBH and thereby

∫
dc̄ dc e−c̄Ac = detA (4.97)

This can immediately be generalised to 2n variables cj, c̄j.

∫
dc̄ dc e−

∑
ij c̄iAijcj = detA

dc̄ dc ≡ dc̄1 dc1 ... dc̄n dcn (4.98)

4.4 Gauge Fixing

In the following we consider the gauge group SU(N) with the gauge fields Aaµ(x), a =
1, ..., N2 − 1. With respect to the gauge invariance there is a problem in the path integral
formulation: We look at the gauge field Āµ(x) = Āaµ(x)T

a. The so-called orbit Āµ is defined
as the set of functions {ĀUµ } with

ĀUµ = UĀµU
−1 − i

g
U∂µU

−1 , (4.99)

where

U(x) = exp{iωa(x)T a} ϵ SU(N) . (4.100)

This means that the whole gauge field space can be decomposed into equivalence classes
{ĀUµ }, with Āµ as representative. We look at the path integral∫

DAµeiS (4.101)
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with

DA = ΠN2−1
a=1 Π3

µ=0ΠxdA
a
µ(x) . (4.102)

The action S is invariant under local gauge transformations, i.e.

S[ĀUµ ] = S[Āµ] (4.103)

And for the integration measure we have (schematically)∫
DA =

∫
DĀ

∫
DU , (4.104)

so that we obtain for the path integral∫
DA eiS[A] =

∫
DĀ eiS[Ā]

∫
DU . (4.105)

The latter results in ∞. In order to avoid the infinite factor, we restrict the gauge freedom.
I.e. we introduce the gauge fixing condition F (A) = 0.

Gauge Fixing, Faddeev-Popov Trick

We want to implement the gauge fixing condition F a(Abµ) = 0 into the functional integral,
in a gauge-invariant way.
Remark: In non-Abelian gauge theories the Coulomb gauge ∇⃗A⃗aµ = 0 or the Euclidian
Lorentz condition ∂Eµ A

aµ
E = 0 are not unique for “large” gauge fields (i.e. gauge field configu-

rations beyond perturbation theory). This means that ∇⃗A⃗U = 0 beyond perturbation theory

has several solutions U(x) for one given A⃗a. This phenomenon is called Gribov ambiguity.
Mathematical Remarks:

a) The integration measure of the functional integral DA ≡ Πx,a,µdA
a
µ(x) is gauge invariant.

Proof:

We consider the gauge transformation Aµ → A′µ = UAµU
−1 − i

g
U∂µU

−1. The gauge fields

are Aaµ = Tr(2T aAµ) and thereby Aaµ → A
′b
µ = Tr(2T bA′µ). The integration measure becomes

DA′ = DA det
x, x′

µ, ν
a, b

(
∂A

′b
µ (x)

∂Aaν(x
′)

)
(4.106)

and (Aµ = AaµT
a)

∂A
′b
µ (x)

∂Aaν(x
′)
= Tr[2T bU(x)T aU−1(x)]δ(4)(x− x′)g ν

µ (4.107)

where U(x) = eiωs(x)T
s
. We use the formula

eiBT ae−iB = T a + i[B, T a] +
i2

2
[B, [B, T a]] + ... (4.108)

With eiB = U(x) we have

[B, T a] =
∑
s

ωs[T
s, T a] = i

∑
s

fsacT
cωs (4.109)
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And thereby we obtain for Eq. (4.107) with Eq. (4.108)

δ(4)(x− x′)g ν
µ (δab + i2

∑
s

fsabωs + ...)︸ ︷︷ ︸
Matrix δab+Cab

(4.110)

We use the formula

det(I + C) = expTr ln(I + C) = exp

(
∞∑
n=1

(−1)n+1

n
Tr(Cn)

)
(4.111)

We apply this on Eq. (4.110) and obtain

det

(
∂A

′b
µ

∂Aaν

)
= 1 (4.112)

in the lattice regularisation. (The lattice regularisation changes δ(4)(x−x′) into the Kronecker
δx,x′ .) This means that det(...) is independent of ωa(x) and thereby leads to the invariance
of DA.
(Remark: It would also be sufficient to show the invariance of DA under the infinitesimal
gauge transformation U(x) = I + iωs(x)T

s +O(ω2).)

b) Invariant group integration for compact groups G (= Haar measure)

Be gϵG a compact Lie group and f(g) a function of g. For compact Lie groups there exists
an invariant measure dg, for which holds∫

G

dg f( gg0︸︷︷︸
g′

) =

∫
G

dg′ f(g′) right invariance

∫
G

dg f( g0g︸︷︷︸
g′′

) =

∫
G

dg′′ f(g′′) left invariance (4.113)

for arbitrary g0 ϵG.

An integration over G corresponds to an integration over group parameters. With

G = {g(ω)|ω = (ω1, ..., ωd(G)) ϵD ⊂ Rd(G)} (4.114)

and the metric tensor on the group

Mij = Tr[g−1(∂ig)g
−1(∂jg)] , (4.115)

where

∂ig =
∂

∂ωi
g(ω) (4.116)

we have the explicit formula

∫
G

dg f(g) = K

∫
D

Π
d(G)
j=1 dωj | detM |1/2f(g(ω)) (4.117)
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in which the normalisation constant K is fixed by the requirement

1
!
=

∫
G

dg = K

∫
D

dω | detM |1/2 . (4.118)

Example:

U(1) = {eiθ| − π ≤ θ ≤ π}
| detM |1/2 = |i2|1/2 = 1∫

dgf(g) =
1

2π

∫ π

−π
dθ f(eiθ) (4.119)

Faddeev-Popov-Trick

We consider the functional

∆−1[A] ≡
∫
DU δ(F [AU ]) (4.120)

where DU = ΠxdU(x) is the group measure (left- and right-invariant), since U is a compact
group. The δ functional is explicitly Πx,aδ(F

a[AbUµ (x)]) und AUµ = UAµU
−1 − i

g
U∂µU

−1.

∆−1 is gauge invariant

∆−1[AU ] =

∫
DU ′ δ(F [AUU

′
]) =

∫
D(UU ′)δ(F [AUU

′
])

=

∫
DU ′′δ(F [AU

′′
]) = ∆−1[A] (4.121)

Trick: Implement this into the path integral. We have

1 = ∆[A]

∫
DU δ(F [AU ]) (4.122)

and thereby∫
DA eiS =

∫
DĀ ∆[Ā]

∫
DU δ(F [ĀU ])eiS . (4.123)

We perform a gauge transformation ĀUµ → Āµ and use that DA,S[A],∆[A] are gauge in-
variant so that we obtain∫

DA eiS =

∫
DĀ ∆[Ā]

∫
DU δ(F [Ā])eiS =

∫
DĀ ∆[Ā] δ(F [Ā]) eiS

∫
DU (4.124)

and thereby now define the functional Z =
∫
DAeiS as (Ā→ A)

Z → Z =
1

N

∫
DA ∆[A] δ(F [A])eiS (4.125)

We now calculate ∆−1[A]. By rescaling the minimal gauge transformation parameter with
the gauge coupling g, ωa → gωa, und U(x) = 1+igωaT

a+O(ω2) und U−1 = 1−igωa(x)T a+
O(ω2), we obtain
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Aaµ(x)→ A
′a
µ (x) = Tr(2T aA′µ) = Aaµ + gfabcA

b
µω

c − ∂µωa +O(ω2) (4.126)

We have

DU = ΠxdU(x) = ΠxΠ
d(G)
a=1 dωa(x)

√
| detM |K ≡ Dω (4.127)

and thereby

∆−1[A] =

∫
Dω Πa,xδ(F

a[AU(ω)(x)]) (4.128)

which leads after a variable transformation ωa(x)→ F a[AU(ω)] to

=

∫
DF

δ(F [AU ])

| det δFa
δωb
|
=
∑
Ā

1

| det δFa[AU ]
δωb

|AU=Ā
, (4.129)

where Ā is the solution of F [AU ] = 0 for a given A: (In general, there are several solutions
for F [AU ] = 0, Gribov ambiguity. But we here do perturbation theory.) We want to do
perturbation theory and only look at fluctuations around (the field configuration) Aaµ = 0.
Thereby, F a[AU ] = 0 has a unique solution, and we obtain

=
1

| det δF
δω
|
ω⃗=0

(4.130)

so that

∆[A] = | det δF
a

δωb
[AU ]|ω⃗=0 (4.131)

This is called:

Faddeev-Popov Determinant

∆[A] = | det
x,y

Mab(x, y)| (4.132)

where

Mab(x, y) =
δF a[Aω(x)]

δωb(y)
|ω⃗=0 (4.133)

It is sufficient to derive F a[AU ] for infinitesimal gauge transformations. For the calculation
of Mab(x, y) we use that

δAaωµ(x)

δωb(y)
= − (∂µδab + gfeabA

e
µ(x))︸ ︷︷ ︸

≡∆abµ

δ(4)(x− y) (4.134)

∆µ is the covariant derivative in the adjoint representation. For the covariant gauge fixing
condition F a[A] = ∂µAaµ = 0 we find

F a[Aω] = ∂µAaµω(x) = ∂µAaµ(x)− ∂µ(∆ac
µ ω

c(x)) (4.135)

The first summand is 0 because of the gauge fixing condition. And thereby
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Mab(x, y) =
δF a[Aω(x)]

δωb(y)
|ω⃗=0 = −∂µ∆ac

µ δcbδ
(4)(x− y)

= −∂µ(∂µδab + gfcabA
c
µ(x))δ

(4)(x− y) (4.136)

For the gauge fixing condition F a[A] = 0 → F a[A] = Ba(x) (Ba are functions independent
of A) we have the same Faddeev-Popov determinant as for the covariant gauge fixing case
and thereby the functional Z

Z ∼
∫
DA ∆[A] δ(F [A]−B)eiS (4.137)

Gauge-invariant quantities are independent of a change of the gauge fixing condition. We
therefore average over Ba(x) with the weighting factor

ρ =

∫
DB exp

(
− i

2ξ

∫
d4x

∑
a

B2
a(x)

)
ξϵR (4.138)

This solely changes the normalisation factor. We use that

det(Aij) =

∫
dc̄ dc e−

∑
ij c̄iAijcj (4.139)

where {ci, cj} = 0, ci are Grassmann variables. For the Faddeev-Popov determinant

∆[A] = | det
x, y
a, b

(−iM)| (4.140)

we then have (the factor (−i) is convention)

| det(−iM)| = const.

∫
Dc̄Dc exp

(
i

∫
d4x1 d

4x2 c̄a(x1)Mab(x1, x2)cb(x2)

)
(4.141)

where

Dc̄Dc = Πx,adc̄a(x) dca(x) (4.142)

and ca(x), c̄a(x) are Grassmann fields. I.e.

{ca(x), cb(y)} = 0 {c̄a(x), c̄b(y)} = 0 {ca(x), c̄b(y)} = 0 . (4.143)

The fields ca, c̄a transform as scalar fields under Lorentz transformations, i.e. they are anti-
commuting spin-0 fields. They have the wrong statistics. They are called Faddeev-Popov ghosts
and are pure help fields. In the covariant gauge ∂µA

aµ = 0 we have Eq. (4.136) and after
partial integration

i

∫
d4x d4y c̄a(x)Mabcb(y) = i

∫
d4x ∂µc̄a(x)(∂µδab + gfcabA

c
µ(x))cb(x) (4.144)

so that the functional

Z ∼
∫
DADc̄Dc ei

∫
d4x Leff (x) (4.145)
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with

Leff = Lclass(x) + Lgauge fix(x) + Lghost(x) (4.146)

= Lclass −
1

2ξ
(∂µA

aµ)2 + ∂µc̄a(x)(∂µδab + gfcabA
c
µ)cb(x) (4.147)

Let us summarise: We have for the total action functional with fermions

Z ∼
∫
Dψ̄DψDADc̄Dc exp i

∫
d4x [L+ LGF + LFP ] (4.148)

L = usual Lagrangian

LGF = Gauge fixing, LGF = − 1

2ξ
(∂A)2 etc.

LFP = ∂c̄∆c for gauge theories, non-Abelian and non-linear gauge fixing

Propagators: The matrices between the bilinear forms of the fields in the total Lagrangian
depend on the gauge fixing.

Example:

LGF =
−1
2ξ
∂A · ∂A

Z ∼
∫
DA exp i

∫
d4x d4y

1

2
Aaµ[∆

−1
F (x− y)]abµνAbν

(∆−1F )abµν ≡ [∂2gµν − ∂µ∂ν +
1

ξ
∂µ∂ν ]δ4(x− y)δab

(∆F )
ab
µν(q) =

dµνδab
q2 + iϵ

dµν = −gµν + (1− ξ)qµqν
q2

(4.149)

’t Hooft-Feynman gauge:

Higgs phenomenon in SO(2):

L = −1

4
F 2
µν + (Dµϕ)

†(Dµϕ)− V (ϕ)

V (ϕ) =
λ

4

(
ϕ2 − µ2

λ

)2

iDµ = i∂µ − gAµ . (4.150)

With ϕ = 1/
√
2(ϕ1 + v + iϕ2) we have

L = −1

4
F 2
µν +

g2v2

2
A2
µ +

1

2
(∂µϕ2)

2 − 1

2
(2λv2)ϕ2

1 +
1

2
(∂µϕ1)

2

+gvAµ(∂
µϕ2) + 3- and 4-point couplings (4.151)

Gauge fixing The gauge fixing is chosen such that Ltot is diagonal in the bilinear expressions
(gauge fields, Goldstone fields). There are hence no transitions between gauge and Goldstone
field.

Lfix = −
1

2ξ
[∂µA

µ − ξmAϕ2]
2 mA = gv (4.152)
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The diagonal progagators are:

Goldstone field:
i

q2 − ξm2
A

(4.153)

Gauge field: i
−gµν + (1− ξ) qµqν

q2−ξm2
A

q2 −m2
A

(4.154)

and

ξ →∞ : unitary theory (no Goldstone contribution)

ξ → 1 : Feynman gauge (Goldstone propagator ∼ mA mass)

Renormalisation maximally simplified (4.155)

Ghosts: Cancel the unphysical longitudinal contributions in the propagators of the gauge
fields

∆µν
F =

i

q2 −m2
A

[−gµν +
qµqν
q2

]− iξ

q2 − ξm2
A

qµqν
q2

=
i

q2 −m2
A

[−gµν +
qµqν
m2
A

]− i

q2 − ξm2
A

qµqν
m2
A

(4.156)

The gauge fixing Lagrangian for the GSW theory in the Rξ gauge reads:

LGF = −1

2
[F 2
γ + F 2

Z + 2F+F−] (4.157)

Fγ =
1

ξ
1/2
γ

∂µA
µ (4.158)

FZ =
1

ξ
1/2
Z

[∂µZ
µ − ξZmZχ] (4.159)

F± =
1

ξ
1/2
W

[∂µW
±µ ∓ iξWmWϕ

±] (4.160)

The propagators for the gauge bosons in the Rξ gauge are

i

k2 −m2
V + iϵ

[−gµν + (1− ξV )
kµkν

k2 − ξVm2
V + iϵ

] for V = W±, Z

−igµν
k2 + iϵ

for V = A . (4.161)

The Goldstone propagators are

i

k2 − ξVm2
V + iϵ

for V = W,Z

i

k2 + iϵ
for V = A . (4.162)
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4.5 Interactions

We start from the following Lagrangian

L =
1

2
(∂µϕ)(∂

µϕ)− 1

2
(m2 − iϵ)ϕ2 − g

n!
ϕn(x) = L0 + LWW with LWW = − g

n!
ϕn(x)(4.163)

The vacuum functional can be written as

Z[J ] = N
∫
Dϕ exp

(
i

ℏ

∫
d4zLWW (ϕ(z))

)
exp

(
i

ℏ

∫
d4x[L0 + Jϕ]

)
. (4.164)

With

ℏ
i

δ

δJ(x1)
...
ℏ
i

δ

δJ(xn)
Z0[J ] = N

∫
Dϕ ϕ(x1)...ϕ(xn) exp

(
i

ℏ

∫
d4x[L0 + Jϕ]

)
(4.165)

we obtain:

Z[J ] = N
∫
Dϕ exp

(
i

ℏ

∫
d4zLWW

(
ℏ
i

δ

δJ(z)

))
exp

(
i

ℏ

∫
d4x[L0 + Jϕ]

)
= N ′ exp

(
i

ℏ

∫
d4zLWW

(
ℏ
i

δ

δJ(z)

))
Z0[J ] . (4.166)

N ′ is given by Z[0] = 1. Thereby the central formula of perturbation theory is

Z[J ] =
exp

(
i
ℏ

∫
d4z LWW

(
ℏ
i

δ
δJ(z)

))
Z0[J ]

exp
(
i
ℏ

∫
d4z LWW

(
ℏ
i

δ
δJ(z)

))
Z0[J ]

∣∣∣
J=0

(4.167)

For interacting n-point functions we then have

⟨0|T [ϕ̂(x1)...ϕ̂(xn)]|0⟩WW =

ℏ
i

δ
δJ(x1)

...ℏ
i

δ
δJ(xn)

exp
(
i
ℏ

∫
d4z LWW

(
ℏ
i

δ
δJ(z)

))
Z0[J ]

∣∣∣
J=0

exp
(
i
ℏ

∫
d4z LWW

(
ℏ
i

δ
δJ(z)

))
Z0[J ]

∣∣∣
J=0

(4.168)

The denominator describes the vacuum graphs, which are divided out.

4.5.1 ϕ4 Theory

We evaluate Eq. (4.167) until order λ for (from now on again ℏ ≡ 1)

LWW = − λ
4!
ϕ4 . (4.169)

For the nominator Z we have

Z =

[
1− iλ

4!

∫
d4z

(
1

i

δ

δJ(z)

)4

+O(λ2)

]
exp

(
− i
2

∫
d4xd4yJ(x)∆F (x− y)J(y)

)
︸ ︷︷ ︸

Z0[J ]

.(4.170)
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Side calculation:

(1) 1
i

δ
δJ(z)
Z0[J ] = −

∫
d4xJ(x)∆F (z − x)Z0[J ]

(2) 1
i2

δ2

δJ(z)δJ(z)
Z0[J ] =

{
i∆F (0) +

[∫
d4x∆F (z − x)J(x)

]2}Z0[J ]

(3)
(

1
i

δ
δJ(z)

)3
Z0[J ] =

{
−3i∆F (0)

∫
d4x∆F (z − x)J(x)

−
[∫
d4xJ(x)∆F (z − x)

]3}Z0[J ]

(4)
(

1
i

δ
δJ(z)

)4
Z0[J ] =

{
−3[∆F (0)]

2 + 6i∆F (0)
[∫
d4x∆F (z − x)J(x)

]2
+
[∫
d4x∆F (z − x)J(x)

]4}Z0[J ] .

(4.171)

Representation as diagram: The ∆F (x − y) is a propagator propagating from x to y. The
∆F (0) is a closed loop. Furthermore, we have for (4) (cf. Fig. 4.4):(

1

i

δ

δJ(z)

)4

Z0[J ] =

{
−3 Picture1 ) + 6i

∫
d4x1d

4x2 Picture2 +{∫
Π4
j=1d

4xj Picture3 +O(λ2)
}
Z0[J ] . (4.172)

Figure 4.4: The three pictures “Picture1/2/3” appearing in Eq. (4.172)

The first “Picture1” is a vacuum diagram, which is just bubbles without external lines. The
factors 3 and 6 are symmetry factors. The lines with an attached J(x) are external lines. In
“Picture2” we have two external lines, in “Picture3” we have four external lines.

The denominator N :

N = Z|J=0 = 1− iλ

4!

∫
d4z(−3 Picture1 +O(λ2) . (4.173)

Thereby we have

Z[J ] =
nominator

denominator
= nominator

(
1 +

iλ

4!

∫
d4z(−3 Picture1 ) +O(λ2)

)
=

{
1− iλ

4!

∫
d4z

(
6i

∫
d4x1d

4x2 Picture2 +

∫
Π4
j=1d

4xj Picture3

)
+O(λ2)

}
Z0[J ] .

(4.174)

This means that vacuum diagrams do not appear in normalised Z[J ]. This holds for all
orders in perturbation theory. For the 4-point function

⟨0|T [ϕ̂(x1)ϕ̂(x2)ϕ̂(x3)ϕ̂(x4)]|0⟩|WW (4.175)
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Figure 4.5: Visualisation of Eq. (4.175), the fourth derivative of Z w.r.t. the sources.

we obtain with Eq. (4.168) and (4.75) then (cf. Fig. ??)

= τ(x1x2)τ(x3x4) + τ(x1x3)τ(x2x4) + τ(x1x4)τ(x2x3) + τc(x1, x2, x3, x4) . (4.176)

Here τc the denotes connected Green function. We are looking for a generating functional
W [J ] for connected Green functions τc(x1, ..., xn). It is given by

Z[J ] = exp(iW [J ]) . (4.177)

This can be seen as follows. Because of Z[0] = 1 we have W [0] = 0. And for the derivatives
we have

1

i

δ

δJ(x1)
Z =

δW

δJ(x1)
exp(iW )⇒ δW

δJ(x)

∣∣∣∣
J=0

= 0 (4.178)

1

i2
δ

δJ(x1)

δ

δJ(x2)
Z =

δW

δJ(x1)

δW

δJ(x2)
exp(iW )− i δ2W

δJ(x1)δJ(x2)
exp(iW ) . (4.179)
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For J = 0 it holds:

δ2W

δJ(x1)δJ(x2)

∣∣∣∣
J=0

= iτ(x1, x2) (4.180)

1

i4
δ4

δJ(x1)δJ(x2)δJ(x3)δJ(x4)
Z
∣∣∣∣
J=0

= τ(x1, x3)τ(x2, x4) + τ(x1, x4)τ(x2, x3)

+τ(x1, x2)τ(x3, x4)

+(−i) 1
i2

δ4W

δJ(x1)δJ(x2)δJ(x3)δJ(x4)
(4.181)

And thereby

i
δ4W

δJ(x1)δJ(x2)δJ(x3)δJ(x4)

∣∣∣∣
J=0

= τc(x1, x2, x3, x4) . (4.182)

Thereby W [J ] = −i lnZ[J ] generates the connected Green functions.

4.6 Fermi Fields

With the canonical field quantisation of the Dirac field operators

ψ̂(x) , ˆ̄ψ(x) = ψ̂†γ0 , (4.183)

we have to postulate anti-commutation rules in order to obtain the Fermi statistics,

{ψ̂r(x), ψ̂s(y)} = { ˆ̄ψr(x), ˆ̄ψs(y)} = 0

{ψ̂r(x), ˆ̄ψs(y)}x0=y0 = δrsδ
(3)(x⃗− y⃗) . (4.184)

In the functional integral quantisation we need, since there is no c-number equivalent to

ψ̂, ˆ̄ψ, Grassmann variables.

We have seen for the Grassmann variables ci, c̄i (i = 1, ..., n) that∫
dc̄ dc e−

∑
ij c̄iAijcj = detA

dc̄ dc ≡ dc̄1 dc1 ... dc̄n dcn . (4.185)

In order to describe Fermi fields, we make the transition to the infinite-dimensional Grass-
mann algebra,

ci → ψ(x) = ψr(x) , r = Spinor-Index . (4.186)

Here ψ(x) is a Grassmann ”field”, i.e. a Grassmann variable with a continuous index x ∈M4.
The Grassmann algebra

{ψr(x), ψs(y)} = 0 (4.187)

holds and

δ

δψs(y)
ψr(x) = δrsδ

(4)(x− y) ,
∫
dψr(x) = 0 ,

∫
dψr(x)ψs(x) = δrs . (4.188)
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We furthermore need the independent Grassmann field ψ̄(x) = ψ̄r(x). Here, the algebra

{ψ̄r(x), ψ̄s(y)} = {ψr(x), ψ̄s(y)} = 0 (4.189)

holds. The differentiation and integration are analogous to the case ψ(x).

The Lagrangian for the free Dirac theory reads

L0 = iψ̄(x)γµ∂µψ(x)−mψ̄(x)ψ(x)
= ψ̄[iγµ∂µ −m]ψ . (4.190)

We write up a normalised generating functional analogous to the scalar field. For this we
introduce the Grassmann fields η = ηr(x) und η̄ = η̄s(x), which serve as sources for the fields
ψ̄r(x), respectively, ψs(x). Thereby we have for the normalised generating functional

Z0[η̄, η] =
1

N

∫
Dψ̄Dψ exp

(
i

∫
d4x[L0 + η̄(x)ψ(x) + ψ̄(x)η(x)]

)
, (4.191)

where

N =

∫
Dψ̄Dψ exp

(
i

∫
d4xL0(x)

)
(4.192)

and

Dψ̄Dψ = ΠxΠ
4
r=1dψ̄r(x)dψr(x) . (4.193)

The Green functions are given by

⟨0|T [ψ̂r1(x1)...ψ̂rn(x) ˆ̄ψs1(y1)... ˆ̄ψsn(yn)]|0⟩ =
∣∣∣∣ 1in
(

1

−i

)n
δ2nZ0[η̄, η]

δη̄r1(x1)...δηsn(yn)

∣∣∣∣
η=η̄=0

. (4.194)

The factors 1/(−i) appear because

δ

δηsi(yi)
ψ̄r(x)ηr(x) = −ψ̄r(x)

δ

δηsi(yi)
ηr(x) = −ψ̄si(yi) . (4.195)

Note furthermore that

δ2

δη(x)δη̄(y)
= − δ2

δη̄(y)δη(x)
. (4.196)

We look for a formula Z0 analogous to the scalar case. We introduce the following notation

S−1F ≡ iγµ∂
µ −m . (4.197)

Then

(iγµ∂
µ
x −m)rr1SF r1s(x− y) = δrsδ

(4)(x− y) , (4.198)

where SF (x− y) is the Feynman propagator for a free Dirac fermion. We have

SF (x− y) =
∫

d4k

(2π)4
k/+m

k2 −m2 + iϵ
e−ik(x−y) . (4.199)
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Furthermore, we have the respresentation

SF (x− y) = (iγ · ∂x +m)∆F (x− y) . (4.200)

We hence write Eq. (4.191) as

Z0[η̄, η] =
1

N

∫
Dψ̄Dψei

∫
d4xQ , (4.201)

where

Q = ψ̄S−1F ψ︸ ︷︷ ︸
L0

+η̄ψ + ψ̄η . (4.202)

It is

Q = Q0 + (ψ̄ − ψ̄0)S
−1
F (ψ − ψ0) , (4.203)

where

Q0 = −η̄SFη = −η̄(x)
∫
d4z SF (x− z)η(z) (4.204)

ψ0 = −SFη = −
∫
d4z SF (x− z)η(z) (4.205)

ψ̄0 = −η̄SF = −
∫
d4z η̄(z)SF (z − x) . (4.206)

Thereby hence

Z0[η̄, η] =
1

N
exp

(
−i
∫
d4x d4z η̄(x)SF (x− z)η(z)

)
∫
Dψ̄Dψ exp

(
i

∫
d4x d4z (ψ̄ − ψ̄0)S

−1
F (ψ − ψ0)

)
. (4.207)

We perform a field transformation:

ψ′(x) = ψ(x)− ψ0(x) and ψ̄′(x) = ψ̄(x)− ψ̄0(x) . (4.208)

It is

Dψ̄′Dψ′ = Dψ̄Dψ . (4.209)

We apply Eq. (4.185) to the second integral and obtain

det(−iS−1F ) = det[−i(iγ · ∂ −m)] . (4.210)

Thereby we have

N = det(−iS−1F ) (4.211)

and hence for the normalised generating functional

Z0[η̄, η] = e−i
∫
d4xd4yη̄(x)SF (x−y)η(y) . (4.212)

Check:

⟨0|T [ψ̂(x) ˆ̄ψ(y)]|0⟩ =
−1
i2

δ2Z0

δη̄(x)δη(y)

∣∣∣∣
η=η̄=0

=
δ2

δη̄(x)δη(y)

{
1− i

∫
d4z1 d

4z2 η̄(z1)SF (z1 − z2)η(z2) + ...

}∣∣∣∣
η=η̄=0

= iSF (x− y) . (4.213)
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4.7 Generating Functional for Interacting Field Theo-

ries

We consider an interacting field theory for a hermitian scalar field and a Dirac field. The
classical Lagrangian be of the form

L = L0(Φ) + L0(ψ̄, ψ) + LI(ψ̄, ψ,Φ) , (4.214)

where the index 0 denotes the free Lagrangians and the index I stands for the interaction
Langrangian. An example for an interaction is the Yukawa interaction

LI = −yψ̄ψΦ , (4.215)

where y denotes the Yukawa coupling. Note: In the case of Dirac fermions the LI contains
the same number of ψ and ψ̄, as otherwise the Lagrangian would violate charge conservation.
We can derive the generating functional of the above theory by making in LI the following
replacements:

ψ̄(z)→ −1
i

δ

δη(z)
, ψ(z)→ 1

i

δ

δη̄(z)
, Φ(z)→ 1

i

δ

δJ(z)
. (4.216)

Thereby we obtain the central formula of functional perturbation theory,

Z[J, η̄, η] =
exp

(
i
∫
d4z LI

(
−1

i
δ

δη(z)
, 1
i

δ
δη̄(z)

, 1
i

δ
δJ(z)

))
Z0[J ]Z0[η̄, η]

exp
(
i
∫
d4z LI

(
1
i

δ
δη(z)

, 1
i

δ
δη̄(z)

, 1
i

δ
δJ(z)

))
Z0[J ]Z0[η̄, η]

∣∣∣
J=η̄=η=0

. (4.217)

4.8 Non-Abelian Gauge Theories

In the following we consider the gauge group SU(N), i.e. we have the gauge fields Aaµ(x)
(a = 1, ..., N2 − 1) and a Dirac field ψj(x) (j = 1, ..., N) in the fundamental representation
F , respectively ψ̄j(x) in the representation F̄ . The fields transform according to

Aµ → A′µ = UAµU
−1 − i

g
U∂µU

−1 (4.218)

ψ → ψ′(x) = U(x)ψ(x) (4.219)

ψ̄ → ψ̄′(x) = ψ̄(x)U †(x) , (4.220)

where

U(x) = exp iωa(x)T
a ∈ SU(N) . (4.221)

The generators of the group SU(N) are denoted by T a. The classical Lagrangian is given
by

L(x) = −1

4
F a
µν(x)F

µνa(x) + ψ̄(x)(iγµDµ −m)ψ(x) . (4.222)

Here F µν is the field strength tensor, Dµ the covariant derivative and m the mass of the
fermion. We have gotten to know the Faddeev-Popov trick, with which we can solve the
problem of gauge invariance in the path integral quantisation. Thereby the gauge fixing
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condition is implemented in the Lagrangian. Furthermore, the Faddeev-Popov ghosts appear,
which are pure help fields. They are scalar fields, which obey the Fermi statistics, however.
Furthermore, we have seen how the path integral formalism looks for Fermi fields. With all
this, we can finally write up the generating functional for non-Abelian gauge theories. It is
proportional to

Z ∼
∫
DADψ̄DψDc̄Dc ei

∫
d4xLeff (x) . (4.223)

Here Leff is given in the covariant gauge through

Leff = Lclass(x) + Lgaugefix(x) + Lghost(x)

= −1

4
F a
µνF

aµν + ψ̄l(iγ
µDµlj −mδlj)ψj −

1

2ξ
(∂µA

aµ)2

+∂µc̄a(x)(∂µδab + gfcabA
c
µ)cb(x) . (4.224)

For the computation of the Green functions, we introduce sources:

Aaµ(x) ↔ Jaµ(x) real function (4.225)

ψsj(x) ↔ η̄sj(x) Grassmann variable (4.226)

ψ̄sj(x) ↔ ηsj(x) Grassmann variable . (4.227)

For mathematical reasons, we also introduce sources for the ghost fields:

ca(x) ↔ ζ̄a(x) Grassmann variable (4.228)

c̄a(x) ↔ ζa(x) Grassmann variable . (4.229)

Thereby we obtain for the normalized generating functional

Z0[J, η, η̄, ζ, ζ̄] =
1

N

∫
DADψ̄DψDc̄Dc ei

∫
d4x{Leff+AµJµ+ψ̄η+η̄ψ+c̄ζ+ζ̄c} , (4.230)

where

N = nominatorJ=η=η̄=ζ=ζ̄=0 . (4.231)

The Green functions are given by

⟨0|T [Âaµ(x)...ψ̂sj(y)... ˆ̄ψrl(z)...ĉb(u)...ˆ̄cd(v)]|0⟩ (4.232)

=
1

i

δ

δJaµ(x)
...
1

i

δ

η̄sj(y)
...

1

−i
δ

ηrl(z)
...
1

i

δ

δζ̄b(u)
...

1

−i
δ

δζd(v)
Z|sources=0 . (4.233)

The generating functional for connected Green functions is given by

W [J, η, η̄, ζ, ζ̄] =
1

i
lnZ[J, η, η̄, ζ, ζ̄] . (4.234)

Example: We consider the Abelian U(1) gauge theory with covariant gauge,

∂µAµ = 0 . (4.235)

Thereby we have, as fabc = 0,

Mab(x, y) = −∂µ∂µδ(4)(x− y) . (4.236)
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The generating functional for physical Green functions is then given by

Z[J, η, η̄] =

∫
DADψ̄Dψ ei

∫
d4x {Lclass− 1

2ξ
(∂µAµ)2+JA+ψ̄η+η̄ψ}

×
∫
Dc̄Dc ei

∫
d4x ∂µc̄∂µc (4.237)

×
{∫
DADψ̄Dψ ei

∫
d4x {Lclass− 1

2ξ
(∂µAµ)2}

∫
Dc̄Dc ei

∫
d4x ∂µc̄∂µc

}−1
.

Since there is no ghost-photon interaction, the ghost part factorizes and cancels against the
denominator. If a non-linear gauge fixing condition is chosen, however, there are also ghosts
in the Abelian case.

Non-Abelian gauge theory, axial gauges:

F [Aaµ] = nµAaµ = 0 , (4.238)

where

nµ = const. 4− vector often nµ = (0, 0, 0, 1) . (4.239)

The Faddeev-Popov determinant ∆ is then independent of Aaµ and the ghost part in the
nominator of Z cancels against the denominator. This gauge, however, leads to a complicated
gauge field propagator.

4.9 Green Function in Perturbation Theory

We will use in the following the covariant gauge fixing. We decompose the action, i.e.

S =

∫
d4xLeff =

∫
d4xL0 +

∫
d4xLI . (4.240)

Here is with

F a
µν = ∂µA

a
ν − ∂νAaµ − gfabcAbµAcν (4.241)

and after partial integration

L0 =
1

2
Aaµ

(
gµν∂2 −

(
1− 1

ξ

)
∂µ∂ν

)
Aaν + ψ̄l(i∂/−m)ψl − c̄a∂2ca (4.242)

and

LI = LI(A, ψ̄, ψ, c̄, c)

=
g

2
fabc(∂

µAνa − ∂νAµa)AbµAcν −
g2

4
fabefcdeA

aµAbνAcµA
d
ν + gfabc(∂µc̄a)cbA

cµ

−gψ̄jT ajlγµψlAaµ , j, l = 1, ..., N, a, b, c, d, e = 1, ..., N2 − 1 . (4.243)

Assuming that the coupling g is small we can expand eiS and obtain

ei
∫
d4x (Leff+ source terms ) =

{
1 + i

∫
d4xLI(x) +

i2

2

(∫
d4z LI(z)

)2

+ ...

}
ei

∫
d4x (L0+ source terms ) . (4.244)
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And thereby we have the central formula of functional perturbation theory

Z[J, η, η̄, ζ, ζ̄] = e
i
∫
d4z LI( 1i

δ
δJ
,− 1

i
δ
δη
, 1
i
δ
δη̄
, 1
−i

δ
δζ
, 1
i
δ
δζ̄

)Z0[J, η, η̄, ζ, ζ̄]

nominator|sources=0

. (4.245)

Here the normalized generating functional of the free theory is given by

Z0 =

∫
DADψ̄DψDc̄Dc ei

∫
d4x {L0(x)+JA+ψ̄η+η̄ψ+ζ̄c+c̄ζ}

nominator|sources=0

= e−i
∫
d4x d4y{ 1

2
Jµa (x)D

ab
Fµν(x,y)J

ν
b (y)+η̄rl(x)S

lj
Frs(x−y)ηsj(y)+ζ̄a(x)∆

ab
F (x−y,m=0)ζb(y)} , (4.246)

with the causal Green function DFµν , for which holds(
∂2gµα −

(
1− 1

ξ

)
∂µ∂α

)
x

δacD
cb αν
F (x− y) = δabδ

(4)(x− y)gµν

Dab
F µν(x− y) = lim

ϵ→0+

∫
d4k

(2π)4
e−ik(x−y)

[
− gµν
k2 + iϵ

+ (1− ξ) kµkν
(k2 + iϵ)2

]
δab . (4.247)

We have the following gauge parameters:

ξ = 1 : Feynman gauge
ξ = 0 : Landau gauge .

(4.248)

For the ghost propagator we have

δac∂
2∆cb

F (x− y,m = 0) = −δabδ(4)(x− y) ⇒

∆ab
F (x− y) = lim

ϵ→0

∫
d4k

(2π)4
δab

k2 + iϵ
e−ik(x−y) . (4.249)

And for the fermion propagator

(iγµ∂µ −m)rs′δjl′S
l′l
F s′s(x− y) = δjlδrsδ

(4)(x− y) ⇒

SljF rs(x− y) = lim
ϵ→0

∫
d4k

(2π)4
(k/+m)rsδlj
k2 −m2 + iϵ

e−ik(x−y) . (4.250)

Check: The 2-point function of the free theory is given by

⟨0|T [Âaµ(x)Âbν(y)]|0⟩free =
1

i2
δ2Z0

δJaµ(x)δJ bν(y)

∣∣∣∣
sources=0

= iDab
F µν(x− y) (4.251)

⟨0|T [ψ̂rj(x) ˆ̄ψsl(y)]|0⟩free = iSljF rs(x− y) (4.252)

⟨0|T [ĉa(x)ˆ̄cb(y)]|0⟩free = i∆ab
F (x− y,m = 0) . (4.253)

In the following we describe how a T -matrix element Tfi is calculated. For this we consider
the process i→ f up to order gn. We have

⟨f |(Ŝ − I)|i⟩ = iTfi(2π)4δ(4)(pf − pi) . (4.254)

The procedure is as follows

1. Determine the functional Z, respectively W , up to order gn.
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2. Determine the Green function corresponding to the process

Ga...l...j
conn. µ...r...s(x1, ..., xn) = ⟨0|T [Aaµ(x), ..., ψrl, ..., ψ̄sj]|0⟩connected (4.255)

through functional derivation of W .

3. Truncate, i.e. multiply with the inverse free propagators.
This delivers

Gconnected,truncated(x1, ..., xn) . (4.256)

4. Fourier transformation

G̃(p1, ..., pn)(2π)
4δ(pf − pi) =

∫
Πn
j=1d

4xje
−i

∑
pjx

j

G(xj) . (4.257)

5. Multiplication with the external wave functions and going on-shell,

⇒ iTfi = lim
p2j→m2

j

G̃trunc . (4.258)

4.10 The Feynman Rules of Quantum Chromodynam-

ics

We have quarks q with spinor index r = 1, ..., 4 and color index l = 1, ..., 3, qrl(x). Quarks
are triplets w.r.t. the SU(3). We have gluons G with the Lorentz index µ = 1, ..., 4 and the
color index a = 1, ..., 8, Ga

µ(x). They are massless spin-1 fields. The Fourier decomposition
is given by

Ga
µ(x) =

∫
d3k

2k0(2π)4

∑
λ

{eikxϵ∗aµ (λ)αa†(k, λ) + e−ikxϵaµ(λ)α
a(k, λ)} , (4.259)

where ϵµ is the polarization vector and λ = 1, ..., 4 denotes the polarization index. The α(†)

are the annihilators (creators). The polarization indices λ = 1, 2 denote physical polarization
states and the indices 3,4 unphysical polarization states. For the creators and annihilators
it holds that

[αa(k, λ), α†b(k′, λ′)] = −(2π)3 2k0 gλλ′δabδ(3)(k⃗ − k⃗′) . (4.260)

The polarization sum is given by∑
physical pol. λ=1,2

ϵ∗aµ (k, λ)ϵbν(k, λ) = δab

(
−gµν +

kµk̄ν + k̄µkν
kk̄

)
, (4.261)

where k = (k0, k⃗) und k̄ = (k0,−k⃗). Because of the conservation of the fermion current we
had in quantum electrodynamics (QED) (QED)∑

physical. pol. λ=1,2

ϵ∗µ(k, λ)ϵν(k, λ) = −gµν for QED . (4.262)
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In QCD this rule does not hold any more. For the ghost fields we have the Fourier decom-
position

ca(x) =

∫
d3k

2k0(2π)3
[
fa(k)e−ikx + d†a(k)eikx

]
, (4.263)

where fa(k) (d†a) destroys (generates) a ghost and a = 1, ..., 8. For the quark and antiquark
spinors it holds (s, s′ spinor indices, l colour index)

(p/−m)ss′uls′(p, r) = 0 (4.264)

(p/+m)ss′vls′(p, r) = 0 where r = ±1

2
. (4.265)

They are normalized as (r, r′ spin indices, l, j color indices)

ūl(p, r) · uj(p, r′) = 2mδrr′δlj (4.266)

v̄l(p, r) · vj(p, r′) = −2mδrr′δlj , l, j = 1, 2, 3 r, r′ = ±1

2
. (4.267)

Furthermore it holds that

∑
r=±1/2

ūls(p, r)ujs′(p, r) = δlj(p/+m)ss′ (4.268)

∑
r=±1/2

v̄ls(p, r)vjs′(p, r) = δlj(p/−m)ss′ . (4.269)
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Feynman rules: An example for the derivation of the Feynman rules will be treated in
the exercise sheet. Altogether the Feynman rules of QCD are given by

u(p) quark in the initial state

ū(p) quar in the final state

v̄(p) antiquark in the initial state

v(p) antiquark in the final state

1 ghost in the initial or antighost in the final state

1 ghost in the final or antighost in the initial state

ϵµ,a gluon in the initial state

ϵ∗µ,a gluon in the final state

δab[−gµν + (1− ξ) pµpν
p2+iϵ

] i
p2+iϵ

δab i
(p2+iϵ)

δlj i
(p/−m+iϵ)sr

−gsfabc[(p− q)ρgµν + (q − r)µgνρ + (r − p)νgρµ]
3-gluon vertex (all momenta incoming), p+ q + r = 0]

−ig2sfxacfxbd[gµνgρσ − gµσgνρ]
−ig2sfxadfxbc[gµνgρσ − gµρgνσ]
−ig2sfxabfxcd[gµρgνσ − gµσgνρ]
4-gluon vertex (all momenta incoming),
sum of all moment = 0]

gsf
abcqµ

ghost-ghost-gluon vertex, momenta p, k of gluon and ghost
incoming, momentum q of ghost outgoing

−igs(ta)jlγµ
quark-quark-gluon vertex, momenta p, k of quark and
gluon incoming, momentum q of quark outgoing
l, j color index of the incoming quark, of the outgoing quark

(4.270)

Remarks: For each closed fermion loop and each closed ghost loop a factor (-1) has to be
added. For closed gluon loops a statistical factor has to be added. It is obtained by counting
all possible contractions of field operators in perturbation theory, cf. Fig. 4.6.
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Figure 4.6: Statistical factors for gluon loops.



Chapter 5

Renormalisation

So far we have only considered diagrams at tree level, respectively Born level. We have to ask
ourselves if the quantisation of non-abelian gauge theories and the derivation of the Feynman
rules is still consistent when we look at diagrams which contain closed loops, i.e. when we
look at the theory beyond Born level.

Actually, some of the loop integrals (cf. e.g. Fig. 7.1) exhibit ultraviolet (UV) divergences.
This means that these diagrams have divergences for loop momenta |l| → ∞, i.e. |l0| → ∞
(energy), This problem is solved through the process of renormalisation, which means nothing
else but a substraction prescription for divergent amplitudes. Let us look at the diagrams
in Fig. 7.1.

Figure 5.1: Higher-order corrected propagator.

(i) The self-energy (propagator) correction leads to a change of the mass.

(ii) The temporary splitting leads to a change of the wave function renormalisation and
the coupling of the particle.

53
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Renormalisation: The mass of the particle, however, is fixed through the experiments,
which are defined at an energy scale µ. (Physicsal results are independent of the scale
µ ← renormalisation group equations.) Renormalisation hence means to define with which
prescription the parameters are measured. This is a consequence of the quantum fluctuations.
Renormalisation means illustrated the following: Let us look at the photon-electron-positron
interaction, cf. Fig. 5.2. In reality, we measure the full vertex, i.e. the tree-level vertex plus
all diagrams of higher order. A possible renormalisation prescription is that the electric
charge is defined as the complete photon-electron-positron coupling for on-shell particles
(hence particles on the mass shell) in the Thomson limit.

Figure 5.2: Loop corrected photon-electron-positron vertex. The dashed blob represents the
full vertex.

We denote the classical parameters in the Lagrangian by m0, g0, ϕ0, so that we have
L(ϕ0;m0, g0). These parameters are called bare parameters. The renormalised parameters
are denoted by ϕR,mR, gR and are related to the bare parameters through

m0 = mR + δm

g0 = ZggR = [1 + δZg]gR

ϕ0 = Z
1/2
ϕ ϕR = [1 + δZϕ]

1/2ϕR , (5.1)

where the Zi are dimensionless renormalisation constants. The quantumechanical Lagrang-
ican can be written as

L(ϕ0;m0, g0) = L(Z1/2
ϕ ϕR;mR + δm,ZggR)

= LR(ϕR;mR, gR) + Lcounter . (5.2)

The former denotes the renormalised Lagrangian and the latter the so-called counterterm
Lagrangian. The Feynman dagrams are calculated with the Feynman rules that are obtained
from the renormalised Lagrangian LR and the counterterm Lagrangian Lcounter. The kinetic
part for the field ϕ looks e.g. like

1

2
∂µϕ0∂

µϕ0 =
1

2
Zϕ∂µϕR∂

µϕR

=
1

2
∂µϕR∂

µϕR +
1

2
(Zϕ − 1)∂µϕR∂

µϕR ≡ LkinR + Lkin
counter . (5.3)

Further remarks: Before we go into details, further remarks are at order: A theory is
called renormailsable, if the appearing UV divergences can be cancelled through the process
of renormalisation. This means that the number of independent types of UV divergences
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must be finite. And by setting the renormalised quantities equal to the measured values,
the results of other experiments can be predicted. The proof of the renormalisability of a
theory is highly non-trivial. The physicists ’t Hooft und Veltman have solved this problem
for spontaneously broken gauge theories. They showed in the early 70’s how the Glashow-
Salam-Weinberg (GSW) theory can be renormalised. and how this theory is to be used to
perform precision calculations. They obtained the Nobel Prize in 1999 “for elucidating the
quantum structure of electroweak interactions in physics”.

GSW Parameter: There are several schemes that are used to express the parameters of the
GSW theory. In the

(i) On-shell scheme the measured parameters are α,MW ,MZ ,mf ,mH . All other param-
eters are derived from these parameters.

(ii) GF scheme: The input parameters are α,GF ,MZ ,mf ,mH .

(iii) MS Schema: This renormalisation scheme is often used in the renormalisation of QCD.

Regularisation: Regularisation is a prescription how to isolate the divergences that ap-
pear in higher-order corrections and which need to be cancelled through the process of renor-
malisation. The diagram shown in Fig. 5.3 leads e.g. according to simple power counting to
a logarithmic divergence. Because

Figure 5.3: Scalar self-energy diagram.

1

i
Π(p) = (−iλ)2

∫
d4l

(2π)4
i2

[(p+ l)2 −m2 + iϵ][l2 −m2 + iϵ]
. (5.4)

We perform an analytic continuation into the Eucledian space,

l0 = il4 ⇒ l2 = l20 − l⃗2 = −l2E∫
d4l = i

∫
d4lE = i

∫ ∞
0

|lE|3d|lE|dΩ4 , (5.5)

where dΩ4 denotes the 4-dimensional solid-angle-element. And

|lE| =
√
l24 + l⃗2 . (5.6)
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Thereby we have the

integral ∼
∫ ∞
0

|lE|3d|lE|
|lE|4

∼
∫ ∞
0

d|lE|
|lE|

. (5.7)

It is logarithmically divergent. The divergence appears for large |lE| and leads to UV diver-
gence. In the following we give examples of regularisation schemes.

Momentum cut-off Λ (not suitable for gauge theories):∫ ∞
→
∫ Λ d|lE|

|lE|
∼ ln Λ . (5.8)

Measurable physical quantities of course must not depend on the cut-off. The naive intro-
duction of a cut-off breaks gauge invariance. Better suited is:

Dimensional regularisation: In dimensional regularisation the divergences are isolated
by defining the theory in D = 4− 2ϵ ̸= 4 dimensions. The divergences then appear as poles
in ϵ: ∼ 1/ϵ(n), ϵ→ 0.

Rules: The rules for performing a calculation in D ̸= 4 dimensions are:

• The integral over the loop momentum q is replaced in the following way:∫
d4q

(2π)4
→ µ4−D

∫
dDq

(2π)D
, (5.9)

where µ has the dimension of a mass. The introduction of the mass µ in D dimensions
keeps the integral in the same mass dimension as in D = 4 dimensions. Thereby we
get for the example above∫

d4lE →
∫
dDlE =

∫
|lE|D−1d|lE|

∫
dΩD , (5.10)

where ΩD is the solid-angle-element in D dimensions. And for D < 4 we have∫
d|lE|

|lE|D−1

|lE|4
UV convergent . (5.11)

Remark: Mathematically the origin of the UV divergences is the product of delta
distributions with the same argument.

• The coupling constant g2 is replaced by

g2 → g2µ4−D (5.12)

This is done in order to keep the dimension of the Green function unchanged.

• For the metric we have

gµν is D-dimensional, i.e. gµµ = D . (5.13)
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• The Dirac matrices are generalised such that

{γµ, γν} = 2gµν1 γµγµ = D1

γργµγρ = 2gµργρ − γµγργρ = (2−D)γµ etc.

γ5 is non-trivial in D dimensions. (5.14)

1-point function:
For illustration we compute the 1-point function (i.e. an integral that only contains one
propagator integral over the loop momentum) in D dimensions. We hence have

i

16π2
A = µ4−D

∫
dDq

(2π)D
1

q2 −m2 + iϵ
(5.15)

We compute the integral in Eucledian spacetime dimensioins and for this perform a Wick
rotation,

q0 = iq0E q⃗ = q⃗E dDq = idDqE . (5.16)

The integral becomes

iA

16π2
= −i µ

4−D

(2π)D

∫
dDqE

q2E +m2
. (5.17)

Explanations: We have poles in the q0 plane:

0 = q2 −m2 + iϵ = q20 − q⃗2 −m2 + iϵ

q0 = ±
√
q⃗2 +m2 − iϵ = ±

√
q⃗2 +m2 ∓ iϵ′ . (5.18)

We look at the integral over the curve C, cf. Fig. 5.4.

Figure 5.4: The curve C for the ntegration over the loop momentum.
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∮
C
dq0(q

2 −m2 + iϵ)−1 = 0 (5.19)

The contributions over the circle segments disappear so that we have∫ ∞
−∞

dq0... =

∫ i∞

−i∞
dq0... . (5.20)

And thereby we have in Eucledian coordinates (q0 = iq0E, q
k = qkE),∫ i∞

−i∞
dq0... = i

∫ ∞
−∞

dq0E... . (5.21)

For the further computation of the integral we perform a transformation to spherical coor-
dinates∫

dDqE =

∫
ΩD

dΩD

∫ ∞
0

dqEq
D−1
E =

∫
ΩD

dΩD

∫ ∞
0

dq2E
1

2
(q2E)

D/2−1 , (5.22)

where

ΩD =
2πD/2

Γ(D/2)
(5.23)

is the D-dimensional solid angle. And thereby we obtain for the integral

i

16π2
An−1 = i

µ4−D

(2π)D
1

2

∫
dΩD

∫ ∞
0

dρ ρ
D
2
−1 (−1)n

(ρ+ L− iϵ)n

= i(−1)n µ
4−D

(2π)D
1

2

2πD/2

Γ(D/2)

∫ ∞
0

dρ ρ
D
2
−1 1

(ρ+ L− iϵ)n

ρ=Ly
= i(−1)n µ

4−D

(4π)
D
2

1

Γ(D/2)
(L− iϵ)D/2−n

∫ ∞
0

dy yD/2−1(1 + y)−n︸ ︷︷ ︸
=B(D

2
,n−D

2
)

(5.24)

The factor (−1)n stems from (q2 − m2 + iϵ)−n = (−1)n(q2E + m2 − iϵ)−n. With the Beta
function

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
(5.25)

we finally obtain

i

16π2
An−1 = i(−1)n µ

4−D

(4π)
D
2

(L− iϵ)D/2−n
Γ(n− D

2
)

Γ(n)
. (5.26)

The Γ(x) function has poles in x = 0,−1,−2, .... An expansion for small ϵ leads to

Γ(ϵ) =
1

ϵ
− γ +O(ϵ) with the Euler γ , γ = 0.577... . (5.27)

We furthermore use the expansion

aϵ = eϵ ln a = 1 + ϵ ln a+ ... . (5.28)
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We obtain for An=1 with 4−D = 2ϵ and L ≡ m2

A = − µ2ϵ

(4π)−ϵ
Γ(−1 + ϵ)

Γ(1)
(m2)1−ϵ . (5.29)

With Γ(1) = 1 and

Γ(1 + x) = xΓ(x) (5.30)

and the above expansions we obtain

A(m2)

m2
= −(1 + ϵ ln(4π) + ...)(1− ϵ ln(m

2

µ2
) + ...)(−1)(1 + ϵ)(

1

ϵ
− γ + ...)

A(m2)

m2
=

1

ϵ
− γ + ln 4π − ln

m2

µ2
+ 1 +O(ϵ) (5.31)

Thereby we find

A(m2)

m2
= ∆− ln

m2

µ2
+ 1

∆ =
1

ϵ
− γ + ln 4π (5.32)

Mass renormalisation: As example, we now look at the mass renormalisation for a scalar
particle. The full propagator is given by (cf. Fig. 5.5)

Figure 5.5: The propagator of the scalar particle including higher-order corrections.

1

k2 −m2
→ 1

k2 −m2
+

1

k2 −m2
[δct + Σ]

1

k2 −m2
+

1

k2 −m2
{[δct + Σ]

1

k2 −m2
}2 + ...

=
1

k2 −m2
{1 + [

δct + Σ

k2 −m2
] + [...]2 + ...}

=
1

k2 −m2

1

1− δct+Σ
k2−m2

=
1

k2 −m2 − [δct + Σ]
=

1

k2 −m2 − Σ̂(k2)
(5.33)
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We here used the formula for the geometric series,

∞∑
n=0

qn =
1

1− q
. (5.34)

With the on-shell renormalisation condition

Renorm. Propagator
1

k2 −m2 − Σ̂(k2)
→ 1

k2 −m2
for k2 → m2

; Σ̂(k2)
∣∣∣
k2=m2

= [Σ(k2)− δm2 + (k2 −m2)δZ]
∣∣
k2=m2 = 0 (5.35)

we obtain (m is here the physical mass)

δm2 − Σ(k2 = m2) = 0 . (5.36)

5.1 Renormalisation of the GSW Theory

5.1.1 Renormalisation Constants

For the renormalisation of the GSW theory we have the following renormalisation constants
(for simplicity we here assume the CKM matrix as unity matrix):

e0 = Zee = (1 + δZe)e W±
0 =

√
ZWW

± = (1 + 1
2
δZW )W±

M2
W0 = M2

W + δM2
W H0 =

√
ZHH = (1 + 1

2
δZH)H

M2
Z0 = M2

Z + δM2
Z fL/R0 =

√
ZL/RfL/R = (1 + 1

2
δZL/R)fL/R

M2
H0 = M2

H + δM2
H

(
Z0

A0

)
=

( √
ZZZ

√
ZZA√

ZAZ
√
ZAA

)(
Z
A

)
mf0 = mf + δmf

It is immediately evident that due to the higher-order corrections there appear mixings
between the photon A and the Z boson. By choosing suitable renormalisation conditions,
they are fixed to zero.

5.1.2 Renormalisation Conditions

The coefficients of the counterterms are completely determined by the renormalisation con-
ditions. We start with the Higgs potential, which is given by

V =
λ

2
[|ϕ|2 − µ2

λ
]2 . (5.37)

With the Higgs doublet

ϕ =

(
ϕ+

1√
2
(v +H + iχ)

)
(5.38)

we have

V =
λ

8
(v2 − 2

µ2

λ
)2 + TH + ... (5.39)
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with

T =
λ

2
v(v2 − 2

µ2

λ
) (5.40)

From the minimisation of the Higgs potential ∂V
∂H

∣∣
H=0

= 0 we get the condition

v2 = 2
µ2

λ
(5.41)

i.e. T
!≡ 0.

T = = 0 . (5.42)

Including the quantum fluctuations we have for the renormaised tapdole T̂

T̂ = = T − δT (5.43)

We request that the renormalised tadpole T̂ = T − δT is ≡ 0 and hence obtain the condition

δT = T . (5.44)

The tadpole diagrams are completely subtracted through the renormalisation of the Higgs
potential and hence do not contribute to the physical observables.

Definitions: We define the self-energies Σ and the photon-fermion-fermion vertex Γ as
follows

= ΣV V ′

µν (k) for V = W±, Z, A

= ΣH(k
2)

= Σf (p/)

= Λffγµ (q, p, p′) (5.45)
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The vector boson self-energies can be decomposed into a transveral and a longitudinal
contribution,

ΣV V ′

µν (k) = −i
(
gµν −

kµkν
k2

)
ΣV V ′

T (k2)︸ ︷︷ ︸
↑ transversal

−ikµkν
k2

ΣV V ′

L (k2)︸ ︷︷ ︸
↑ longitudinal

. (5.46)

The fermionic self-energies can be decomposed into a left-chiral, a right-chiral and a scalar
part,

Σf (p/) = i

p/
ω− Σf,L(p

2)︸ ︷︷ ︸
↑ left-chiral

+ω+ Σf,R(p
2)︸ ︷︷ ︸

↑ right-chiral

+mf Σf,S(p
2)︸ ︷︷ ︸

↑ scalar

 (5.47)

with

ω± =
1± γ5

2
. (5.48)

Renormalisation conditions: With the condition that the renormalised mass parameters
of the physical particles are equal to the physical masses, i.e. the real parts of the poles of
the corresponding propagators, which are equivalent to the roots of the 1-particle irreducible
2-point functions, we have the following renormalisation conditions for the 2-point functions
Γ̂ for external on-shell fields,

Re Γ̂V Vµν (k) ϵν(k)|k2=M2
V

= 0 for V = W,Z,A

Re Γ̂H(k
2 =M2

H) = 0

Re Γ̂f (p/)u(p)|p/=mf = Re ū(p)Γ̂f (p/)|p/=mf = 0 . (5.49)

In case of mass matrices we demand that the off-diagonal self-energies are zero, if the external
lines are on their mass shells. For the diagonal entries we demand that the residua of the
renormalised propagators are equal to 1. We obtain the renormalisation conditions

lim
k2→M2

V

1

k2 −M2
V

ReΓ̂V Vµν (k)ϵν(k) = −iϵµ(k) for V = W,Z

lim
k2→0

1

k2
Γ̂AAµν (k)ϵ

ν(k) = −iϵµ(k)

Γ̂AZµν (k)ϵ
ν(k)|k2=0 = Re Γ̂AZµν ϵ

ν(k)|k2=M2
Z
= 0

lim
k2→M2

H

1

k2 −M2
H

ReΓ̂H(k) = i

lim
p2→m2

f

(
p/+mf

p2 −m2
f

)
ReΓ̂f (p)u(p) = iu(p)

lim
p2→m2

f

ū(p)ReΓ̂f (p)

(
p/+mf

p2 −m2
f

)
= iū(p) . (5.50)

And for the charge we have the renormalisation condition (e is the physical charge, which is
measured in classical Thomson scattering Eγ → 0)

ū(p′)Λ̂ffγµ (q, p, p′)u(p)|p2=p′2=m2
f ,q

2=0 = −ieef ū(p)γµu(p) . (5.51)
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Λ̂ffγ denotes the renormalised photon-fermion-fermion vertex.

After plugging in the explicit decompositions of the self-energies we obtain the general
expressions for the corresponding renormalisation conditions:

Re Σ̂WW
T (M2

W ) = 0

Re Σ̂ZZ
T (M2

Z) = 0 Re Σ̂AZ
T (M2

Z) = 0

Σ̂AZ
T (0) = 0 Σ̂AA

T (0) = 0

Re
∂Σ̂WW

T (k2)

∂k2
|k2=M2

W
= 0

Re
∂Σ̂ZZ

T (k2)

∂k2
|k2=M2

Z
= 0 Re

∂Σ̂AA
T (k2)

∂k2
|k2=0 = 0

Re Σ̂H(M
2
H) = 0 Re

∂Σ̂H(k
2)

∂k2
|k2=M2

H
= 0

mfRe [Σ̂f,L/R(m
2
f ) + Σ̂f,S(m

2
f )] = 0 (5.52)

Re {[Σ̂f,L(m
2
f ) + Σ̂f,R(m

2
f ) + 2m2

f

∂

∂p2
[Σ̂f,L(p

2) + Σ̂f,R(p
2) + 2Σ̂f,S(p

2)]|p2=m2
f
} = 0 .

With the corresponding counterterms we have the explicit expressions for the renormalisation
constants:

δT = T

δM2
W = Re ΣWW

T (M2
W ) δZWW = −Re ∂Σ

WW
T (k2)

∂k2
|k2=M2

W

δM2
Z = Re ΣZZ

T (M2
Z) δZZZ = −Re ∂Σ

ZZ
T (k2)

∂k2
|k2=M2

Z

δZAZ = −2Re ΣAZ
T (M2

Z)

M2
Z

δZZA = 2
ΣAZ
T (0)

M2
Z

δZAA = −∂Σ
AA
T (k2)

∂k2
|k2=0

δM2
H = ReΣH(M

2
H) δZH = −Re∂ΣH(k

2)

∂k2
|k2=M2

H

δmf = mfRe [
Σf,L(m

2
f ) + Σf,R(m

2
f )

2
+ Σf,S(m

2
f )]

δZf,L = −Re Σf,L(m
2
f )−m2

f

∂

∂p2
Re [Σf,L(p

2) + Σf,R(p
2) + 2Σf,S(p

2)]|p2=m2
f

δZf,R = −Re Σf,R(m
2
f )−m2

f

∂

∂p2
Re [Σf,L(p

2) + Σf,R(p
2) + 2Σf,S(p

2)]|p2=m2
f
. (5.53)

The full electromagnetic vertex is shown in Fig. 5.6. By using the Dirac equation and the
Ward identitdy (which follows from the gauge invariance) we obtain the counterterm for
the charge renormalisation (cf. A. Denner, Fortschr. Phys. 41 (1993) 307, arXiv:0709.1075
[hep-ph])

δZe = −
1

2
δZAA −

sW
2cW

δZZA =
1

2

∂ΣAA
T (k2)

∂k2
|k2=0 −

sW
cW

ΣAZ
T (0)

M2
Z

. (5.54)
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Figure 5.6: The full electromagnetic vertex.

It is independent of the fermion f . We hence have charge universality.

In the on-shell scheme the Weinberg angle is not a free parameter. A possible definition
is (cf. A. Sirlin, Physical Review D 22 (’80) 971)

sin2 θW = s2W = 1− M2
W

M2
Z

, c2W =
M2

W

M2
Z

. (5.55)

From this directly follow the renormalisation constants for the Weinberg angle

sW0 = sW + δsW cW0 = cW + δcW
δcW
cW

=
1

2

(
δM2

W

M2
W

− δM2
Z

M2
Z

)
=

1

2
Re

[
ΣW
T (M2

W )

M2
W

− ΣZ
T (M

2
Z)

M2
Z

]
δsW
sW

= −c
2
W

s2W

δcW
cW

= −1

2

c2W
s2W

Re

[
ΣW
T (M2

W )

M2
W

− ΣZ
T (M

2
Z)

M2
Z

]
. (5.56)

5.2 1-Loop Integrals

One-loop integrals in general can be reduced to the following scalar integrals

• 1-point function:

A0(m) =
16π2µ4−D

i

∫
dDk

(2π)D
1

k2 −m2
(5.57)

• 2-point function:

B0(p;m0,m1) =
16π2µ4−D

i

∫
dDk

(2π)D
1

(k2 −m2
0)[(k + p)2 −m2

1]
(5.58)

• 3-point function:

C0(p1, p2;m0,m1,m2) =
16π2µ4−D

i

∫
dDk

(2π)D

1

(k2 −m2
0)[(k + p1)2 −m2

1][(k + p2)2 −m2
2]

(5.59)
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• 4-point function:

D0(p1, p2, p3 ; m0,m1,m2,m3) =
16π2µ4−D

i

∫
dDk

(2π)D

1

(k2 −m2
0)[(k + p1)2 −m2

1][(k + p2)2 −m2
2][(k + p3)2 −m2

3]
(5.60)

All tensor integrals can be decomposed into tensors, which consist of the external 4-momenta.
The corresponding coefficients can be expressed through the above scalar integrals and are
symmetric. (See Passarino,Veltman, Nuclear Physics B 160 (’79), 151.)

Bµ(p;m0,m1) =
16π2µ4−D

i

∫
dDk

(2π)D
kµ

(k2 −m2
0)[(k + p)2 −m2

1]
= B1pµ

Bµν(p;m0,m1) =
16π2µ4−D

i

∫
dDk

(2π)D
kµkν

(k2 −m2
0)[(k + p)2 −m2

1]
= B00gµν +B11pµpν

Cµ(p1, p2;m0,m1,m2) =
16π2µ4−D

i

∫
dDk

(2π)D
kµ

(k2 −m2
0)[(k + p1)2 −m2

1][(k + p2)2 −m2
2]

= C1p1µ + C2p2,µ

Cµν(p1, p2;m0,m1,m2) =
16π2µ4−D

i

∫
dDk

(2π)D
kµkν

(k2 −m2
0)[(k + p1)2 −m2

1][(k + p2)2 −m2
2]

= C00gµν + C11p1,µp1,ν + C22p2,µp2,ν + C12(p1,µp2,ν + p1,νp2,µ)

= C00gµν +
2∑

i,j=1

Cijpiµpjν

Cµνρ =
2∑
i=1

(gµνpiρ + gνρpiµ + gµρpiν)C00i +
2∑

i,j,k=1

Cijkpiµpjνpkρ

Dµ =
3∑
i=1

Dipiµ

Dµν = D00gµν +
3∑

i,j=1

Dijpiµpjν

Dµνρ =
3∑
i=1

D00i(gµνpiρ + gνρpiµ + gµρpiν) +
3∑

i,j,k=1

Dijkpiµpjνpkρ

Dµνρσ = D0000(gµνgρσ + gµρgνσ + gµσgνρ)

+
3∑

i,j=1

D00ij(gµνpiρpjσ + gνρpiµpjσ + gµρpiνpjσ + gµσpiνpjρ

+gνσpiµpjρ + gρσpiµpjν)

+
3∑

i,j,k,l=1

Dijklpiµpjνpkρplσ (5.61)

Cijk, Dij, Dijk, D00ij, Dijkl are symmetric in the indices. The coefficients kann be determined
through contractions with the tensors.
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Examples:

(i) pµBµ = p2B1 =
16π2µ4−D

i

∫
dDk

(2π)D
kp

(k2 −m2
0)[(k + p)2 −m2

1]

kp =
1

2
{[(k + p)2 −m2

1]− (k2 −m2
0)− p2 −m2

0 +m2
1} (5.62)

B1 =
1

2p2
{A0(m0)− A0(m1)− (p2 +m2

0 −m2
1)B0(p;m0,m1)} (5.63)

(ii) gµνBµν = DB00 + p2B11 =
16π2µ4−D

i

∫
dDk

(2π)D
k2 −m2

0 +m2
0

(k2 −m2
0)[(k + p)2 −m2

1]

= A0(m1) +m2
0B0

pµpνBµν = p2(B00 + p2B11) =
16π2µ4−D

i

∫
dDk

(2π)D
(kp)2

(k2 −m2
0)[(k + p)2 −m2

1]

(kp)2 =
kp

2
[(k + p)2 −m2

1]︸ ︷︷ ︸
→0

−kp
2
(k2 −m2

0)︸ ︷︷ ︸
→ p2

2
(k2−m2

0)

−kp
2
(p2 +m2

0 −m2
1)

because

∫
dDk

(2π)D
kµ

k2 −m2
= 0

1

p2
pµpνBµν = B00 + p2B11 =

1

2
{A0(m1)− (p2 +m2

0 −m2
1)B1}

and DB00 + p2B11 = A0(m1) +m2
0B0 (5.64)

We hence have

B00 =
1

2(D − 1)
{A0(m1) + 2m2

0B0 + (p2 +m2
0 −m2

1)B1}

B11 =
1

2(D − 1)p2
{(D − 2)A0(m1)− 2m2

0B0 −D(p2 +m2
0 −m2

1)B1} (5.65)

(iii) pµ1Cµ = p21C1 + p1p2C2 =
16π2µ4−D

i

∫
dDk

(2π)D
kp1

(k2 −m2
0)[(k + p1)2 −m2

1][(k + p2)2 −m2
2]

p1k =
1

2
{[(k + p1)

2 −m2
1]− (k2 −m2

0)− (p21 −m2
1 +m2

0)}

p21C1 + p1p2C2 =
1

2
{B0(p2;m0,m2)−B0(p2 − p1;m1,m2)− (p21 −m2

1 +m2
0)C0}

p1p2C1 + p22C2 =
1

2
{B0(p1;m0,m1)−B0(p2 − p1;m1,m2)− (p22 −m2

2 +m2
0)C0}

(5.66)

In matrix form [fi = p2i −m2
i +m2

0]:(
p21 p1p2
p1p2 p22

)(
C1

C2

)
=

1

2

(
B0(p2;m0,m2)−B0(p2 − p1;m1,m2)− f1C0

B0(p1;m0,m1)−B0(p2 − p1;m1,m2)− f2C0

)
(5.67)

Thereby we have as solution
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(
C1

C2

)
=

(
p21 p1p2
p1p2 p22

)−1
1

2

(
B0(p2;m0,m2)−B0(p2 − p1;m1,m2)− f1C0

B0(p1;m0,m1)−B0(p2 − p1;m1,m2)− f2C0

)
(5.68)

5.2.1 Useful Formulae

For the calculation of the scalar integrals we need some formulae and/or relations, that are
given in the following.

Feynman Parametrisation:

1

aα1
1 a

α2
2 ...a

αn
n

=
Γ(α1 + ...+ αn)

Γ(α1)...Γ(αn)

∫ 1

0

dx1

∫ 1−x1

0

dx2...

∫ 1−x1...−xn−2

0

dxn−1

(1− x1 − ...− xn−1)α1−1xα2−1
1 ...xαn−1n−1

[a1(1− x1 − ...xn−1) + a2x1 + ...+ anxn−1]
∑
αi

(5.69)

D-dimensional integrals∫
dDk

(2π)D
1

(k2 −M2 + iϵ)N
= i

(−1)N

(4π)D/2
Γ(N − D

2
)

Γ(N)

1

(M2 − iϵ)N−D2∫
dDk

(2π)D
k2

(k2 −M2 + iϵ)N
=

i

2

(−1)N−1

(4π)D/2
Γ(N − 1− D

2
)

Γ(N)

D

(M2 − iϵ)N−1−D2∫
dDk

(2π)D
kµkν

(k2 −M2 + iϵ)N
=

i

2

(−1)N−1

(4π)D/2
Γ(N − 1− D

2
)

Γ(N)

gµν

(M2 − iϵ)N−1−D2∫
dDk

(2π)D
kµkνf(k

2) =
1

D
gµν

∫
dDk

(2π)D
k2f(k2) (5.70)

Expansions of the Gamma- and of the Beta-functions

Γ(N − ϵ

2
) = Γ(N)(1− ϵ

2
Ψ(N)) +O(ϵ2) for ϵ = 4−D

with Ψ(N) = SN−1 − γE

SN =
N∑
j=1

1

j
and γE = 0.5772...

Γ(A) =
Γ(A+ 1)

A

B(A1, A2) =
Γ(A1)Γ(A2)

Γ(A1 + A2)

Γ(
ϵ

2
) =

2

ϵ
− γE + (ϵ)

B(N − ϵ

2
, 1− ϵ

2
) =

1

N
[1 + ϵSN −

ϵ

2
SN−1] +O(ϵ2)

B(N − ϵ

2
, 2− ϵ

2
) =

1

N(N + 1)
[1− ϵ

2
SN−1 −

ϵ

2
+ ϵSN+1] +O(ϵ2) (5.71)
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5.2.2 Calculation of the Scalar Integrals

We have already found

A0(m) = m2{∆+ ln
µ2

m2
+ 1} (5.72)

with

∆ =
1

ϵ
− γE + ln 4π (5.73)

Next, we calculate the B0 function

B0(p;m0,m1) =
16π2µ4−D

i

∫
dDk

(2π)D
1

(k2 −m2
0 + io)[(k + p)2 −m2

1 + io]
(5.74)

With the Feynman parametrisation (cf. Eq. (5.69)) we have

1

AB
=

∫ 1

0

dx

[Ax+B(1− x)]2
= − 1

A−B

(
1

Ax+B(1− x)

∣∣∣∣1
0

)
= − 1

A−B

(
1

A
− 1

B

)
q.e.d.(5.75)

After the Feynman parametrisation [A = (k + p)2 −m2
1 and B = k2 −m2

0] we have for the
B0 function

B0 =
16π2µ4−D

i

∫ 1

0

dx

∫
dDk

(2π)D
1

(k2 + 2kQ−M2 + io)2
with

Q = xp M2 = m2
0(1− x)− (p2 −m2

1)x . (5.76)

We redefine k as k = k′ −Q and then write k′ as k. We then have

B0 =
16π2µ4−D

i

∫ 1

0

dx

∫
dDk

(2π)D
1

(k2 −R2 + io)2
with

R2 = Q2 +M2 = m2
0(1− x) +m2

1x− p2x(1− x) . (5.77)

For the integral over k we use the integration formula (see also above)∫
dDk

(2π)D
1

(k2 −R2)N
= (−1)N

iΓ(N − D
2
)

(4π)D/2Γ(N)
(R2)

D
2
−N (5.78)

and obtain

B0 =
16π2µ2ϵ

i

iΓ(ϵ)

(4π)2−ϵΓ(2)

∫ 1

0

dx(R2 − io)−ϵ

= Γ(ϵ)

(
4πµ2

m̄2
0

)ϵ ∫ 1

0

dx{1− ϵ ln R
2 − io
m̄2

0

+O(ϵ2)} [m̄2
i = m2

i − io] (5.79)

An expansion in ϵ leads to

B0 = ∆+ ln
µ2

m2
0

−
∫ 1

0

dx ln

{
m̄2

0(1− x) + m̄2
1x− p2x(1− x)
m̄2

0

}
︸ ︷︷ ︸(

1− x
x+

)(
1− x

x−

)
(5.80)



Renormalisation 69

with

x± =
1

2p2
{p2 +m2

0 −m2
1 ±

√
(p2 + m̄2

0 − m̄2
1)

2 − 4m̄2
0p

2} . (5.81)

For the complex logarithm, which appears in the integral, we need the following theorem,

ln ab = ln a+ ln b+ η(a, b) mit

η(a, b) =


2πi if Ima > 0, Imb > 0, Imab < 0

or Ima < 0, Imb < 0, Imab > 0
0 otherwise

. (5.82)

With this we have for

ln[(a+ io)(b− io′)] = ln(a+ io) + ln(b− io′) . (5.83)

And thereby we finally find for B0

B0 = ∆+ ln
µ2

m2
0

+ 2 + (x+ − 1) ln

(
x+ − 1

x+

)
+ (x− − 1) ln

(
x− − 1

x−

)
(5.84)

Analogous procedures lead to the analytic results for the 3- and 4-point functions.

5.3 Classification of Local Interactions

(Content: superficial degree of divergence; super-renormalisable, renormalisable and non-
renormalisable interactions.)

For non-Abelian gauge theories the only regularisation of practical relevance is
dimensional regularisation:

D = 4→ D ̸= 4 (< 4) with D − 1 space dimension and 1 time dimension . (5.85)

Naive dimensional analysis: ℏ = c = 1. Thereby

S =

∫
dDxL(x)⇒ [S] = [ℏ] = dimensionless . (5.86)

Be M an arbitrary mass scale. We then have (ℏ ∼ xp)

[xµ] =M−1 [∂µ] =M . (5.87)

The mass dimension of the fields is

(a) Scalar fields

[ϕ, ϕ̇]t=t′ = i δ(D−1)(x⃗− x⃗′)︸ ︷︷ ︸
[.]=MD−1

(5.88)

and hence

[ϕ] =M
D−2
2 . (5.89)

Analogous

[Aµ] =M
D−2
2 . (5.90)
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(b) Spinor fields

{ψl, ψ†s}t=t′ = δlsδ
(D−1)(x⃗− x⃗′) . (5.91)

Thereby

[ψ] =M
D−1
2 . (5.92)

(c) Ghost fields

Lghost
0 = ∂µc̄∂

µc (5.93)

MD M2[c]2 . (5.94)

Thereby

[c] =M
D−2
2 . (5.95)

Let us now look at the coupling constant. We consider e.g. QED. The coupling term is

−eq̄γµAµq . (5.96)

Thereby is

[eQED] = [gQCD] =M
4−D
2 . (5.97)

This means that in four dimensions the coupling is dimensionless. In D < 4 dimensions the
coupling has a positive mass dimension. Furthermore, the gauge parameter is dimensionless,

[ξ] =M0 . (5.98)

Above, we have already looked at the γ algebra in D dimensions. Remark: γ5 in D dimen-
sions is problematic, as the Levi-Civitá-Tensor is only defined in D = 4 dimensions.

Degree of divergence of a diagram Let us look at the following diagram

The Feynman integral IG is for large loop momenta l

IG ∼
∫
dDl1 d

Dl2
1

(l21)
3

1

l2

1

l2
l1 l1 . (5.99)

The “superficial degree of divergence” thereby is

d = 2D + 2− 6− 2 = 2D − 6 . (5.100)
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In general the superficial degree of divergence of a 1-particle irreducible diagram G is

dG = Dl +
∑
v

δv − 2nB − nF , (5.101)

where l is the number of loops, δv is the number of momentum factors at the vertex, nB
denotes the number of the inner boson lines and nF the number of the inner fermion lines.
The above, however, does not hold for massive gauge bosons. They have the Feynman
propagator

Dµν =
i

k2 −m2
V

(
−gµν +

kµkν
m2
V

)
. (5.102)

The convergence theorem (by Weinberg) reads:
IG is absolutely convergent, if the degree of divergence dH < 0 for all subdiagrams H ⊂ G.

We now look at the classification of renormalisable interactions. Be

L = L0 + LI , (5.103)

with

b = numnber of bosonic fields in LI (5.104)

f = number of fermionic fields in LI (5.105)

δ = number of derivatives in LI . (5.106)

We consider the Feynman diagram denoted by G. Be

n = number of vertices (generated through a specific LI) (5.107)

NB = nunmber of external bosonic lines (5.108)

NF = number of external fermionic lines (5.109)

l = number of loops (after application of the energy-momentum conservation)

at each vertex . (5.110)

The latter l is given by

l = nB + nF − n+ 1 . (5.111)

Because each vertex generates δ functions for the energy-momentum conservation and implies
a reduction in l by n− 1 momentum integrals. Furthermore, we have

nδ =
∑
v

δv (5.112)

and

nb = 2nB +NB . (5.113)

Because e.g.

2 · 3 = 2 · 1 + 4 . (5.114)
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The first term on the right-hand side is generated by the fact that an inner line participates
in 2 vertices. Furthermore, we have

nf = 2nF +NF . (5.115)

Insertion of the equations (5.113), (5.115) in (5.111) leads to

l =
b+ f

2
n− n− NB +NF

2
+ 1 . (5.116)

Insertion of (5.112), (5.116) in (5.101) leads to

dG = rn− D − 2

2
NB −

D − 1

2
NF +D . (5.117)

We call r the degree of divergence of LI . It is given by

r =
D − 2

2
b+

D − 1

2
f + δ −D . (5.118)

The degree of divergence characterises LI . For the dimension of the coupling gI it holds that

[gI ] = −r . (5.119)

Because be schematically

LI ∼ gI(∂)
δ(ϕ)b(ψ)f . (5.120)

Then the dimension of LI is

D = [LI ] = [gI ] + δ + b
D − 2

2
+ f

D − 1

2
. (5.121)

With the generalisation to several vertices we have for

LI =
k∑
i=1

L(i)
I (5.122)

and thereby

dG =
k∑
i=1

rini −
D − 2

2
NB −

D − 1

2
NF +D , (5.123)

with the divergence indices

ri =
D − 2

2
bi +

D − 1

2
fi + δi −D . (5.124)

The integral IG is UV-divergent, if dH > 0 for at least one subdiagramn H ⊂ G.
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Classification

1) If ri > 0 (i = 1, ..., k) for an arbitrary i, then for sufficiently large ni the degree of diver-
gence dG grows continuously without limit so that the theory is “non-renormalisable”.

2) ri = 0 for all i. Then there is a finite number of types of Feynman diagrams (i.e. n-point
functions), which have dG ≥ 0 so that the theory is “renormalisable”.

3) ri < 0 for all i. Then the theory is “super-renormalisable”.

We look at some examples

A) LI = λϕ3 . (5.125)

In D dimensions we have

[λ] = −r = D − 3
D − 2

2
= −D − 6

2
. (5.126)

The theory is

renormalisable for D = 6

non-renormalisable for D > 6

super-renormalisable for D < 6 .

B) LI = h(ψ̄ψ)2 4-Fermi interaction. (5.127)

Thereby is

[h] = −r = D − 4
D − 1

2
= 2−D . (5.128)

The theory hence is renormalisable inD = 2 dimensions (Thirring-Modell) and non-renormalisable
in D > 2 (in particular in D = 4).

We have the following rule:

Coupl. constants have pos. mass dim. ↔ theory super-renormalisable
Coupl. constants have 0 mass dim. ↔ theory renormalisable
Coupl. constants have neg. mass dim. ↔ theorie non-renormalisable

This rule does not hold for massive vector fields. Their Feynman propagator (see above)
approaches O(1) in the limit k →∞. We consider as further example QCD. The interaction
Lagrangian reads

L = L0 + LI , (5.129)

where

LI = gfabc∂µc̄
aGµbcc − gq̄T aγµqGa

µ

+
g

2
fabc(∂µG

a
ν − ∂νGa

µ)G
bµGcν

−g
2

4
fabefcdeG

a
µG

b
νG

cµGdν . (5.130)
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We determine the divergence indices

ri =
D − 2

2
bi +

D − 1

2
fi + δi −D (5.131)

of the four interaction terms:

rghost = 3
D − 2

2
+ 1−D =

D − 4

2
(5.132)

rquark =
D − 2

2
+
D − 1

2
2−D =

D − 4

2
(5.133)

r3G = 3
D − 2

2
+ 1−D =

D − 4

2
(5.134)

r4G = 4
D − 2

2
−D = D − 4 . (5.135)

The coupling constant has the dimension

[g] =
4−D

2
(5.136)

and is dimensionless in D = 4 dimensions. For D = 4, ri = 0. Thereby QCD is renormal-
isable according to the counting of the powers. (If the counterterms are added L does not
change structurally.)

Remark: For ghosts, the following replacement has to be done,

NB → Ngluon +
3

2
Nghost . (5.137)



Chapter 6

Spontaneous Symmetry Breaking

In the last semester you have learnt in theoretical particle physics I what is spontaneous
symmetry breaking. It is therefore repeated here only very briefly. It is essential for the
Higgs mechanism which is one of the four pillars of the Standard Model of particle physics.

The symmetry of a Lagrangian is called spontaneously broken, if the Lagrangian is sym-
metric, but the physical vacuum does not obey the symmetry. If the Lagrangian of a theory
is invariant under an exact continous symmetry, which is not the symmetry of the physical
vacuum, then one or several massless spin-0 particles will appear. These particles are called
Goldstone bosons. If the spontaneously broken symmetry is a local gauge theory, then the
interplay (induced through the Higgs mechanism) between the would-be Goldstone bosons
and the massless gauge bosons leads to the masses of the gauge bosons and removes the
Goldstone bosons from the spectrum.

6.1 The Goldstone Theorem

Be

N = dimension of the algebra of the symmetry group of the complete Lagrangian.
M = dimension of the algebra of the group under which the vacuum is

invariant after spontaneious symmetry breaking.

⇒ There are N-M Goldstone bosons without mass in the theory.

The Goldstone theorem states that for each spontaneously broken degree of freedom of the
symmetry there is a massless Goldstone boson.

For gauge theories the Goldstone theorem does not hold: Massless scalar degrees of free-
dom are absorbed by the gauge bosons to give them mass. The Goldstone phenomenon leads
to the Higgs phenomenon.

6.2 Spontaneously Broken Gauge Theories

In gauge theories there are no Goldstone bosons in the physical spectrum. They are would-be
Goldstone bosons. In spontaneous symmetry breaking (SSB) they are directly absorbed by
the longitudinal degrees of freedom of the massive gauge bosons. For gauge theories the
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following holds: Be

N = dimension of the algebra of the symmetry group of the complete Lagrangian..
M = dimension of the algebra of the group under which the vacuum is

invariant after spontaneious symmetry breaking.
n = the number of the scalar fields

⇒
There are M massless vector fields. (M is the dimension of the symmetry of the vacuum.)
There are N −M massive vector fields. (N −M is the number of the broken generators.)
There are n− (N −M) scalar Higgs fields



Chapter 7

The Standard Model of Particle
Physics

The Standard Model of particle physics describes the today known basic building blocks of
matter and (except for gravity) their interactions among each other. These are the electro-
magnetic and the weak forces (combined in the Glashow-Salam-Weinberg theory into the
electroweak force) and the strong interaction.

Before going into details we give a short historical overview of the steps towards the devel-
opment of the electroweak theory by Sheldon Glashow, Abdus Salam and Steven Weinberg
(1967).

7.1 A Short History of the Standard Model of Particle

Physics

- Weak interaction: β decay [A. Becquerel 1896, Nobel Prize 19031]

Antoine Henri Becquerel (15.12.1852 - 25.8.1908) was a French physicist, Nobel Prize
winner and one of the discoverers of radioactivity.

In 1896, while investigating fluorescence in uranium salts, Becquerel discovered ra-
dioactivity accidentally. Investigating the work of Wilhelm Conrad Röntgen, Becquerel
wrapped a fluorescent mineral, potassium uranyl sulfate, in photographic plates and
black material in preparation for an experiment requiring bright sunlight. However,
prior to actually performing the experiment, Becquerel found that the photographic
plates were fully exposed. This discovery led Becquerel to investigate the sponaneous
emission of nuclear radiation.

In 1903, he shared the Nobel Prize with Marie and Pierre Curie “in recognition of the
extraordinary services he has rendered by his discovery of spontaneous radioactivity”.

N → N ′ + e− violates energy and angular momentum conservation

Lise Meitner and Otto Hahn showed in 1911 that the energy of the emitted electrons
is continuous. Since the released energy is constant, a discrete spectrum had been
expected. In order to explain this obvious energy loss (and also the violation of angular

1shared with Marie and Pierre Curie
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momentum conservation) Wolfgang Pauli proposed in 1930 in his letter of Dec 4 to the
“Dear radioactive ladies and gentlemen” (Lise Meitner et al.) the participation of a
neutral, extremely light elementary particle (with a mass no greater than 1% the mass
of a proton) in the decay process, which he called “neutron”. Enrico Fermi changed
this name 1931 in “neutrino”, as a diminuation form of the nearly at the same time
discovered heavy neutron.

Lise Meitner (7. 11.1878 - 27.10.1968) was an Austrian physicist who investigated
radioactivity and nuclear physics. Otto Hahn (8.3.1879 - 28.7.1968) was a German
chemist and received in 1944 the Nobel Prize in chemistry. Wolfgang Ernst Pauli
(25.4.1900 - 15.12.1958) was an Austrian physicist.

- The neutrino hypothesis: [W. Pauli 1930, Nobel Prize 1945]

N → P + e− + ν̄e
Spin = 1/2, Mass ≈ 0

In 1956, Clyde Cowan and Frederick Reines suceeded in the first experimental proof
of the neutrino in one of the first big nuclear reactors.

Clyde Lorrain Cowan Jr (6.121919 - 24.5.1974) discoverd together with Frederick
Reines the neutrino. Frederick Reines (6.3.1918 - 26.8.1998) was an American physi-
cist and won in 1995 the Nobel Prize of physics in the name of the two of them

- The Fermi Theory [E. Fermi, Nobel Prize 1938]

Enrico Fermi developed a theory of weak interactions in analogy to quantum electrodynamics
(QED), where four fermions directly interact with each other:

Leff = GF√
2
JµJ

µ

[For small momentum tranfers the reactions can be approximated by a point-like interaction.]

Enrico Fermi (29.9.1901 - 28.11.1954) was an Itaiian physicist He received the Nobel
Prize for physics in 1938 for his work on ’induced radioactivity’.

The Fermi interaction consists of 4 fermions directly interacting with each other. For
example a neutron (or down quark) can split into an electron, anti-neutrino and proton
(or up quark). Tree-level Feynman diagrams describe this interaction remarkably well.
However, no loop diagrams can be taken into account, since the Fermi interaction is
not renormalizable. The solution consists in replacing the 4-fermion interaction by a
more complete theory - with an exchange of a W or Z boson like in the electroweak
theory. This is then renormalizable. Before the electroweak theory was constructed
George Sudarshan and Robert Marshak, and independently also Richard Feynman and
Murray Gell-Mann, were able to determine the correct tensor structure (vector minus
axial vector V − A) of the 4-Fermi interaction.

- The Yukawa Hypothesis: [H. Yukawa, Nobel Prize 1949 for ’his prediction of mesons based
on the theory of nuclear forces’]

The point-like Fermi coupling is the limiting case of the exchange of a “heavy photon” →
W boson.

GF√
2
pointlike coupling ≈ g2

Q2−m2
W
≈ −g2

m2
W

with exchange of a W − boson
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Figure 7.1: Fermi coupling: limiting case of a heavy gauge boson.

Hideki Yukawa (23.1.1907 - 8.9.1981) was a Japanese theoretical physicist and the first
Japanese to win the Nobel Prize.

Hideki Yukawa established the hypothesis, that nuclear forces can be explained through
the exchange of a new hypothetic particle between the nucleons, in the same manner as
the electromagnetic force between two electrons can well be described by the exchange
of photons. However, this particle exchanging the nuclear force should not be massless
(as are the photons), but have a mass of 100 MeV. This value can be estimated from
the range of the nuclear forces: the bigger the mass of the particle, the smaller the
range of the interaction transmitted by the particle. A plausible argument for this
connection is given by the energy-time uncertainty principle.

- Parity violation in the weak interaction [T.D. Lee, C.N. Yang, Nobel Prize 1957,
und C.-S. Wu]

The τ − θ puzzle: Initially, two different positively charged mesons with strangeness (S ̸= 0)
were known. These were distinguished based on their decay processes:

Θ+ → π+π0 P2π = +1

τ+ → π+π+π− P3π = −1

The final states of these two reactions have different parity. Since at that time it was sup-
posed that parity is conserved in all reactions, the τ and θ would have had to be two different
particles. However, precision measurements of mass and lifetime showed no difference be-
tween both particles. They seemed to be identical. The solution of this this θ − τ puzzle
was the parity violation of the weak interaction. Since both mesons decay via the weak
interaction, this reaction does not conserve parity contrary to the initial assumption. Hence,
both decays could stem from the same particle, which was then named K+.

Θ+ = τ+ = K+ ⇒ P violated. (π has negative parity.)

Tsung-Dao Lee (born November 24, 1926) is a Chinese American physicist, well known
for creating the Lee Model, the field of relativistic heavy ion physics, and that of non-
topological solitons and soliton stars in quantum field theory, as well as the solution for
the theta-tau puzzle in particle physics. In 1957, Lee with C. N. Yang received the Nobel
Prize in Physics for their work on the violation of parity law in weak interaction, which
Chien-Shiung Wu experimentally verified. Lee and Yang were the first Chinese Nobel
Prize winners. Mrs Chien-Shiung Wu (* 31. Mai 1912 in Liuho, Province Jiangsu,
China ; - 16. Februar 1997 in New York, USA) was a Chinese-American physicist.
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When Lee and Yang received the Nobel Prize in physics in the same year of her ex-
periment, many specialists thought, that it was unjustified that Wu did not receive the
Prize as well.

V − A theory: Actually, parity is not only violated, it is maximally violated. This means
that the axial coupling has the same strength as the vectorial coupling: |cV | = |cA|. Since,
as was shown in the Goldhaber experiment, there are only left-handed neutrinos and right-
handed antineutrinos, one has rather: cV = −cA. This is why one calls the theory “V − A
theory”.

- Proof of the existence of the neutrino:

N → P + e− + ν̄e ν̄e + P → N + e+

The neutrino could be verified experimentally 1956 by Clyde L. Cowan and Frederick Reines
in the inverse β decay (ν̄e + P → e+ +N) at a nuclear reactor, which causes a much higher
neutrino flux as radioactive elements in the β decay. (Nobel prize to Reines alone 1995, since
Cowan died 1974.)
The muon neutrino was discovered 1962 by Jack Steinberger, Melvin Schwartz and Leon
Max Lederman with the first produced neutrino beam at an accelerator. All three physicists
received 1988 the Nobel Prize for their basic experiments about neutrinos - weakly interacting
elementary particles with vanishing or very small rest mass.
In 2000, the tau-neutrino was found in the DONUT-experiment.

- CP violation [Cronin, Fitch, Nobel Prize 1980]

K0
L → 3π CP = −

K0
S → 2π CP = +

Details: After the discovery of parity violation it was widely supposed that CP is conserved.
Assuming CP symmetry, the physical Kaon states are given by the CP eigenstates. The K0,
K̄0 would be mass eigentstates w.r.t. the strong (also the electromagnetic) interaction alone.
However, they mix through the weak interaction. The physical Kaon states are hence linear
combinations of these two states with the following behaviour under CP transformations
(CP|K0 >= −|K̄0 >, CP|K̄0 >= −|K0 >):

|K0
1 >=

1√
2
(|K0 > −|K̄0 > with CP|K0

1 >= |K0
1 > (7.1)

|K0
2 >=

1√
2
(|K0 > +|K̄0 > with CP|K0

2 >= −|K0
2 > (7.2)

Assuming CP symmetry these states can only decay under CP conservation. For the neutral
Kaons this leads to two different decay channels for K1 and K2, with very different phase
spaces and hence very different lifetimes:

K0
1 → 2π (quick, since big phase space) (7.3)

K0
2 → 3π (slow, since small phase space) (7.4)

In fact, two different species of neutral Kaons were found, which are very different in their
lifetimes. These were named K0

L (long-lived, average lifetime (5.16± 0.04) · 10−8 s) and K0
S
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(short-lived, average lifetime (8.953± 0.006) · 10−11 s). The average lifetime of the long-lived
Kaon is about a factor 600 larger than the one of the short-lived Kaon.
CP violation: Due to the assumed CP symmetry it was natural to identify the K0

1 , K
0
2 with

K0
S, K

0
L. Hence, theK

0
L would always decay into three and never into two pions. But in reality

James Cronin and Val Fitch found out 1964, that the K0
L decays with a small probaility

(about 10−3) also into two pions. This leads to the fact, that the physical states are no pure
CP eigenstates, but contain a small amount ϵ of the other CP eigenstate, respectively. We
have

|K0
S >=

1√
1 + |ϵ|2

(|K0
1 > +ϵ|K0

2 >) (7.5)

|K0
L >=

1√
1 + |ϵ|2

(|K0
2 > +ϵ|K0

1 >) (7.6)

This phenomenon has been checked very carefully in experiments and is called CP violation
through mixing, since it is given by the mixing of the CP eigenstates to the physical eigen-
state. Cronin and Fitch received 1980 the Nobel prize for their discovery. Since this CP
violation can only be concluded indirectly through the observation of the decay, it is also
called indirect CP violation. Also direct CP violation, hence a violation directly in the
observed decay itself, has been found. The direct CP violation is for Kaons another factor
of 1000 smaller than the indirect one and was found experimentally only three decades later
at CERN.

Val Logsdon Fitch (* 10. March 1923 in Merriman, Nebraska), American physicist.
Fitch received 1980 together with James Cronin the physics Nobel Prize. James Watson
Cronin (* 29. September 1931 in Chicago), US-American physicist.

- Glashow-Salam-Weinberg Theory (GSW): [S.L. Glashow, A. Salam, S. Weinberg,
Nobel Prize 1979]

Sheldon Lee Glashow (* 5. December 1932 in New York) is a US-American physi-
cist and Nobel prize winner. He received 1979 together with Abdus Salam and Steven
Weinberg the physics Nobel prize for their work on the theory of the unification of the
weak and electromagnetic interaction between elementary particles, including among
others the prediction of the Z boson and the weak neutral currents. Abdus Salam (*
29. Januar 1926 in Jhang, Pakistan; - 21. November 1996 in Oxford, England) was
a Pakistanian physicist and Nobel prize winner. Steven Weinberg (* 3. Mai 1933 in
New York City - 23rd July 2021 in Austin, Texas) is a US-American physicist and
Nobel prize winner.

The electromagnetic interaction is the unified theory of quantum electrodynamics and
the weak interaction. Together with quantum chromodynamics it is a pillar of the
Standard Model of particle physics. This unification was initially described theoreti-
cally by S.L. Glashow, A. Salam and S. Weinberg, in 1967. Experimentally, the theory
was confirmed 1973 indirectly through the discovery of the neutral currents and 1983
through the experimental proof of the W and Z bosons. A peculiarity is the parity
violation through the electroweak interaction.
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7.2 Unitarity: The Path to Gauge Theories

Fermi theory: describes µ, β decays, charged current (CC) reactions at small energies.

Leff = GF√
2
j∗λj

λ jλ = ēγλ(1− γ5)νe + (µ) + (q)

GF = 1.16 · 10−5/GeV2

CC scattering at high energies:

σLL(νµe
− → µ−νe) =

G2
F s

π

s-wave unitarity σLL <
4π
s

} Imf = |f |2

|f | < 1

[Partial-wave unitarity constrains the modulus of an inelastic partial-wave amplitude to be
|M| < 1. Make a partial-wave expansion of the scattering amplitude. The constraint is
equivalent to σ < π/p2c.m. for inelastic s-wave scattering.]

Domain of validity/unitarity constraint:
√
s < (2π/GF )

1
2 ∼ 600 GeV

⇒ 4 steps are necessary to construct out of the Fermi theory a consistent field theory with
attenuation of the 4-point coupling.

Although Fermi’s phenomenological interaction was inspired by the theory of electromag-
netism, the analogy was not complete, and one may hope to obtain a more satisfactory theory
by pushing the analogy further. An obvious guideline is to assume that the weak interac-
tion, like quantum electrodynamics, is mediated by vector boson exchange. The intermediate
weak boson must have the following three properties:

(i) It carries charge ±1, because the familiar manifestations of the weak interactions (such
as β-decay) are charge-changing.

(ii) It must be rather massive, to reproduce the short range of the weak force.

(iii) Its parity must be indefinite.

1.) Introduction of charged W± bosons [Yukawa]:

Interaction range ∼ m−1W ⇒

E →∞ : σ ∼ G2
Fm

2
W

π
→ partial-wave unitarity is fulfilled; GF = g2W/m

2
W .

2.) Introduction of a neutral vector boson W 3 [Glashow]:

The introduction of the intermediate boson softens the divergence of the s-wave amplitude
for the above process, it gives rise, however, to new divergences in other processes:

Production of longitudinally polarized W ’s in νν̄ collisions, cf. Fig. 7.3:

ϵLλ = ( kλ
mW

, 0, 0, E
mW

) ≈ E
mW

in the limit of high energies

σ(νν̄ → WLWL) ∼
g4W
s

( √
s

mW

)4 ∼ g4W s

m4
W

(7.7)
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Figure 7.2: Introduction of the W boson in the process e−ν̄e → µ−ν̄µ.

Figure 7.3: Production of longitudinally polarized W ’s in νν̄ collisions.

It violates unitarity for
√
s >∼ 1 TeV.

Solution: Introduction of a neutral W 3, coupled to fermions and W± (cf. Fig. 7.4):
Condition for the disappearance of the linear s singularity:

Figure 7.4: Introduction of the W 3 in νν̄ → WLWL.

IaikI
b
kj − IbikIakj − ifabcIcij = 0

[Ia, Ib] = ifabcI
c The fermion-boson couplings form a Lie algebra

[associated to a non-abelian group].
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Fermion-boson coupling ∼ gW × representation matrix
Boson-boson coupling ∼ gW × structure constants

}
gW universal.

3.) 4-point coupling:

WLWL → WLWL (cf. Fig. 7.5)

Figure 7.5: Introduction of the four-point coupling.

Amplitude ∼ g2Wf
2 s2

m4
W

+ ... compensated by: −g2Wf 2 s2

m4
W
:

4-boson vertex: ∼ g2Wf ⋆ f

4.) Higgs particle: [Weinberg, Salam]

The remaining linear s divergence is canceled by the exchange of a scalar particle with a
coupling ∼ mass of the source, cf. Fig. 7.6.

Figure 7.6: Introduction of the Higgs exchange.

Amplitude ∼ −(gWmW )2 1
s

( √
s

mW

)4
∼ −g2W s

m2
W

The same mechanism cancels the remaining singularity in ff̄ → WLWL (f massive!),
cf. Fig. 7.7.

Adding up the gauge diagrams we are left with ∼ g2W
mf
√
s

m2
W

scalar diagram ∼
√
s
(
gW

mf
mW

)
1
s
(gWmW )

( √
s

mW

)2
∼ g2W

√
smf
m2
W

Summary:

A theory of massive gauge bosons and fermions that are weakly coupled up to very high
energies, requires, by unitarity, the existence of a Higgs particle; the Higgs particle is a
scalar 0+ particle that couples to other particles proportional to the masses of the particles.
⇒ Non-abelian gauge field theory with spontaneous symmetry breaking.
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Figure 7.7: The process ff̄ → WLWL.

7.3 Gauge Symmetry and Particle Content

The underlying gauge symmetry of the SM is the SU(3)C × SU(2)L × U(1)Y . The SU(3)C
describes QCD, and SU(2)L×U(1)Y the electroweak sector. The conserved charge associated
with QCD is the colour charge. The conserved charges associated with the electroweak sector
are the weak isospin and the weak hypercharge. The corresponding gauge bosons are in
QCD the 8 massless gluons and in the electroweak sector the massive charged W± bosons,
the massive neutral Z boson and the massless photon γ. These particles are also called
interaction particles and carry spin 1.

The particle content is given by the matter particles and the interaction particles. The
matter particles are fermions with spin 1/2 and are subdivided into three families. They
comprise 6 quarks and 6 leptons. We know three up-type (up, charm, top) and three down-
type (down, strange, bottom) quarks. The leptons consist of three charged (e, µ, τ) and
three neutral leptons, the neutrinos (νe, νµ, ντ ), cf. Table 7.1.

The three lepton and quark families have identical quantum numbers, respectively, and are
only distinguished through their masses. Therefore, when discussing the gauge interaction
is is sufficient to consider only one family. The transformation behaviour of the quark and
lepton fields under the SM gauge groups is summarized (for one generation) in Table 7.2.

u
d

c
s

t
b

}
Quarks

νe
e

νµ
µ

ντ
τ

}
Leptons

1. 2. 3. Family

Table 7.1: Matter particles of the Standard Model.

The masses of the particles are generated through spontaneous symmetry breaking (SSB).
For this a complex Higgs doublet (dD = 4 degrees of freedom) is added together with the
Higgs potential V . The SSB breaks down the SU(2)L×U(1)Y (dEW = 4) to the electromag-
netic U(1)em (dem = 1). The electromagnetic charge hence remains conserved. Associated
with this SSB are dEW − dem = 4 − 1 = 3 would-be Goldstone bosons that are absorbed
to give masses to the W± and Z bosons. The photon remains massless. Furthermore, after
SSB there is dD − (dEW − dem) = 4− (4− 1) = 4− 3 = 1 Higgs particle in the spectrum.

One last remark is at order: We know that the neutrinos have mass. When we formulate
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Field U(1)Y × SU(2)L × SU(3)C
QL =

(
uL
dL

)
(1
3
,2,3)

uR (2
3
,1, 3̄)

dR (−4
3
,1, 3̄)

LL =

(
eL
νeL

)
(−1,2,1)

eR (2,1, 1̄)

Table 7.2: Transformation behaviour under the SM gauge groups.

the SM in the following we will neglect the neutrino masses and assume neutrinos to be
massless. For the treatment of massive neutrino we refer to the literature.

7.4 Glashow-Salam-Weinberg Theory for Leptons

For simplicity, we only consider the first lepton generation, i.e. e, νe. The generalization to
the other generations is trivial. We have the

electromagnetic interaction:

Lint = −e0jelmµ Aµ with (7.8)

jelmµ = −ēγµe , (7.9)

where e0 denotes the elementary charge with α = e20/4π. And we have the

weak interaction:

LW = −4GF√
2
j−µ j

µ+ (7.10)

in the Fermi notation for charged currents, with

j+µ = ν̄eγµ
1− γ5

2
e = ν̄eLγµeL (left-chiral) (7.11)

j−µ = (j+µ )
∗ (7.12)

GF denotes the Fermi constant, GF = 10−5/m2
P .

The next steps are:

• Resolve the 4-Fermi coupling through the exchange of a heavy vector boson. Apart
from the vector boson mass the structure of the weak interaction is similar to the one
of electrodynamics.

• Construction of the theory as gauge field theory with spontaneous symmetry breaking,
to guarantee renormalizability.

• Analysis of the physical consequences of the symmetry and its breaking.
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The free Lagrangian for the electrons and left-handed neutrinos2 is given by the following
expression that takes into account that the particles are massless in case of chiral invariance,

L0 = ēi∂/e+ ν̄eLi∂/νeL

= ēLi∂/eL + ēRi∂/eR + ν̄eLi∂/νeL , (7.13)

where

fR,L =
1

2
(1± γ5)f. (7.14)

The free Lagrangian L0 is SU(2)L symmetric. The associated conserved charge is the
weak isospin:(

νe
e

)
L

: iso-doublet with I(νeL) = I(eL) =
1

2
and I3(νeL) = +

1

2

I3(eL) = −
1

2
(7.15)

eR : Iso-singlet with I(eR) = I3(eR) = 0

The Lagrangian

L0 =

(
νe
e

)
L

i∂/

(
νe
e

)
L

+ ēRi∂/eR (7.16)

is invariant under the global isospin transformation(
νe
e

)
L

→ e−
i
2
gα⃗τ⃗

(
νe
e

)
L

eR → eR (7.17)

The theory becomes locally SU(2)L invariant through the introduction of an isovector W⃗µ

of vector fields with minimal coupling:

doublet : i∂/→ i∂/− g
2
τ⃗ W⃗/

singlet : i∂/→ i∂/

}
from: i∂/→ i∂/− gI⃗W⃗/ (7.18)

The resulting interaction Lagrangian for the lepton-W coupling reads:

Lint = −g
2

(
νe
e

)
L

γµτ⃗

(
νe
e

)
L

W⃗ µ

= − g

2
√
2
ν̄eγµ(1− γ5)eW+µ + h.c.− g

4
{ν̄eγµ(1− γ5)νe − ēγµ(1− γ5)e}W 3µ (7.19)

where we have introduced

W± =
1√
2
(W 1 ∓ iW 2) . (7.20)

From Eq. (7.19) we can read off

2The Goldhaber experiment (1957) has shown, that neutrinos appear in nature only as left-handed
particles. This is a confirmation of the V −A theory that predicts the parity violation of the weak interaction.
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• The charged lepton current has per construction the correct structure.

• W 3
µ , the neutral isovector field cannot be identified with the photon field Aµ since the

electromagnetic current does not contain any ν’s and furthermore has a pure vector
character (and hence does not contain a γ5).

This leads to the formulation of the minimal SU(2)L × U(1)Y gauge theory:

The Lagrangian L0, Eq. (7.19), has an additional U(1) gauge symmetry (after coupling W⃗ )
and associated with this the weak hypercharge. The quanum numbers are defined in such a
way that we obtain the correct electromagnetic current:
(In order to include electromagnetism we define the “weak hypercharge”.)

jelmµ = −ēγµe = −ēLγµeL − ēRγµeR

=
1

2

(
νe
e

)
L

γµτ3

(
νe
e

)
L︸ ︷︷ ︸

Isovector current,
couples only to W 3

µ

− 1

2

(
νe
e

)
L

γµ1

(
νe
e

)
L

− ēRγµeR︸ ︷︷ ︸
Iso-singlets, for the construction
of the hypercharge current

(7.21)

The hypercharge quantum numbers are

Y (νeL) = Y (eL) = −1 (7.22)

Y (eR) = −2 . (7.23)

This follows from the requirement that the Gell-Mann Nishijima relation3 holds

Q = I3 +
1

2
Y (7.24)

Local gauge invariance is achieved through the minimal coupling of the gauge vector field,

i∂/→ i ∂/− g′

2
Y B/ . (7.25)

This leads to the Lagrangian

Lint = −
g√
2
ν̄eLγµeLW

+µ + h.c. − g

2
{ν̄eLγµνeL − ēLγµeL}W 3µ

+ g′{1
2
ν̄eLγµνeL +

1

2
ēLγµeL + ēRγµeR}Bµ (7.26)

From the Lagrangian Eq (7.26) we can read off:

• The charged currents remain unchanged.

• We can introduce a mixture between W 3 and B in such a way that the pure parity-
invariant electron photon interaction is generated. We are left with a
neutral current interaction with the orthogonal field combination:

Aµ = cos θWBµ + sin θWW
3
µ

Zµ = − sin θWBµ + cos θWW
3
µ

}
Bµ = cos θWAµ − sin θWZµ
W 3
µ = sin θWAµ + cos θWZµ

}
(7.27)

3Originally this equation was derived from empiric observations. Nowadays it is understood as result of
the quark model.
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Here θW denotes the Weinberg angle. Rewriting the Lagrangian in terms of Aµ and Zµ leads
to the Aµ coupling

Aµ{ν̄eLγµνeL{−
g

2
sin θW +

g′

2
cos θW}+ ēLγµeL{

g

2
sin θW +

g′

2
cos θW}+ ēRγµeRg

′ cos θW} .

(7.28)

The neutrino ν can be eliminated through

tan θW =
g′

g
. (7.29)

(The photon only couples to charged particles!) The correct e-coupling is obtained by

g′ cos θW = e0
g sin θW = e0

}
1

e20
=

1

g2
+

1

g′2
(7.30)

The lepton-boson interaction hence reads

Lint = − g

2
√
2
ν̄eγµ(1− γ5)eW+µ + h.c.

− g

4 cos θW
{ν̄eγµ(1− γ5)νe − ēγµ(1− γ5)e+ 4 sin2 θW ēγµe}Zµ (7.31)

+ e0ēγµeA
µ

The first line describes the charged current interactions, the second line the neutral current
interaction and the third line the electromagnetic ineractions. The coupling constants of the
theory are: [g, g′] or [e0, sin θW ].

• The coupling e0 =
√
4πα ∼ 1

3
is fixed within electromagnetism.

• The second parameter is not fixed through the weak interactions as the charged current
only fixes the relation GF√

2
= g2

8m2
W
.

With the notation

j+µ = ν̄eγµ
1− γ5

2
e

j3µ =

(
νe
e

)
L

γµ
τ 3

2

(
νe
e

)
L

(7.32)

jemµ = −ēγµe
the interaction Lagrangian can be written as

Lint = − g√
2
j−µW

+µ + h.c.

− g

cos θW
{j3µ − sin2 θW j

em
µ }Zµ (7.33)

−e0jemµ Aµ

where g = e0
sin θW

.

However, the Lagrangian does not conain mass terms for the fermions and gauge bosons yet.
The theory must be modified in such a way that the particles obtain their masses without
getting into conflict with the gauge symmetries underlying the theory.
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7.5 Introduction of theW,Z Boson and Fermion Masses

Let us repeat. With the currents

j±µ = l̄Lγµτ
±lL where lL = (νe, e)L

j3µ = l̄Lγµ
1

2
τ 3lL (7.34)

jemµ = −ēγµe (7.35)

the interaction Lagrangian can be written as

Lint = − g√
2
j−µW

+µ + h.c.

− g

cos θW
{j3µ − sin2 θW j

em
µ }Zµ (7.36)

−e0jemµ Aµ (7.37)

and the couplings fulfill the relations

g′

g
= tan θW

GF√
2

=
g2

8m2
W

(7.38)

e0 = g sin θW .

The generation of masses for the 3 vector fields, hence the absorption of 3 Goldstone bosons,
is not possible with 3 scalar fields. The minimal solution is the introcduction of one complex
doublet with 4 degrees of freedom,

ϕ =

(
ϕ+

ϕ0

)
with

ϕ+ = 1√
2
(ϕ1 + iϕ2)

ϕ0 = 1√
2
(ϕ3 + iϕ4)

(7.39)

The Lagrangian of the doublet field ϕ is given by

Lϕ = ∂µϕ
∗∂µϕ− µ2ϕ∗ϕ− λ(ϕ∗ϕ)2 (7.40)

It is SU(2)L × U(1)Y invariant. The field ϕ transforms as

ϕ→ e−
i
2
gα⃗τ⃗e−

i
2
g′β ϕ (7.41)

After spontaneous symmetry breaking the vacuum expectation value of the scalar field is

< ϕ >=
1√
2

(
0
v

)
v∗ = v . (7.42)

It breaks the SU(2)L × U(1)Y symmetry, but is invariant under the U(1)em symmetry, gen-
erated by the electric charge operator. Since each (would-be) Goldstone boson is associated
with a generator that breaks the vacuum, we have 4−1 = 3 Goldstone bosons. The quantum
numbers of the fields ϕ are

I3(ϕ+) = +1
2

Y (ϕ+) = +1
I3(ϕ0) = −1

2
Y (ϕ0) = +1

}
Q(ϕ+) = 1
Q(ϕ0) = 0

(7.43)
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(The field ϕ transforms as an SU(2)L doublet and therefore has to have the hypercharge
Yϕ = 1.) The gauge fields are introduced through minimal coupling,

i∂µ → i∂µ −
g

2
τ⃗ W⃗µ −

g′

2
Bµ . (7.44)

Expanding about the minimum of the Higgs potential

ϕ+(x)→ 0

ϕ0(x)→
1√
2
[v + χ(x)] χ∗ = χ (7.45)

one obtains from the kinetic part of the Lagrangian of the scalar field

Lm =

∣∣∣∣[(ig2 τ⃗ W⃗ + i
g′

2
B)

(
0
v√
2

)]∣∣∣∣2

=
1

2

v2

4


W1

W2

W3

B




g2

g2

g2 −gg′
−gg′ g′2




W1

W2

W3

B

 (7.46)

with the eigenvalues of the mass matrix given by

m2
1 = m2

2 =
g2v2

4

m2
3 =

(g2 + g′2)v2

4
(7.47)

m2
4 = 0

Thereby the masses of the gauge bosons read

m2
γ = 0 (7.48)

m2
W =

1

4
g2v2 (7.49)

m2
Z =

1

4
(g2 + g′2)v2 (7.50)

They fulfill the folowing mass relations:

(i) W boson mass: We have e20 = g2 sin2 θW = 4
√
2GF sin2 θWm

2
W , from which follows

m2
W =

πα√
2GF

1

sin2 θW
(7.51)

with α ≈ α(m2
Z) (effective radiative correction). With sin2 θW ≈ 1/4 the W boson mass is

mW ≈ 80 GeV.

(ii) Z boson mass: With

m2
W

m2
Z

= cos2 θW (7.52)

we obtain
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sin2 θW = 1− m2
W

m2
Z

(7.53)

Finally one obtains with Eq. (7.49) for the Higgs vacuum expectation value

1

v2
=

g2

4m2
W

=
√
2GF (7.54)

and thereby

v =
1√√
2GF

≈ 246 GeV (7.55)

The vacuum expectation value v is the characteristic scale of electroweak symmetry breaking.

The Higgs mechanism for charged lepton masses: The fermions couple via the gauge-invariant
Yukawa coupling to the Higgs field ϕ. The interaction Lagrangian reads

L(eeΦ) = −fe
(
νe
e

)
L

ϕeR + h.c. (7.56)

It is invariant under SU(2)L × U(1)Y . After expansion of the Higgs field around the VEV
one obtains

L(eeΦ) = −fe
v√
2
[ēLeR + ēReL] + ...

= −fe
v√
2
ēe+ ...

= −meēe+ ... (7.57)

The electron mass is given by

me =
fev√
2

(7.58)

7.6 Quarks in the Glashow-Salam-Weinberg Theory

In this chapter the hadronic sector is implemented in the SM of the weak and electromagnetic
interactions. This is done in the context of the quark model. Since quarks and leptons
ressemble each other, the construction for the quark sector is obvious, but not trivial.

We know from the previous chapters that the lepton currents are built from the multiplets
given by

(
νe
e−

)
L

e−R

(
νµ
µ−

)
L

µ−R

(
ντ
τ−

)
L

τ−R (7.59)
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This can be generalized to the quark currents.

For the quark currents for u, d, s we have:

1) The electromagnetic current, after summation over all possible charges, is given by

jelmµ =
∑
Qq

Qq q̄γµq =
2

3
ūγµu−

1

3
d̄γµd−

1

3
s̄γµs (7.60)

2) From low-energy experiments (pion and Kaon decays) it followed that the left-handed
weak current, the Cabibbo current, is given by4

j−µ = cos θcūγµ
1

2
(1− γ5)d+ sin θcūγµ

1

2
(1− γ5)s

= ūγµ
1

2
(1− γ5)[cos θcd+ sin θcs] (7.61)

with sin2 θc ≈ 0.05. We define the Cabibbo rotated quarks

dc = cos θcd+ sin θcs

sc = − sin θcd+ cos θcs (7.62)

Here,

d, s are different directions in the (u, d, s) space of quarks, characterized by
different masses, i.e. we are in the mass basis.

dc, sc are directions in the quark space, characterized through the
weak interacation, they represent the current basis.

The current j±µ can be expressed through j∓µ = Q̄Lγµτ
±QL with the definitions of the

multiplets given by(
u
dc

)
L

scL

uR
dcR scR

(7.63)

3) The corresponding neutral isovector current is then given by

j3µ =
∑

doublets

Q̄Lγµ
1

2
τ 3QL

∼ ūLγµuL − d̄cLγµdcL
= ūLγµuL − cos2 θcd̄LγµdL − sin2 θcs̄LγµsL

− sin θc cos θc[d̄LγµsL + s̄LγµdL] (7.64)

The first line is a diagonal neutral current. The second line is a strangeness chang-
ing neutral current with the strength ∼ sin θc, like the strangeness changing charged
current.

4Cabibbo’s conjecture was that the quarks that participate in the weak interactions are a mixture of the
quarks that participate in the strong interaction. The mixing was originally postulated by Cabibbo (1963)
to explain certain decay patterns in the weak interactions and originally had only to do with the d and s
quarks.
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This is in striking contradiction with the experimental non-observation of strangeness chang-
ing neutral current reactions. There are strict experimental limits on the decay rates that
are mediated by strangeness changing neutral currents like

1)
Γ(KL → µ+µ−)

Γ(K+ → µ+νµ)
< ∼ 4 · 10−9(exp)

2)
Γ(K+ → πνν̄)

Γ(K+ → all)
< 1.4 · 10−7(exp) (7.65)

3)
|m(KL)−m(KS)|

m(K)
< 7 · 10−15mK0(exp) (7.66)

1) The observed rate for the decay KL → µ+µ− can be understood in terms of QED and
the known KL → γγ transition rate and leaves little room for an elementary s̄d → µ+µ−

transition.
2) The decay K+ → πνν̄ can be understood in terms of the elementary reaction s̄→ d̄νν̄.
3) Similarly the smallness of observables linked to to |∆S| = 2 transition amplitudes, such
as the KL−KS mass difference leaves little room for strangeness changing neutral currents.

Thus, in the Weinberg-Salam model, or more generally in models that allow for neutral
current reactions that are proportional to the third component of the weak isospin, it is
important to prevent the appearance of strangeness changing neutral currents. An elegant
solution to the problem of flavour-changing neutral currents was proposed by Glashow, Il-
iopoulos and Maiani.

We need a “natural mechanism”, i.e. originating from a symmetry, stable against perturba-
tions, that suppresses 8 orders of magnitude. This can be achieved through the introduction
of a fourth quark, the charm quark c. [Glashow, Iliopoulos, Maiani, PRD2(70)1985]

The new multiplet structure is then given by

(
u
dc

)
L

(
c
sc

)
L

uR
dcR

cR
scR

(7.67)

(a) The isovector current now reads:

j3µ =
∑

doublets

Q̄Lγµ
1

2
τ 3QL =

1

2
[ūLγµuL − d̄LγµdL + c̄LγµcL − s̄LγµsL] (7.68)

The addition of the charm quark c diagonalizes the neutral current (GIM mechanism) and
eliminates (∆S ̸= 0,NC) reactions.

(b) The electromagnetic current is given by:

jemµ =
2

3
[ūγµu+ c̄γµc]−

1

3
[d̄γµd+ s̄γµs] (7.69)

(c) The charged current reads:

j−µ = ūγµ
1

2
(1− γ5)[cos θcd+ sin θcs] + c̄γµ

1

2
(1− γ5)[− sin θcd+ cos θcs] (7.70)
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The first term is the Cabibbo current, the second the charm current with strong (c, s) cou-
pling.

In 1973 (1 year before the discovery of the charm quark!) Kobayashi and Maskawa ex-
tended Cabibbo’s idea to six quarks. We thereby obtain a 3×3 matrix that mixes the quarks.
Only in this way the CP violation can be explained. (We come back to this point later.)
We also need the 3rd quark family to obtain an anomaly-free theory. We call anomalies
terms that violate the classical conservation laws. Thus it can happen that a (classical) local
conservation law derived from gauge invariance with the help of Noether’s theorem holds
at tree level but is not respected by loop diagrams. The simplest example of a Feynman
diagram leading to an anomaly is a fermion loop coupled to two vector currents and one
axial current. Because the weak interaction contains both vector and axial vector currents
there is a danger that such diagrams may arise in the Weinberg-Salam theory and destroy
the renormalizability of the theory. The anomaly is canceled if for each lepton doublet we
introduce three quark doublets corresponding to the three quark coulours. Since we have
three lepton doublets we need to introduce a third quark doublet. This was also supported
by the observation of a fifth quark (the b quark) in the Υ family.

7.7 The CKM Matrix

7.7.1 The Fermion Yang-Mills Lagrangian

If we take the down-type quarks in the current basis, then the matrix for the weak interaction
of the fermions is diagonal (see also Eqs. (7.62) and (7.70) ). With the definitions

U =

 u
c
t

 D′ =

 d′

s′

b′


E =

 e
µ
τ

 NL =

 νeL
νµL
ντL

 , (7.71)

where ′ denotes the fields in the current basis, we obtain for the Yang-Mills Lagrangian

LYM−F = (ŪL, D̄′L)iγ
µ(∂µ + igW a

µ

τa

2
+ ig′YLBµ)

(
UL
D′L

)
+ (N̄L, ĒL)iγ

µ(∂µ + igW a
µ

τa

2
+ ig′YLBµ)

(
NL

EL

)
+

∑
ΨR=UR,D

′
R,ER

Ψ̄Riγ
µ(∂µ + ig′YRBµ)ΨR

= Ū i∂/U + D̄′i∂/D′ + Ēi∂/E + N̄Li∂/NL + Lint . (7.72)

The interaction Lagrangian reads

Lint = −eJµemAµ −
e

sin θW cos θW
JµNCZµ −

e√
2 sin θW

(J−µW+
µ + h.c.) . (7.73)
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The electromagnetic current is given by

Jµem = QuŪγ
µU +QdD̄′γ

µD′ +QeĒγ
µE , (7.74)

the neutral weak current by

JµNC = (ŪL, D̄′L)γ
µ τ3
2

(
UL
D′L

)
+ (N̄L, ĒL)γ

µ τ3
2

(
NL

EL

)
− sin2 θWJ

µ
em

=
1

2
ŪLγ

µUL −
1

2
D̄′Lγ

µD′L +
1

2
N̄Lγ

µNL −
1

2
ĒLγ

µEL − sin2 θWJ
µ
em (7.75)

and the charged weak current by

J−µ = (ŪL, D̄′L)γ
µ τ1 + iτ2

2

(
UL
D′L

)
+ (N̄L, ĒL)γ

µ τ1 + iτ2
2

(
NL

EL

)
= ŪLγ

µD′L + N̄Lγ
µEL . (7.76)

(The latter is purely left-handed and diagonal in generation space.)

7.7.2 Mass Matrix and CKM Matrix

Remark: Be χ1, χ2 SU(2) doublets. Then there are two possibilities to form an SU(2)L
singlet:
1) χ†1χ2 and χ†2χ1

2) χT1 ϵχ2 and χT2 ϵχ1, where

ϵ =

(
0 1
−1 0

)
.

Proof: Perform an SU(2)L transformation

χ1(x) → U(x)χ1(x) χ†1 → χ†1U
−1

χ2(x) → U(x)χ2(x) χ†2 → χ†2U
−1 , (7.77)

where

U(x) = eiωa(x)τ
a/2 . (7.78)

1) is invariant under this transformation.
2) Here we have

(Uχ1)
T ϵUχ2 = χT1U

T ϵUχ2 = χT1 ϵχ2 (7.79)

because with

U = eiA =
∞∑
0

(iA)n

n!
⇒ UT =

∑
n

(iAT )n

n!
, A = ωa(x)

τa

2
. (7.80)

And since (τa)T ϵ = −ϵτa, we obtain

UT ϵU = ϵU−1U = ϵ , (7.81)

so that also 2) is invariant.
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The Yukawa Lagrangian: We write up the most general, renormalizable, SU(2)L × U(1)Y
invariant hermitean fermion-fermion-boson Lagrangian. With the SU(2)L doublets(

UL
D′L

)
,

(
NL

EL

)
,Φ =

(
ϕ+

ϕ0

)
(7.82)

and the SU(2)L singlets

UR , D
′
R , ER (7.83)

we can construct 2 SU(2)L invariant interactions,

Φ†
(
ψ1L

ψ2L

)
= (ϕ+)∗ψ1L + (ϕ0)∗ψ2L (7.84)

and

ΦT ϵ

(
ψ1L

ψ2L

)
= ϕ+ψ2L − ϕ0ψ1L , (7.85)

so that for the Yukawa Lagrangian that conserves also the hypercharge we obtain:

LY uk = −(ēR, µ̄R, τ̄R)CE


Φ†
(
νeL
eL

)
Φ†
(
νµL
µL

)
Φ†
(
ντL
τL

)

+ (ūR, c̄R, t̄R)CU


ΦT ϵ

(
uL
d

′
L

)
ΦT ϵ

(
cL
s
′
L

)
ΦT ϵ

(
tL
b
′
L

)



−(d̄′
R, s̄

′
R, b̄

′
R)CD


Φ†
(
uL
d

′
L

)
Φ†
(
cL
s
′
L

)
Φ†
(
tL
b
′
L

)

 + h.c. . (7.86)

The CE, CU , CD are arbitrary complex matrices. We perform through the following unitary
transformations a transition into an equivalent field basis (fields are no observables!)

NL(x) → V1NL(x) UL(x)→ V2UL(x)

EL(x) → V1EL(x) D′L(x)→ V2D
′
L(x)

ER(x) → U1ER(x) UR(x)→ U2UR(x)

D′R(x)→ U3D
′
R(x) , (7.87)

where U1, U2, U3, V1, V2 are unitary 3 × 3 matrices. Since the lepton and quark doublets
transform in the same way this does not change the Yang-Mills-, the Higgs- and the Yang-
Mills fermion Lagrangian. Only the C matrices are changed:

CE → U †1CEV1 CU → U †2CUV2 CD → U †3CDV2 . (7.88)

By choosing the U †1 and V1 matrices appropriately we can diagonalize CE,

U †1CEV1 =

 he
hµ

hτ

 with he, hµ, hτ ≥ 0 . (7.89)
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Similarly,

U †2CUV2 =

 hu
hc

ht

 with hu, hc, ht ≥ 0 . (7.90)

Equation (7.90) fixes the matrix V2. By choosing U3 appropriately we obtain

U †3CDV2 =

 hd
hs

hb

V † with hu, hc, ht ≥ 0 , (7.91)

where V † is a unitary matrix. We transform D′R through D′R → V †D′R and obtain

CD → V

 hd
hs

hb

V † . (7.92)

We expand Φ around the vacuum expectation value

Φ =

(
0

v+H(x)√
2

)
, (7.93)

where H(x) is a real field, and obtain

(d̄′R, s̄
′
R, b̄

′
R)V

 hd
hs

hb

V †


Φ†
(
uL
d′L

)
Φ†
(
cL
s′L

)
Φ†
(
tL
b′L

)


= (d̄′R, s̄

′
R, b̄

′
R)V

 hd
hs

hb

V †


1√
2
(v +H(x))d′L

1√
2
(v +H(x))s′L

1√
2
(v +H(x))b′L

 . (7.94)

After a basis transformation d
s
b

 = V †

 d′

s′

b′

 (7.95)

we finally have

(d̄R, s̄R, b̄R)

 hd
hs

hb

 1√
2
(v +H(x))

 dL
sL
bL

 . (7.96)

The Yang-Mills and the Higgs Lagrangian do not change under the transformation (7.95).
But the Yang-Mills fermion Lagrangian becomes

LYM−F = Ū i∂/U + D̄i∂/D + Ēi∂/E + N̄Li∂/NL − eJµemAµ
− e

sin θW cos θW
JµNCZµ −

e√
2 sin θW

(J−µW+
µ + h.c.) , (7.97)
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with

J−µ = ŪLγ
µD′L + N̄Lγ

µEL = ŪLγ
µV DL + N̄Lγ

µEL . (7.98)

The unitary 3× 3 matrix V is called CKM (Cabibbo-Kobayashi-Maskawa) mixing matrix.

The matrix V is unitary, i.e. V †V = V V † = 1. We investigate the number of free parameters.
For a complex n × n matrix we have 2n2 free parameters. Since the matrix is unitary, the
number of free parameters is reduced by n2 equations. Furthermore the phases can be
absorbed by a redefinition of the fermion fields, so that the number of free parameters is
reduced by further (2n− 1) conditions:

Parameters: n× n complex matrix: 2n2

unitarity: n2

free phase choice: 2n− 1
(n− 1)2 free parameters

In the Euler parametrisation we have

Rotation angle: 1
2
n(n− 1)

Phases: 1
2
(n− 1)(n− 2)

Thus we find for n = 2, 3

n angles phases
2 1 0
3 3 1

We thereby find that in a

2− family theory ∼ Cabibbo: no CP violation with L currents
3− family theory ∼ KM: complex matrix → CP violation

“Prediction of a 3-family structure”’

Next we investigate how we can parametrise the matrix:

(i) Esthetic parametrisation:

VCKM = Rsb(θ2)U(δ)Rsd(θ1)Rsb(θ3) (7.99)

with

0 ≤ θi ≤ π/2

−π ≤ δ ≤ +π (7.100)

and

Rsb(θ2) =

 1 0
0 cos θ2 sin θ2
0 − sin θ2 cos θ2

 etc. U =

 1 0 0
0 1 0
0 0 eiδ

 (7.101)

(ii) Convenient parametrisation (Wolfenstein):

V =

 1− 1
2
λ2 λ Aλ3(ρ− iη)

−λ 1− 1
2
λ2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 (7.102)
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The parameters are determined through e.g.

(a) Cabibbo theory: λ = 0.221± 0.002
(b) b→ c decays: Vcb = Aλ2 → A = 0.78± 0.06
(c) b→ u decays: |Vub/Vcb| = 0.08± 0.02 → (ρ2 + η2)1/2 = 0.36± 0.09
(d) t matrix elements through unitarity

(e) CP violation:

The unitarity of the CKM matrix leads to the unitarity triangle

V ∗udVtd + V ∗usVts + V ∗ubVtb = 0

Aλ3(1− ρ− iη)− Aλ3 + Aλ3(ρ+ iη) = 0

⇒ (ρ+ iη) + (1− ρ− iη) = 1 (7.103)

We hence have the unitarity triangle with the edges (0, 0), (ρ, η and (1, 0) in the complex
plane, cf. Fig. 7.8.

Figure 7.8: The unitary triangle.

For more information on the determination of the elements of the CKM matrix, cf. e.g. the
pdg review article https://pdg.lbl.gov/2020/reviews/rpp2020-rev-ckm-matrix.pdf.

https://pdg.lbl.gov/2020/reviews/rpp2020-rev-ckm-matrix.pdf


Chapter 8

Quantum Chromo Dynamics - QCD

8.1 Introduction of Color

QCD is the field-theoretical formulation of the strong interaction. Historically, the strong
interaction was defined as

• the binding force of nucleons inside a nucleus

• the force in nucleon-nucleon scattering

Interaction distance:

d ∼ 1 fm→ σ ∼ π
d2

4
∼ 10mb . (8.1)

Interaction strength:

V (R) =
g2s
4π
e−

R
d

g2s
4π

∼ 102
g2em
4π
∼ 1 . (8.2)

Spin-statistics problem of the quark model:

∆++(sz = 3
2
) = u(↑)u(↑)u(↑) has a totally symmetrc spin wave function. Fermi-statistics,

however, requires a spin wave function, which is totally antisymmetric.

(i) Ground state ̸= relativistic s-wave combination contrary to the naive expectation.
p-wave → knots → forbidden zones → higher energy because of the unertainty principle,
contradicts naive expectation.

(ii) Magnetic moments of the nucleons

µ⃗ = eQ
2m

[⃗l+2s⃗], s-waves l = 0: nucleon moments are built up additively from quark moments,

µN =< N|
3∑
i=1

µ(i)σ3(i)|N > , (8.3)

where σ3(i) is the third component of the spin times two of the valence quarks in the
nucleon. Due to the spin wave function: [µu = −2µd] (the prefactors are the Clebsch-Gordan

101
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coefficients)

µp =
4

3
µu −

1

3
µd = −(

8

3
+

1

3
)µd = −3µd for mu ≈ md

µn =
4

3
µd −

1

3
µu = (

4

3
+

2

3
)µd = 2µd (8.4)

Ratio

µp
µn

= −3

2
exp. = −1.46 (8.5)

No l ̸= 0 contribution required.
Effektive quark mass: µp =

e
2mp

2.79 = −1
3

e
2md

(−3) = e
2md
⇒

meff
q =

mp

2.79
≈ 330 MeV (8.6)

Solution: Quarks carry a 3-valued discriminator so that the symmetric quark model is pos-
sible.

I. Color Hypothesis (Greenberg ’64)
Apart from flavor charges quarks also carry color charges; each quark appears
in exactly 3 colors (red, blue, green = 1,2,3): q = (q1, q2, q3).

Color transformations: The maximal mixing group of the 3 color degrees of freedom is [̸=
common phase]

q → q′ = e−i
∑8
k=1 αk

λk
2 q (8.7)

SU(3)C transformations = unimodular, unitary 3× 3 matrices [non-Abelian group].

Gell-Mann matrices: λk, k = 1, ..., 8. [3-dimensional extension of σ⃗ in SU(2)]

λ†k = λk ⇒ e−iαk
λk
2 unitary: U †U = 1

Trλk = 0⇒ unimodular: detU = +1 . (8.8)

Explicit representation:

λ1 =

 0 1 0
1 0 0
0 0 0

 λ2 =

 0 −i 0
i 0 0
0 0 0

 λ3 =

 1 0 0
0 −1 0
0 0 0


λ4 =

 0 0 1
0 0 0
1 0 0

 λ5 =

 0 0 −i
0 0 0
i 0 0

 λ6 =

 0 0 0
0 0 1
0 1 0


λ7 =

 0 0 0
0 0 −i
0 i 0

 λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 (8.9)
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Properties:[
λi
2
,
λj
2

]
= ifijk

λk
2

[A2 algebra]{
λi
2
,
λj
2

}
=

1

3
δij1+ dijk

λk
2

Tr(λiλj) = 2δij Tr(λi) = 0 , (8.10)

with the fijk and dijk given in Fig. 8.1.

Figure 8.1: The values of fijk and dijk.

I’. Color Hypothesis (Gell-Mann ’72)
The SU(3)C symmetry is exact. All physical (free) states, observables and
interactions are SU(3)C singlets.

(a) Quarks, which are color triplets, do not exist as free particles.

(b) Color wave function

Baryons : 1√
6
ϵijk

Mesons : 1√
3
δij

}
ϵijk, δijSU(3)C singlets . (8.11)
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Example:

∆++(sz = +
3

2
) =

1√
6
ϵijkui(↑)uj(↑)uk(↑)

Φ(sz = +1) =
1√
3
δijsi(↑)s̄j(↑) .

(c) Electromagnetic interaction:

Lem = −ejµAµ
jµ =

∑
fl

q̄γµQqq ≡
∑
fl

∑
c

q̄cγµQqqc , (8.12)

which is an SU(3) singlet.

Tests of the color hypothesis:

1.) π0 → γγ decay

Figure 8.2: The pion decay into photons.

Decay width (cf. Fig. 8.2):

Γ(π0 → γγ) =
α2

32π3

m3
π

f 2
π

(Q2
u −Q2

d)
2N2

C (8.13)

without color : NC = 1: Γ = 0.87 eV

with color : NC = 3: Γ = 7.86 eV

experimentally : Γexp = 7.48± 0.33± 0.31 eV

2.) e+e− → hadrons

In the quark-parton model the production probability in e+e− → hadrons is determined
by the one for qq̄ pairs (cf. Fig. 8.3); final-state interactions are negligible for

dprod. qq̄
dhadron

∼
1GeV

E

(E→∞)→ 0.
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Figure 8.3: The process e+e− → hadrons.

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
=
∑
fl,c

σ(e+e− → qq̄)

σ(e+e− → µ+µ−)
= 3

∑
fl

e2q (8.14)

q eq
u, c, t +2

3

d, s, b −1
3

energy prod. quarks R w/o color R w/ color
< 3 GeV u, d, s 4

9
+ 1

9
+ 1

9
= 2

3
2

> 5 GeV +c 6
9
+ 4

9
= 10

9
10
3

> 10 GeV +b 10
9
+ 1

9
= 11

9
11
3

The measurements (cf. Fig. 8.4) confirm the color hypothesis.

Figure 8.4: Results for R.
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8.2 Gluon Gauge Fields

In anlogoy to QED:

II.Color Hypothesis (Nambu ’66, Fritzsch+Gell-Mann ’72, Leutwyler ’73)
Color charges are sources of gauge fields (⇒ gluons) that build up the strong
interaction between quarks.

Lagrangian for a color triplet:

Lq = q̄(x)(i∂/−mq)q(x) with q = (q1, q2, q3), mq1 = mq2 = mq3 SU(3)C triplet . (8.15)

- L is invariant w.r.t. global, non-Abelian SU(3)C transformations

q(x) → Sq(x)

q̄(x) → q̄(x)S−1

}
S = e−iαkT

k

(T k =
λk
2
) . (8.16)

- L is not invariant w.r.t. local SU(3)C transformations: αk = αk(x),

Lq → Lq + q̄(x)(S−1i∂/S)q(x) . (8.17)

L can be made locally gauge invariant by introducing 8 minimally coupled gluon fields

Gk
µ(x) (k = 1, ..., 8). (gluon matrix Gµ = Gk

µT
k)

i∂µ → i∂µ − gSGµ = iDµ

Lq = q̄(x)(iD/−mq)q(x) = q̄(x)(i∂/−mq − gsG/(x))q(x) (8.18)

with

q(x) → S(x)q(x) αk = αk(x)

q̄(x) → q̄(x)S−1

Gµ(x) → SGµS
−1 − i

gS
S∂µS

−1 .

(8.19)

The covariant derivative transforms as [∂µ(SS
−1) = 0]

iDq → iD′q′ = [i∂ − gSSGS−1 − i(∂S)S−1]Sq
= S(i∂ − gSG)q = SiDS−1Sq . (8.20)

Thereby D → D′ = SDS−1 (rotation).

Gluon Lagrangian We introduce

Gµν = DνGµ −DµGν = ∂νGµ − ∂µGν − igS[Gµ, Gν ] , (8.21)

which transforms as: (with Gµν =
i
gS
[Dµ, Dν ])

Gµν → G′µν = SGµνS
−1 pure rotation [no observable] . (8.22)



Quantum Chromo Dynamics - QCD 107

The Lagrangian reads

Lg = −
1

2
TrG2

µν = −
1

4
(Gk

µν)
2 . (8.23)

It is gauge invariant (no mass term: +1
2
m2
gTrG

2
µ). The Lagrangian consists of

(a) kinetic part = −1
4
(∂νG

k
µ − ∂µGk

ν)
2

(b) trilinear coupling ∼ gSGGG
(c) quartic coupling ∼ g2SGGGG.

- The gluon fields interact with themselves: color charged gluons are sources for gluons ( ̸= γ).
- gS is universal, it is fixed in the gauge sector: color charges are quantized.

Lagrangian I of the QCD:

L = q̄(iD/−mq)q − 1
2
TrG2

µν

= q̄(i∂/−mq)q − 1
2
Tr(∂νGµ − ∂µGν)

2 kin. part
−gS q̄G/q quark-gluon coupling
+igSTr(∂νGµ − ∂µGν)[Gµ, Gν ] 3-Gluon Kopplung

+
g2S
2
Tr[Gµ, Gν ]

2 4-gluon coupling

After gauge fixing and application of the Faddeev-Popov trick we obtain within the Feynman
path integral formulation for the complete QCD Lagrangian the action functional

Complete Lagrangian of the QCD

W ∼
∫
Dq̄DqDGDc∗Dc exp i

∫
d4xLeff

Leff = LQCD + Lg.f. + LFP LQCD = quark-gluon Lagrangian
Lg.f. = gauge-fixing Lagrangian
LFP = ghost Lagrangian

Lorentz gauge axial gauge:
Lg.f. = −1

ξ
Tr(∂G)2 Lg.f. = −1

ξ
Tr(nG)2 for ξ → 0

LFP = ∂c∗(∂ + gSfG)c LFP = 0

Derivation of LFP in the Lorentz gauge and in the axial gauge:

The Faddeev-Popov Lagrangian is given by (cf. chapter ??)

LFP = c∗aMabcb , (8.24)

where ca, cb denote the ghost fields, a, b the color indices and Mab the Faddeev-Popov deter-
minant. The latter is given by

Mab(x, y) =
δF a[Gα(x)]

δαb(y)

∣∣∣∣
α⃗=0

. (8.25)

F a denotes the gauge fixing condition. Gα is the gluon field, transformed under an infinites-
imal gauge transformation with the gauge parameter α. The QCD Lagrangian is invariant
under non-abelian SU(3) gauge transformations, and we have (Ga

µ = 2TrT aGµ)

(Gα)aµ = Ga
µ − fabcGb

µα
c +

1

gS
∂µα

a +O(α2) . (8.26)
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(i) Lorentz gauge: We have the gauge fixing condition ∂G = f , in detail

∂µ(Gα)aµ − fa = (∂µGa
µ − fa)︸ ︷︷ ︸
=0

−fabc∂µGb
µα

c +
1

gS
∂2δabα

b︸ ︷︷ ︸
1
gs

∫
d4y{∂2δab+gSfabc∂µGcµ}δ4(x−y)αb(y)

. (8.27)

And we obtain for the Faddeev-Popov determinant

Mab(x, y) =
1

gS
[∂2δab + gSfabc∂

µGc
µ]δ4(x− y) . (8.28)

In non-abelian gauge theories the Faddeev-Popov determinant manifestly depends on the
gauge field G. In abelian gauge theories the Faddeev-Popov determinant is independent of
the gauge field (fabc ≡ 0) and thereby ineffective so that it can be neglected in the effective
Lagrangian.

Axial gauge: The gauge fixing condition is given by nG = 0, where nµ is a four-vector with
n2 = ±1, 0. We then obtain for the gauge-transformed gluon field

n(Gα)a = nGa︸︷︷︸
=0

−fabc nGb︸︷︷︸
=0

αc +
1

gS
n∂αa

=
1

gS

∫
d4yδab n∂ δ4(x− y)αb(y) . (8.29)

The Faddeev-Popov determinant reads

Mab(x, y) =
1

gS
nµ∂

µ δab δ4(x− y) . (8.30)

It is independent of the gauge field G and thereby ineffective so that it can be neglected in
the effective Lagrangian. The Feynman rules have been given in Eq. (??)

8.3 Asymptotic Freedom

Through higher-order corrections the parameters of the theory become dependent on the
energy scale. For QED, which is an abelian gauge theory, it is found that the electormagnetic
coupling α = e2/(4π) is given by

α(Q2) =
α(µ2)

1−
∑

f e
2
f
α(µ2)
3π

ln Q2

µ2

. (8.31)

This means that the coupling strength decreases (increases) with increasing (decreasing)
distance. We now want to determine the “running” of the strong coupling constant of QCD,
which is a non-abelian gauge theory.

8.3.1 Determination of the Running Coupling

Detailed information on the following can also be found e.g. in the chapters 8.5, 8.6 and 8.8
in Pierre Ramond, “Field Theory: A Modern Primer”, Frontiers in Physics.

For the derivation of the running coupling constant, we have to compute the loop-
corrections to that part of the QCD Lagrangian which contains the terms relevant for the
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strong coupling constant. In the covariant gauge, this Lagrangian is at tree level given by
the following bare Lagrangian

Lbare =
1

4
(∂µG

B
ν 0 − ∂νGB

µ 0)
2 − g′0fABCGB

µ 0G
C
ν 0∂

µGν A
0

+
1

4
(g

′′

0 )
2fABCfADEGB

µ 0G
C
ν 0G

µD
0 Gν E

0 (8.32)

+
1

2ξ0
(∂µGB

µ 0)(∂
νGB

ν 0) + i(∂µη∗B0 )(∂µη
B
0 )−

i

2
g

′′′

0 f
ABCGC

µ 0η
∗A
0

←→
∂ µηB0

− i
2
g

′′′′

0 f
ABCη∗A0 ηB0 (∂µG

µC
0 ) + ψ̄0∂/ψ0 + ig0G

B
µ 0ψ̄0γ

µTBψ0 + im0ψ̄0ψ0 ,

where Ga
µ 0 denote the bare gluon fields, ηa0 denote the bare ghost fields, ψ0 denote the bare

fermion fields, m0 denotes the bare fermion mass, and g0, g
′,′′,′′′,′′′′

0 denote the bare strong
QCD coupling constant, which, for the sake of generality, we take different in the various
interaction vertices. The A,B,C = 1, ..., 8 denote the color indices, ξ0 the bare gauge fixing
parameter, and TA the generators of the SU(3)C . The bare fields, masses and coupling
constants are related to their renormalised (finite) counterparts through the relations

ψ0 = (1 + δZ2)
1/2ψ = Z

1/2
2 ψ (8.33)

GB
µ 0 = (1 + δZ3)

1/2GB
µ = Z

1/2
3 GB

µ (8.34)

ηB0 = (1 + δZ6)
1/2ηB = Z

1/2
6 ηB (8.35)

m0 = m
1 + δZm
1 + δZ2

= m
Zm
Z2

(8.36)

ξ−10 = ξ−1
1 + δZξ
1 + δZ3

= ξ−1
Zξ
Z3

(8.37)

g0 = gµϵ
1 + δZ1

Z2Z
1/2
3

= gµϵ
Z1

Z2Z
1/2
3

(8.38)

g
′

0 = gµϵ
1 + δZ4

Z
3/2
3

= gµϵ
Z4

Z
3/2
3

(8.39)

g
′′

0 = gµϵ
(1 + δZ5)

1/2

Z3

= gµϵ
Z

1/2
5

Z3

(8.40)

g
′′′

0 = gµϵ
1 + δZ7

Z
1/2
3 Z6

= gµϵ
Z7

Z
1/2
3 Z6

(8.41)

g
′′′′

0 = gµϵ
1 + δZ8

Z
1/2
3 Z6

= gµϵ
Z8

Z
1/2
3 Z6

. (8.42)

With these relations we get for the counterterm Lagrangian

Lct =
1

4
δZ3(∂µG

B
ν − ∂νGB

µ )
2 − δZ4gµ

ϵfABCGB
µG

C
ν ∂

µGν A

+
1

4
δZ5g

2µ2ϵfABCfADEGB
µG

C
ν G

µDGν E (8.43)

+
1

2ξ
δZξ(∂

µGB
µ )(∂

νGB
ν ) + iδZ6(∂

µη∗B)(∂µη
B)− i

2
gµϵδZ7f

ABCGC
µ η
∗A←→∂ µηB

− i
2
gµϵδZ8f

ABCη∗AηB(∂µG
µC) + δZ2ψ̄∂/ψ + igµϵδZ1G

B
µ ψ̄γ

µTBψ + imδZmψ̄ψ .



110 Quantum Chromo Dynamics - QCD

The five coupling constants g0, ..., g
′′′′
0 are identical due to the Slavnov-Taylor identities.1

From this follows that

Z1

Z2

=
Z4

Z3

=

√
Z5

Z3

=
Z7

Z6

=
Z8

Z6

. (8.44)

The one-loop corrections relevant for QCD are shown in Fig. 8.5.

Figure 8.5: One-loop corrections to quark and gluon propagators and vertices.

For the determination of the 1-loop-corrected coupling we need Z1, Z2, and Z3, as

g0 = gµϵ
Z1

Z2Z
1/2
3

. (8.45)

We obtain them from

1They correspond to the Ward identities of the Yang Mills theory.
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Determination of Z3 We have the following contributions to the gluon self-energy: The
sum of the two diagrams

results in

Π(1)AB
µν (p) + Π(2)AB

µν (p)

=
g2

32π2
fACDfBCD(gµνp

2 − pµpν)
{
10

3

1

ϵ
+

62

9
− 10

3
γE −

10

3
ln

p2

4πµ2

}
. (8.46)

The following diagram is zero in dimensional regularisation:

Also the tadpole diagrams are zero in dimensional reguarlisation. Summing up, we have
for the UV-divergent part

Πg AB
µν (p) =

3∑
i=1

Π(i)AB
µν (p) =

g2

16π2
δABCad(gµνp

2 − pµpν)
5

3

1

ϵ
+ ... , (8.47)

where Cad = N = 3. We furthermore have

which results in

Πf AB
µν (p) = −CfδAB

g2

16π2
(gµνp

2 − pµpν)
4

3

1

ϵ
+ ... , (8.48)

for the divergent part, with Cf = 1/2. Altogether we hence have for the divergent part of
the gluon self-energy at one-loop order in QCD

ΠAB
µν = Πg AB

µν (p) + Πf AB
µν (p) =

g2

16π2
δAB(gµνp

2 − pµpν)
[
Cad

5

3
− Cf

4

3

]
1

ϵ
+ ... (8.49)

Determination of Z2 We have one diagram that contributes to the quark self-energy:
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It can be expressed in terms of the QED self-energy after the appropriate coupling re-
placement,

Σ(p) = TATAΣQED(p) = −iN
df
Cf

g2

16π2
[p/+ 4m]

1

ϵ
+ ... , (8.50)

where df = N = 3.

Determination of Z1 For the corrections to the quark-quark-gluon vertex we have two
contributions as the tadpole contributions vanish:

For these diagrams we obtain

ΓA1ρ(p, q) = −igµϵTAγρ
(
−1

2
Cad + Cf

N

df

)
g2

16π2

1

ϵ
+ ... (8.51)

and

ΓA2ρ(p, q) = −3igµϵγρTA
g2

32π2
Cad

1

ϵ
. (8.52)

We hence obtain

Z1 = 1− g2

16π2

([
Cad + Cf

N

df

]
1

ϵ
+ F1

)
... (8.53)

Z2 = 1− g2

16π2

(
Cf

N

df

1

ϵ
+ F2

)
... (8.54)

Z3 = 1 +
g2

16π2

([
5

3
Cad −

4

3
Cf

]
1

ϵ
+ F3

)
...; , (8.55)

where F1, F2 and F3 are the finite part of the counterterms.

Asymptotic Freedom With the computed Z1, Z2 and Z3 we can now relate the bare
coupling g0 to the renormalised coupling g through

g0 = gµϵ
Z1

Z2Z
1/2
3

. (8.56)
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We obtain

g0 = gµϵ
[
1− g2

16π2

{(
Cad + Cf

Nf

df
− Cf

Nf

df
+

5

6
Cad −

4

6
Cf

)
1

ϵ
+ F1 − F2 +

F3

2

}]
= gµϵ

[
1− g2

16π2

{(
11

6
Cad −

2

3
Cf

)
1

ϵ
+ F1 − F2 +

F3

2

}]
. (8.57)

Applying the minimal substraction renormalisation scheme, the finite terms are zero, F1 =
F2 = F3 = 0. And we get

g0 = gµϵ
[
1− g2

16π2

(
11

6
Cad −

2

3
Cf

)
1

ϵ

]
. (8.58)

We now define the β-function, which describes the energy dependence of the coupling,

µ
∂g

∂µ
= β(g) . (8.59)

For this we take the partial derivative ∂/∂µ on the left- and the right-handed side of Eq. (8.58)
and get

0 = ϵµϵ−1
{
g − g3

16π2

(
11

6
Cad −

2

3
Cf

)
1

ϵ

}
+ µϵ

∂g

∂µ

∂

∂g

{
g − g3

16π2
A
1

ϵ

}
, (8.60)

with

A =
11

6
Cad −

2

3
Cf . (8.61)

Multiplication with µ1−ϵ leads to

0 = ϵg − g3

16π2
A+ µ

∂g

∂µ

∂

∂g

{
g − g3

16π2
A
1

ϵ

}
⇔ 0 = ϵg − g3

16π2
A+ µ

∂g

∂µ

{
1− 3g2

16π2
A
1

ϵ

}
⇔ µ

∂g

∂µ
=

{
g3

16π2
A− ϵg

}{
1− 3g2

16π2
A
1

ϵ

}−1
. (8.62)

Expansion in ϵ leads to

µ
∂g

∂µ
=

g3

16π2
A+

3g5

(16π2)2
A21

ϵ
− 3g3

16π2
A+ ... . (8.63)

Expansion up to strictly order g3, we obtain

µ
∂g

∂µ
=

(
g
∂

∂g
− 1

)(
− g3

16π2

)(
11

6
Cad −

2

3
Cf

)
= − g3

16π2

(
11

3
Cad −

4

3
Cf

)
, (8.64)

from where we can read off the β-function

β(g) = − g3

16π2

(
11

3
Cad −

4

3
Cf

)
. (8.65)
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As long as

11

2
Cad −

4

3
Cf > 0 (8.66)

the coupling constant decreases with µ. This is called asymptotic freedom. In QCD
with the gauge group SU(3) we have Cad = 3 and Cf = 1/2 for each of the 6 quarks so
that QCD is asymptotically free. The behavior of g as a function of the inverse energy
scale µ−1 is shown in Fig. 8.6. As can be inferred from the figure, for small energy scales,
respectively large distances, the coupling becomes non-perturbative so that we cannot trust
the perturbative calculations any more. Only at short distances, where the particles become
asymptotically free, we can apply our perturbative calculations.2 As the QCD coupling
rises with increasing distance, the perturbative states cannot leave the interaction region to
become asymptotic states. The perturbative states could escape and form asymptotic states
only by forming composite states which are neutral w.r.t. the long range force. We hence
have the confinement hypothesis, which states that in an asymptotically free theory only
singlets under the gauge force could be asymptotic states. QCD obviously is asymptotically
free. The asymptotic states of the theory are not the quarks or the gluons, but composite
states built up by the quarks, antiquarks and gluons. These are to be identified with the
strongly interacting particles detected in the laboratory, such as protons, neutrons π-mesons
etc.

Figure 8.6: The strong coupling constant as a function of the inverse of the energy scale.
For small energy scales, respectively large distances, the coupling exceeds the perturbative
limit.

Let us finish this section by deriving the formula for the energy scale dependence of the

2The SU(2)L is also a non-abelian gauge theory such that the weak coupling in the SM also increases with
decreasing energy, respectively, increasing distance. However, as we the gauge bosons of the weak interaction
are massive, the interaction potential is exponentially supressed for large distances, so that we do not have
confinement in the weak interaction.
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strong coupling constaint αs. Starting from

µ
∂g

∂µ
= − g3

16π2

(
11

3
Cad −

4

3
Cf

)
, (8.67)

we make a variable transformation µ→ µ2, g → g2 using

∂µ2 = 2µ∂µ ;
∂

∂µ
= 2µ

∂

∂µ2
(8.68)

and

∂g2

∂µ
= 2g

∂g

∂µ
;

∂g

∂µ
=

1

2g

∂g2

∂µ
(8.69)

so that

µ
∂g

∂µ
=
µ2

g

∂g2

∂µ2
(8.70)

and arrive at (αs = g2/(4π))

µ2∂αs(µ)

∂µ2
= −α

2
s

π

1

12
[33− 2NF ]︸ ︷︷ ︸
β(αs)

. (8.71)

Integration results in (β0 = 1/12(33− 2NF ))∫ αs(Q2

αs(µ2)

dαs
β(αs)

=

∫ Q2

µ2

dµ′ 2

µ′ 2
= ln

Q2

µ2

⇔
∫ Q2

µ2

dαs
α2
s(µ)

= −β0
π

ln
Q2

µ2

⇔ 1

αs(µ2)
+

1

αs(µ2)

β0αs(µ
2)

π
ln
Q2

µ2
=

1

αs(Q2)
, (8.72)

so that we finally get

αS(Q
2) =

αS(µ
2)

1 + 33−2NF
12

αS(µ2)
π

ln Q2

µ2

(8.73)

As can be inferred from this formula, with growing Q2 the effective color charge vanishes.
This asymptotic freedom is realized for the non-abelian SU(3) for NF ≤ 16. It is a conse-
quence of the non-abelian gauge boson loops, and is in contrast to the U(1) where we do not
have photon self-interactions.

The renormalisation group equation determines the asymptotic behaviour of the running
coupling. Including higher orders we have

β(αS) = −α
2
S

π

[
β0 + β1

αS
π

+ β2

(αS
π

)2]
β1 =

153− 19NF

24
β2 =

1

128

[
2857− 5033

9
NF +

325

27
N2
F

]
αS(Q

2) =
π

β0 ln
Q2

Λ2

{
1− β1

β2
0

ln ln Q2

Λ2

ln Q2

Λ2

+ ...

}
. (8.74)
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Scale parameter of QCD: Quantum theory introduces a scale into unscaled classical chro-
modynamics (for mq = 0) via renormalisation. The coupling constant at a default distance
is given by

αs︸︷︷︸
experimentally determined

= αs(µ
2)

If hence the value of αs is known at a certain scale through the comparison with experiment,
one can deduce the scale from which on perturbation theory is not valid any more. A
reformulation leads to

1

αS(Q2)
=

1

αS(µ2)
− 33− 2NF

12π
lnµ2︸ ︷︷ ︸

≡ 33−2NF
12π

ln 1
Λ2

+
33− 2NF

12π
lnQ2 (8.75)

And thereby

αS(Q
2) =

12π

(33− 2NF ) ln
Q2

Λ2

(8.76)

With the confinement radius Λ−1 ∼ fm we have

Λ ∼ 100− 300 MeV (8.77)

And αS(Q
2)

π
≤ 10−1 for Q2 ≥ 2 GeV2. This is the range in which perturbation theory can be

applied.

Renormalisation schemes
We have for the inverse fermion propapator including higher-order corrections (i.e. the self-
energy correction)

S−1 = p/
[
1− Σ̃(p)

]
, (8.78)

where Σ̃ denotes the self-energy, which in dimensional regularisation (n = 4−2ϵ) is given by

Σ̃(p) =
4

3

g2S
(4π)2−ϵ

(µf)2ϵ
Γ(ϵ)

(−p2)ϵ
2(1− ϵ)B(2− ϵ, 1− ϵ) . (8.79)

In dimensional regularisation we replace the strong coupling constant as g2S → g2S(µf)
2ϵ,

where f is an arbitrary constant, in order to ensure that the action is dimensionless in
n = 4− 2ϵ dimensions. After expansion in ϵ we obtain

S−1(p) = p/

{
1− 4

3

g2S
16π2

[
1

ϵ
− ln

−p2

(µf)2
+ 1 + ln 4π − γE

]}
. (8.80)

Using multiplicative renormalisation we have the following relation between the bare and
the renormalised propagator,

S−1(p) = Z−1Ψ S−1R (p) . (8.81)
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We consider in the following different renormalisation schemes:

(i) Dyson renormalisation scheme

The scheme is characterised through the following condition,

f = 1
S−1R = p/ for µ2 = −p2

}
S−1(p) = p/

[
1− Σ̃(µ)

] [
1− Σ̃(p) + Σ̃(µ)

]
. (8.82)

The solution is given by

Z−1Ψ = 1− 4

3

g2S
16π2

[
1

ϵ
+ ln 4π − γE + 1

]
S−1R = p/

[
1 +

4

3

g2S,MOM

16π2
ln
−p2

µ2

]
, (8.83)

where MOM stands for “momentum substraction” .

The coupling/charge depends on the renormalisation scheme.

(ii) ’t Hooft: Minimal Substraction (MS)

Here we demand

f = 1

Z−1Ψ only takes off the
1

ϵ
pole. . (8.84)

We demand for S−1(p) that

S−1(p) = p/

[
1− 4

3

g2S
16π2

1

ϵ

]{
1− 4

3

g2S
16π2

[
− ln

−p2

µ2
+ ln 4π − γE + 1

]}
. (8.85)

The solution is

Z−1Ψ = 1− 4

3

g2S
16π2

1

ϵ

S−1R = p/

{
1− 4

3

g2S,MS

16π2

[
− ln

−p2

µ2
+ ln 4π − γE + 1

]}
. (8.86)

(iii) Modified Minimal Substraction (MS)

We demand

f = exp

[
−1

2
(ln 4π − γE)

]
. (8.87)

The goal is to take off all trivial constants. This means that we demand

S−1(p) = p/

[
1− 4

3

g2S
16π2

1

ϵ

] [
1− 4

3

g2S
16π2

(
1− ln

−p2

µ2

)]
. (8.88)

The solution is given by

Z−1Ψ = 1− 4

3

g2S
16π2

1

ϵ
(8.89)

S−1R (p) = p/

1− 4

3

g2
S,MS
16π2

[
1− ln

−p2

µ2

] . (8.90)
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The relation between the MS and the MS scheme is given by:

MS↔ MS : µ2

MS ↔ µ2

MS
exp [− ln 4π + γE] . (8.91)

And for the scale parameter (see side calculation)

Λ2

MS = µ2 exp

{
− 4π2

β0g2
S,MS

+
β1
β2
0

ln(4π2/(β0g
2

S,MS))

}
(8.92)

Λ2

MS
= µ2 exp

− 4π2

β0g2
S,MS

+
β1
β2
0

ln(4π2/(β0g
2

S,MS
))

 . (8.93)

ΛMS = ΛMS exp

{
ln 4π − γE

2

}
(8.94)

β0, β1 are independent of the renormalisation scheme (not βi≥2) and αS,MS(Q
2) > α

S,MS(Q
2).

Quark masses

We now consider the quark self-energy which is given by

Σ(p/ = m) = mCF
αS
π
Γ(1 + ϵ)

(
4πµ2

m2

)ϵ(
3

4ϵ
+ 1

)
. (8.95)

The pole mass is given by

m = m0 + Σ(p/ = m) (8.96)

and the MS mass by

m(µ2) = m0 + δm , (8.97)

where

δm = mCF
αS
π
Γ(1 + ϵ)(4π)ϵ

3

4ϵ
. (8.98)

The relation between the pole mass and the MS mass is

m(µ2) = m− [Σ(p/ = m)− δm] = m

[
1− CF

αS
π

(
3

4
ln
µ2

m2
+ 1

)]
= m

[
1− CF

αS
π

] [
1− 3

4
CF

αS
π

ln
µ2

m2

]
, (8.99)

hence

m(m2) = m

[
1− CF

αS(m
2)

π

]
m(µ2) = m(m2)

[
1− αS

π
ln
µ2

m2

]
(8.100)
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The renormalisation group equation reads

µ2∂m(µ2)

∂µ2
= −γm(αS(µ2))m(µ2) , (8.101)

where

γm(αS) =
αS
π

+O(α2
S) (8.102)

denotes the anomalous dimension. With

αS(µ
2) =

π

β0 ln
µ2

Λ2

(8.103)

the solution is given by

m(µ2) = m(m2) exp

{
−1
β0

∫ µ2

m2

dQ2

Q2 ln Q2

Λ2

}
= m(m2)

[
αS(µ

2)

αS(m2)

] 1
β0

. (8.104)

We hence obtain

m(µ2) = m̂
[
αS(µ

2)
] 1
β0

m̂ = m(m2)
[
αS(m

2)
]− 1

β0 (8.105)

Figure 8.7: The m mass as function of the energy scale.

With rising µ2(R → 0) the effective quark mass van-
ishes, cf. Fig. 8.7.
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Examples:

Bottom Quark: mb = 4.8 GeV.

m(m2
b) = 4.2 GeV m(M2

Z) = 2.9 GeV . (8.106)

Charm Quark: mc = 1.6 GeV.

m(m2
c) = 1.2 GeV m(M2

Z) = 0.6 GeV . (8.107)

Light Quarks (QCD sum rules):

mu(1 GeV2) ∼ 5 MeV Gasser,Leutwyler (8.108)

md(1 GeV2) ∼ 8 MeV (8.109)

ms(1 GeV2) ∼ 200 MeV . (8.110)

The higher-order corrections are given by

m(m2) =
m

1 + CF
αS(m2)

π
+K

(
αS(m2)

π

)2 Gray,Broadhurst,Grafe,Schilcher(8.111)

where

Kt ∼ 10.9 Kb ∼ 12.4 Kc ∼ 13.4 . (8.112)

And we have

m(µ2) = m(m2)
c[αS(µ

2)/π]

c[αS(m2)/π]
, (8.113)

with

c(x) =

(
9

2
x

)4/9 [
1 + 0.895x+ 1.371x2 + 1.952x3

]
ms < µ < mc

c(x) =

(
25

6
x

)12/25 [
1 + 1.014x+ 1.389x2 + 1.091x3

]
mc < µ < mb

c(x) =

(
23

6
x

)12/23 [
1 + 1.175x+ 1.501x2 + 0.1725x3

]
mb < µ < mt

c(x) =

(
7

2
x

)4/7 [
1 + 1.389x+ 1.793x2 − 0.6834x3

]
mt < µ (8.114)

Chetyrkin; Larin,van Ritbergen,Vermaseren .

The running of the coupling and of the bottom quark mass as determined by experiment
are shown in Fig. 8.8 and Fig. 8.9, respectively.
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Figure 8.8: The running αs.

8.4 Renormalisation Group

Parameters of a field theory (masses, couplings) are introduced for a certain µ2; physical
observables are independent of the particular choice of µ2: The modification of µ2 with the
corresponding change of the parameters leads to the invariance which can be formulated as
renormalisation group equations (RGEs), which are partial differenial equations.
Application: The µ2-variation can be moved to a Q2-variation by means of a dimensional
analysis. In this way the Q2 variation of Green’s functions can be determined.

In the following, we will derive the renormalisation group equation. We start by consid-
ering the Green’s function GNGNψ(p) which depends on the number NG of gauge fields and
the number Nψ of fermion fields and is given by the time-ordered product

GNGNψ(p) = ⟨0|T{ψ(x1)...}|0⟩FT (8.115)

in field theory. The truncated Green’s functions are obtained as

ΓNGNψ(p) =
GNGNψ

ΠGG2,0(pG)ΠψG0,2(pψ)
. (8.116)

For example we have

Γ0,2 = [G0,2]−1. (8.117)

or
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Figure 8.9: The running b-mass.

We have the following

Theorem of Multiplicative Renormalizability of Gauge Theories:

Divergent parts of Γ’s can be separated as cut-off dependent factors; the remaining rest ΓR
is finite after the introduction of the renormalized coupling g and well-defined for the cut-off
→∞;. The renormalisation constants depend only on the species of the external legs.

Examples

(i) Fermion propagator
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The one-loop self-energy is given by

Σ(p/, ϵ) = −CF
αs
4π

Γ(1 + ϵ)

(
4πµ2

−p2

)ϵ(
1

ϵ
+ 1 +O(ϵ)

)
. (8.118)

We hence get for the propagator

i

p/
→ i

p/

[
1− CF

αs
4π

Γ(1 + ϵ)(4π)ϵ
(
1

ϵ
+ 1

)
− CF

αs
4π

log
µ2

−p2

]
+O(ϵ)

=
i

p/

[
1− CF

αs
4π

Γ(1 + ϵ)(4π)ϵ
(
1

ϵ
+ 1

)][
1− CF

αs
4π

log
µ2

−p2

]
+O(ϵ, α2

s) . (8.119)

and thereby

S ′F (p) =
Zψ(αs, µ)

p/

[
1− CF

αs
4π

log
µ2

−p2

]
. (8.120)

The renormalised propagator is

SRF (p) =
1

p/
for µ2 = −p2 . (8.121)

And

Γ0,2 = Z
−2/2
ψ Γ0,2

R (p) . (8.122)

(ii) Vertex For the vertex

we have after inclusion of the one-loop corrections

SF (p
′)gs0T

aγµSF (p)D
µν
G (k) → S ′F (p

′)gs0T
aΓ′µS

′
F (p)D

′µν
G (k) (8.123)
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We have

S ′F (p
′)gs0T

aΓ′µS
′
F (p)D

′µν
G (k)

= Z
1/2
ψ SRF (p

′)

[
gs0

ZψZ
1/2
G

Z1

]
T aΓRµS

R
F (p)Z

1/2
ψ DRµν

G (k)Z
1/2
G

= Z
−1/2
ψ S ′F (p

′)

[
gs0

ZψZ
1/2
G

Z1

]
︸ ︷︷ ︸

gs

T aΓRµS
′
F (p)Z

−1/2
ψ D′µνG (k)Z

−1/2
G , (8.124)

so that we have

gs0Γ
′
µ = Z

−2/2
ψ Z

−1/2
G gsΓ

R
µ . (8.125)

Altogether we hence get

ΓNGNψ(p; gs0, ϵ) = Z
−NG/2
G (gs0, µ)Z

−Nψ/2
ψ (gs0, µ)Γ

NGNψ
R (p; gs, µ) . (8.126)

In gauge theories, renormalisation constants and coupling constants (gs for QCD) are theo-
retically fixed by 3 Green’s functions (modulo gauge fixing parameters/ghosts):

Γ2,0
R (p2 = −µ2) = ZG(gs0, µ)Γ

2,0(p2 = −µ2) = −gµνp2 + pµpν (8.127)

Γ0,2
R (p2 = −µ2) = Zψ(gs0, µ)Γ

0,2(p2 = −µ2) = p/ (8.128)

Γ1,2
R (p2 = −µ2) =

√
ZGZψΓ

1,2(p2 = −µ2) = gsγµ . (8.129)

As stated above, the synchronous variation of µ and gs(µ) leaves the theory invariant and
leads to the renormalisation group equation through

µ
d

dµ
Γ = 0 , (8.130)

resulting in{
µ
∂

∂µ
+ µ

∂gs
∂µ

∂

∂gs
− NG

2
µ
∂ lnZG
∂µ

− Nψ

2
µ
∂ lnZψ
∂µ

}
Γ
NGNψ
R (p; gs(µ), µ) = 0 . (8.131)

Defining the β function as

β(gs) = µ
∂

∂µ
gs(gs0, µ) (8.132)

and the anomalous dimension as

γ(gs) =
1

2
µ
∂

∂µ
lnZ(gs0, µ) (8.133)

we can re-write Eq. (8.131) as{
µ
∂

∂µ
+ β(gs)

∂

∂gs
−NGγG(gs)−Nψγψ(gs)

}
Γ
NGNψ
R (p; gs(µ), µ) = 0 . (8.134)
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The variation of µ can be moved to a variation of p. Since the dimension of the Green’s

function in D dimensions is µD we can only have the following structure, ΓR = µDf
(
p
µ

)
,

where D is the physical dimension of ΓR. Replacing p→ etp, we get{
− ∂

∂t
+ β(gs)

∂

∂gs
+D −NGγG(gs)−Nψγψ(gs)

}
Γ
NGNψ
R (gtp; gs(µ), µ) = 0 , (8.135)

where t = lnQ/µ. In order to find the solution, we use that

β(gs)
∂ḡs
∂gs

= β(ḡs) =
∂ḡs
∂t

. (8.136)

This follows from

∂ḡs(gs, t)

∂t
= β(ḡs(gs, t)) , with ḡs(gs, 0) = gs , (8.137)

from where we get

t =

∫ ḡs(gs,t)

gs

dg′

β(g′)
. (8.138)

Differentiation of Eq. (8.138) w.r.t. t leads to

1 =
1

β(ḡs)

∂ḡs
∂t

, (8.139)

and differentiation of Eq. (8.138) w.r.t. gs leads to

0 = − 1

β(gs)
+

1

β(ḡs)

∂ḡs
∂gs

. (8.140)

Combination of Eq. (8.139) and Eq. (8.140) leads to

β(gs)
∂ḡs
∂gs

= β(ḡs) =
∂ḡs
∂t

. (8.141)

The most general solution is a function of ḡs(gs, t) modified by the special solution determined
by the physical and anomalous dimensions:

Γ
NG,Nψ
R (etp, gs) = Γ

NG,Nψ
R (p, ḡs(gs, t))

exp

{
Dt−

∫ t

0

dt′[NGγG(ḡs(gs, t
′)) +Nψγψ(ḡs(gs, t

′))]

}
. (8.142)

Differentiation of Eq. (8.142) by using Eq. (8.141) shows that it fulfills Eq. (8.135).

We have (in the Landau gauge) the following anomalous dimensions and β functions,

γG(gs) =

(
−13

2
+

2

3
NF

)
αs
4π

+ ...

γψ(gs) = 0 + ...

β(gs)

gs
= −β0

αs
4π
− β1

(αs
4π

)2
+ ... with

β0 = 11− 2

3
NF

β1 = 102− 38

3
NF . (8.143)



126 Quantum Chromo Dynamics - QCD

The β0 and β1 are independent of the renormalisation scheme. The higher orders β2, β3, ...
depend on the renormalisation scheme.

Scale variation of Green’s functions

We have to lowest order

t = −
∫ ḡs

gs

dg′

bg′ 3
=

1

2b

[
1

ḡ2s
− 1

g2s

]
⇒ ḡ2s(gs, t) =

g2s

1 + (11− 2
3
NF )

g2s
8π2 t

, (8.144)

where g2s = g2s(µ
2) and t = 1/2 lnQ2/µ2. In order to derive the variation of the Green’s

functions with Q2 we need to first look at the Q2 variations of γG and gs. We have

γG(ḡ
2
s) = −dḡ2s + ... , with d =

1

16π2

(
13

2
− 2

3
NF

)
ḡ2s(t) =

g2s
1 + 2bg2st

, with b =
1

16π2

(
11− 2

3
NF

)
. (8.145)

From this we get∫ t

0

dt′γG(ḡs(gs, t
′)) =

∫ t

0

dt′(−d) g2s
1 + 2bg2st

′ = −
d

2b
ln(1 + 2bg2st) = − ln(1 + 2bg2st)

d
2b .(8.146)

We hence find

ΓR ∝ eDteln(1+2bg2s t)
d
2b t→∞→ eDtt

d
2b . (8.147)

The Green’s function hence has the following scale dependence,

ΓR ∝ QD(lnQ)
d
2b . (8.148)

We see that the naive power law (∝ QD) is broken logarithmically: Green’s functions vary
logarithmically with Q2 in asymptotic free theories. (This is in contrast to fixed point
theories, where g = g⋆ ̸= 0 ⇒ ΓR ∝ QDQc⋆ .)

8.5 QCD at Short Distances

8.5.1 Structure Functions of the Nucleon

Due to the asymptotic freedom we have:

(i) For small αs to 0th approximation the particles are approximately free at short dis-
tances, leading to the parton model.

(ii) We have a lnQ2 dependence of the Green’s on the energy scale through the higher-
order corrections (w.l.o.g. we consider the analogue of the electromagnetic structure
functions).

We look at the scattering of an electron and a nucleon, cf. Fig. 8.10.
The matrix element is given by

M(X) = ie2ū′γµu
1

q2
⟨X|jµ|Np⟩ (8.149)
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Figure 8.10: Electron-nucleon scattering.

and the cross section by

dσ =
1

4ME

d3k′

(2π)32E ′
1

4

∑
X

(2π)4δ(4)(p+ q − pX)|MX |2 , (8.150)

where E is the energy of the laboratory and

q = k − k′ , with q2 = −Q2 < 0 . (8.151)

We get for

1

4

∑
X

(2π)4δ(4)(p+ q − pX)|MX |2

=

(
e2

Q2

)2
1

4

∑
spins

[ū′γνu][ūγµu′]︸ ︷︷ ︸
=Lµν lepton tensor

∑
X

⟨N |jµ|X⟩⟨X|jν |N ⟩(2π)4δ(4)(p+ q − pX)︸ ︷︷ ︸
=8πWµν hadron tensor

. (8.152)

The lepton tensor is given by

Lµν = kµk
′
ν + kνk

′
µ − (k · k′)gµν . (8.153)

It is symmetric in µ, ν, k and k′. The hadron tensor is given by

Wµν =
1

8π

∑
spins

∑
X

(2π)4δ(4)(p+ q − pX)⟨Np|jelmµ |X⟩⟨X|jelmν |Np⟩

=
1

8π

∑
spins

∫
d4x e−iqx⟨Np|

[
jelmµ (0), jelmν (x)

]
|Np⟩ . (8.154)

The properties of the hadron tensor are

(i) It is symmetric in pµ, qµ, gµν .
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(ii) We have current conservation: qµWµν = qνWµν = 0. (∂µjelmµ = 0)

(iii) The tensor is real (← hermiticity of the electromagnetic current).

We can decompose the hadronic tensor in invariants based on the general basis (taking into
acount (i)-(iii)),

gµν qµqν︸ ︷︷ ︸
−gµν+

qµqν

q2

pµpν pµqν + pνqµ qµqν︸ ︷︷ ︸[
pµ−qµ pq

q2

][
pν−qν pq

q2

] (8.155)

With this we get the general form of the hadron tensor given by

Wµν = W1

[
−gµν +

qµqν
q2

]
+W2

[
pµ − qµ

pq

q2

] [
pν − qν

pq

q2

]
(8.156)

Wi = Lorentz scalar structure functions (8.157)

The Lorentz structure functions are given in the variables relevant for the process. These
are

(i) The electron state is characterised by the energy and the scattering angle.

(ii) The invariants are

Q2 = −(k − k′)2 = −q2 = 4EE ′ sin2 θ

2
, (8.158)

where we used m2
e = 0 ; E(′) = |⃗k(′)| and θ denotes the scattering angle. The energy

loss in the electron sector is given by (in the laboratory system the proton is at rest,
i.e. p⃗ = 0)

ν = pq =M(E − E ′) (8.159)

Since Q2 ≥ 0 and ν ≥ 0 we have

(p+ q)2 = W 2 ≥M2 As we at least have one N in the final state

⇔M2 + 2pq + q2 ≥ M2 ⇒ 2ν ≥ Q2 . (8.160)

We hence have elastic scattering.

(iii) As scaling variables we choose

Bjorken variable x =
Q2

2ν
0 ≤ x ≤ 1

relative energy loss y =
pq

pk
0 ≤ y ≤ 1 . (8.161)
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The structure functions F1, F2 are given in terms of these variables and defined as

F1(x,Q
2) = W1(ν,Q

2) (8.162)

F2(x,Q
2) = νW2(ν,Q

2) . (8.163)

The cross section in the high-energy limit is given by

d2σ

dxdy
=

4πα2

Q4
seN

[
(1− y)F2(x,Q

2) + y2xF1(x,Q
2)
]
. (8.164)

Interpretation of the structure functions:
The essence of the eN → e′+ everything scattering is the scattering γ⋆+N → everything
(the total absorption cross section of virtual photons). For virtual space-like photons we
have

qµ =

(
ν

M
, 0, 0,

√
Q2 +

ν2

M2

)T

(8.165)

in the laboratory frame. The transversal polarisation vectors ϵµ(±) and the longitudinal
polarisation vector ϵµ(L) are given by

ϵµ(±) =
1√
2
=

1√
2
(0, 1± i, 0)T

ϵµ(L) =
1√
Q2

(√
Q2 +

ν2

M2
, 0, 0,

ν

M

)T

. (8.166)

with the normalisation

ϵ∗i ϵj = ±δij , ϵiq = 0 , ϵ∗±ϵ± = −1 , ϵ2L = +1 . (8.167)

The cross section for the scattering γ⋆ +N → everything is proportional to

σ(γ⋆N ) ∝
∑
X

ϵ⋆ν⟨N |jµ|X⟩⟨X|jν |N ⟩ϵν(2π)4δ(4)(p+ q − pX) ∝ ϵ⋆µWµνϵ
ν . (8.168)

The cross section for the transversal polarisations is given by

σ± = ϵ⋆µ±Wµνϵ
ν
± = W1 = F1 > 0 (8.169)

[Pelm : σ+ = σ− =
1

2
σT ] .

The cross section for longitudinal polarisation is given by

σL = ϵ⋆µL Wµνϵ
ν
L = −W1 +

(
ν2

Q2
+M2

)
W2 ≥ 0

Q2≫M2

→ −F1 +
1

2x
F2 . (8.170)

We hence have for the ratio R of the two polarisations

R =
σL
σT

=

(
ν2

Q2
+M2

)
W2

W1

− 1→ F2 − 2xF1

2xF1

. (8.171)

Let us now discuss the experimental results:
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1.) Bjorken scaling: Scattering off point-like scattering centers in the proton requires that
at large Q2 for fixed x the Q2 dependence drops out:

In the Bjorken limit Q2 large and x fixed we hence have

νW2(ν,Q
2) = F2(x,Q

2) ; F2(x) (8.172)

W1(ν,Q
2) = F1(x,Q

2)
Bj
; F1(x) . (8.173)

Indeed, this is experimentally found to some extent. In the experimental results a
scaling with Q2 is still visible, which is most pronounced for x ∼ 0.25, cf. Fig. 8.11.
We have

x <∼ 0.25 : F2(x,Q
2) slightly increasing with Q2 (8.174)

x >∼ 0.25 : F2(x,Q
2) slightly decreasing with Q2 . (8.175)

The observed small logarithmic violation of the scaling is predicted by QCD.

2.) R ratio:

The R ratio in the Bjorken limit is given by

R(x,Q2)
Bj
=
F2(x)− 2xF1(x)

2xF1(x)
. (8.176)

For large Q2 it is found that R → 0 (cf. Fig: 8.12, i.e. the longitudinal absolute cross
section vanishes and we obtain the

Callan-Gross relation: F2 = 2xF1 . (8.177)

3.) neutron/proton ratio:

The neutron/proton ratio FN
2 (x)/F P

2 (x) decreases from the value 1 at x = 0 down to
a value >∼ 1/4 for x = 1, cf. Fig. 8.13.

Classical quark-parton model For the scattering of an electron off a point-like object
we have

e+ point-like → e+ point-like:
dσpt

dQ2
∼ 1

Q4
. (8.178)

For the electron scattering off a nucleon into the nucleon final state we have

eN → eN :
dσel

dQ2
∼ 1

Q4
|F (Q2)|2 ∼ dσpt

dQ2

(
M4

Q4

)2

. (8.179)

For the electron scattering off the nucleon into everything we have

e+N → e+ everything:
dσ

dQ2
∼ 1

Q4
F2(x) ∼

dσpt

dQ2
. (8.180)

We have the scaling F2(x,Q
2) ≈ F2(x). For Q2 → ∞ the inclusive cross section hence

behaves analogously to the point-like cross section (the Q2 decrease is slower by 8 orders in
Q compared to the elastic nucleon cross section (8.179)).
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Figure 8.11: The νW2 as function of q2 for x = 0.25.

Figure 8.12: The ratio R as function of Q2.

8.5.2 Scaling Violation: Altarelli-Parisi Equations (DGLAP)

The idea is that the parton-quarks are surrounded by a gluon cloud inside the nucleon. At
sufficiently large Q2 more and more quantum fluctuations are resolved. The momentum
spectra of the quarks and gluons vary with Q−1 so that the microscopic parton distributions
are Q2-dependent.

Next, we discuss the splitting probability and look at the process (cf. Fig. 8.14)
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Figure 8.13: The ratio W2n/W2p as function of x.

Figure 8.14: The process e+e− → µ+µ− + γ.

e+e− → µ+ + µ−γ︸︷︷︸
θµ+γ small fixed

. (8.181)

The contributing diagrams are shown in Fig. 8.15. Introducing the reduced electron/positron
energies

x1,2 =
E±
E

(8.182)

we have

1

σ0

d2σ

dx1dx2
=

α

2π

x21 + x22
(1− x1)(1− x2)

. (8.183)

Introducing the reduced photon energy

z =
Eγ
E

(8.184)
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Figure 8.15: The diagrams contributing to e+e− → µ+µ− + γ.

and

x⊥ =
2

x1

√
(1− x1)(1− x2)(1− z) =

p⊥
E

(8.185)

lnx2⊥ ≈ ln(1− x1) (8.186)

d ln p2⊥ ≈
dx1

1− x1
(8.187)

x1 + x2 + z = 2 (8.188)

We get for the fragmentation probability that µ− splits into µ− + γ (cf. Fig. 8.16), with
x2 ≈ 1− z,

Figure 8.16: Fragmentation of µ− into µ− + γ.

dσ = σ0

∫ Q2

dp2⊥
p2⊥

α

2π

1 + (1− z)2

z
dz . (8.189)

The cross section can be written as

cxn = µ− pair cxn × particle flux (µ→ µγ) . (8.190)

The increase of the particle flux at Q2 → Q2 + δQ2 is

δN(µ→ µγ)

δ lnQ2
=

α

2π

1 + (1− z)2

z
dz . (8.191)
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Figure 8.17: Fragmentation of q into q + g.

For the quark fragmentation (cf. Fig. 8.17) we have to include the color average and sum

∑
k,a

T aikT
a
jk =

4

3
δij . (8.192)

The QCD splitting probabilities

δN

δ ln Q2

Λ2

=
αs(Q

2)

2π
P (x)dx (8.193)

are given by (bs = bremstrahl-singularity)

q → q + g(x) Pgq =
4

3

1 + (1− x)2

x
bs for x→ 0 (8.194)

q → q(x) + g Pqq =
4

3

1 + x2

1− x
bs for x→ 1 (8.195)

g → q(x) + q̄ Pqg = Pq̄g =
1

2
[x2 + (1− x)2] finite (8.196)

g → g(x) + g Pgg = 6
[1− x+ x2]2

x(1− x)
bs for x→ 0, 1 (8.197)

Altarelli-Parisi master equations for the parton densities We have

∂q(x,Q2)

∂ lnQ2
=

αs(Q
2)

2π

∫ 1

0

dy

∫ 1

0

dzδ(x− yz)
[
Pqq(y) q(z,Q

2) + Pqg(y) g(z,Q
2)
]

−αs(Q
2)

2π

∫ 1

0

dy′Pqq(y
′)q(x,Q2) (8.198)∫ 1

0

dy′Pqq(y′) q(x,Q2) =

∫ 1

0

dy

∫ 1

0

dzδ(x− yz)δ(y − 1)

[∫ 1

0

dy′Pqq(y
′)

]
q(z,Q2) . (8.199)
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With this we obtain the Altarelli-Parisi equations:

∂q(x,Q2)

∂ lnQ2
=

αs(Q
2)

2π

∫ 1

0

dy

∫ 1

0

dzδ(x− yz)
{
PR
qq(y) q(z,Q

2) + Pqg(y) g(z,Q
2)
}

∂g(x,Q2)

∂ lnQ2
=

αs(Q
2)

2π

∫ 1

0

dy

∫ 1

0

dzδ(x− yz)

{
Pgq(y)

∑
fl

[q(z,Q2) + q̄(z,Q2)]

+PR
gg(y)g(z,Q

2)

}

PR
qq(y) = Pqq(y)− δ(y − 1)

∫ 1

0

dy′Pqq(y
′)

PR
gg(y) = Pqq(y)− δ(y − 1)

[
1

2

∫ 1

0

dy′Pgg(y
′) +NF

∫ 1

0

dy′Pqg(y
′)

]
αs(Q

2) =
12π

(33− 2NF ) ln
Q2

Λ2

(8.200)

Partial disentanglement

δ = q − q′ non-singlet (8.201)

Σ =
∑

fl(q + q̄)
g

}
coupled singlet set (8.202)

The solutions are obtained by introducing the moments

q(N,Q2) =

∫ 1

0

dxxN−1q(x,Q2) (8.203)

This transforms the integro-differential system of equations into a system of usual differential
equations. natural variable:

s = ln
lnQ2

lnQ2
0

, (8.204)

where Q0 = reference momentum transfer. (For fixed coupling constant t = lnQ2 would be
the natural variable.)

1.) Non-singlet density:

∂

∂s
δ(N,Q2) =

6

33− 2NF

∫ 1

0

dyyN−1PR
qq(y)δ(N,Q

2)

=
6

33− 2NF

4

3

[
−1

2
+

1

N(N + 1)
− 2

N∑
j=2

1

j

]
︸ ︷︷ ︸

≡−dNS(N)

δ(N,Q2)

⇔ ∂

∂s
δ(N,Q2) = −dNS(N)δ(N,Q2) ⇒ δ = δ0e

−sdNS . (8.205)
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We have an ln violation of the Bjorken scaling:

δ(N,Q2) = δ(N,Q2
0)

(
lnQ2

lnQ2
0

)−dNS

= δ(N,Q2
0)

(
αs(Q

2)

αs(Q2
0)

)dNS

. (8.206)

Interpretation:

(i)

asymptotic freedom ⇒
[
lnQ2

lnQ2
0

]−d
fixed coupling ⇒

[
Q2

Q2
0

]−d
(8.207)

(ii)

dNS(N = 1) = 0 : net quark number unchanged (8.208)

dNS(N > 1) > 0 : moments decrease with increasing Q2 (8.209)

(iii) moment comparison: test of anomalous dimensions Q2-dependence of structure func-
tions

Figure 8.18: Moments of the structure functions.

Figure 8.18 shows the moments of the structure function, Fig. 8.19 displays the logarithms
of the moments of the structure functions plotted against each other.
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Figure 8.19: Logarithms of the moments of the structure functions plotted against each
other. The QCD predictions are straight lines with calculable slope.

2.) Quark singlet and gluon densities:

∂

∂s

(
Σ
G

)
= −

(
dQQ dQG
dGQ dGG

)(
Σ
G

)
, with Σ = Σ(N,Q2) . (8.210)

We have

dQQ(N) = − 6

33− 2NF

∫ 1

0

dyyN−1PR
qq(y) =

4

33− 2NF

[
1− 2

N(N + 1)
+ 4

N∑
j=2

1

j

]
≡ dNS(N) (8.211)

dQG(N) = − 6

33− 2NF

∫ 1

0

dyyN−12NFPqg(y) = −
6NF

33− 2NF

N2 +N + 2

N(N + 1)(N + 2)
(8.212)

dGQ(N) = − 6

33− 2NF

∫ 1

0

dyyN−1Pgq(y) = −
8

33− 2NF

N2 +N + 2

(N − 1)N(N + 1)
(8.213)

dGG(N) = − 6

33− 2NF

∫ 1

0

dyyN−1PR
gg(y) =

9

33− 2NF

[
1

3
− 4

N(N − 1)

− 4

(N + 1)(N + 2)
+ 4

N∑
j=2

1

j
+

2NF

9

]
(8.214)

The solution is given by an exponential ansatz:

Σ =
1

µ+ − µ−
[
(−µ−Σ0 +G0)e

−d+s + (µ+Σ0 −G0)e
−d−s

]
(8.215)

G =
1

µ+ − µ−
[
µ+(−µ−Σ0 +G0)e

−d+s + µ−(µ+Σ0 −G0)e
−d−s

]
, (8.216)

with the eigenvalues

d±(N) =
1

2

[
(dGG + dQQ)±

√
(dGG − dQQ)2 + 4dQGdGQ

]
(8.217)
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Figure 8.20: F2 as function of Q2 for different values of x.

and the eigenvectors

µ±(N) =
d± − dQQ
dQG

=
1

2

dGG − dQQ ±
√

(dGG − dQQ)2 + 4dQGdGQ
dQG

. (8.218)

Physical consequences:

1

AN(s)
F S
2 (N − 1, Q2) = F S

2 (N − 1, Q2
0) +

BN(s)

AN(s)
G(N,Q2

0) . (8.219)

The left side is determined as straight line in BN(s)/AN(s) with the gluon G density as
slope, cf. Fig. 8.20.
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8.6 Factorisation Theorem of QCD

At hadron colliders, we have the problem to relate the incoming quarks and gluons with
the colliding protons and the outgoing particles with the observed hadronic jets. Scattering
processes at high-energy hadron colliders hence consist of hard and soft processes. The
hard processes like e.g. Higgs boson production from gluon fusion can be described through
perturbation theory. The soft processes like e.g. the total hadronic cross section starting
from the initial state protons and ending in final state hadrons, involve non-perturbative
QCD effects which cannot be described by perturbation theory. The factorisation theorem
of QCD states the following:

Factorisation theorem of QCD: Partonic cross sections have collinear divergences in
the hadronic initial state, which factorise universally (i.e. independent of the process) from
the hard scattering process and can be absorbed in the renormalised parton densities of the
initial states. These renormalised parton densities are the DGLAP (Dokshitzer, Gribow,
Lipatow, Altarelli and Parisi) equations.

Figure 8.21: The process pp→ X.

The formula for the computation of the process pp → X, cf. Fig. 8.21, applying the
factorisation theorem, is given by

σAB = σab

∫
dx1dx2 fa/A(x1, µ

2
F )fb/B(x2, µ

2
F )σ̂ab→X , (8.220)

where A, B denote the incoming protons, A,B = p, and a, b sum over the quarks and gluons.
The partonic cross section is denoted by σ̂ and describes the reactions of the partons from
the incoming hadrons, which interact at short distance. The functions fa/A(x1, µ

2
F ) and

fb/B(x2, µ
2
F ) denote the parton distributions functions (pdf’s) that quantify the probabliity

of finding the parton a/b inside the hadron A/B carrying the momentum fraction x1/2 =

2Ea/b/
√
S at the factorisation scale µF , which separates the short- and long-distance physics.

The
√
S denotes the hadronic (here proton) c.m. mass energy. The pdf’s which involve non-

perturbative effects have to be extracted from experiment, e.g. from deep inelastic scattering.

The full process including the final state hadrons X is calculated as

σpp→X =
∑
a,b,k

fa/p(µ
2
F )⊗ fb/p(µ2

F )⊗ σ̂ab→k(αs(µ2
R), µ

2
R)⊗Dk→X(µ

2
F ) . (8.221)

The partonic cross section σ̂ab→k is calculable within perturbation theory in powers of αs,

σ̂ab→k = [σ̂0 + αs(µ
2
R)σ̂1 + α2

s(µ
2
R)σ̂2 + ...]ab→k . (8.222)
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The fa/p(µ
2
F )⊗ fb/p(µ2

F ) relates to the luminosity of the collider and have to be determined
experimentally. The transition to the final state X given by mesons, hadrons, jets ... is given
by the fragmentation function Dk→X(µ

2
F ), the jet algorithms, and/or through Monte Carlo

shower algorithms.

8.7 Example: Drell-Yan Process
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