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1 Renormalization and regularization

We have seen in the previous semester that one-loop computations in the

context of QED have led to ill-defined results quite often. We also saw that

we could still make use of the perturbative computations if we accepted that

quantities that appear in the Lagrangian do not need to be physical quantities,

and that the relations between Lagrangian parameters and physical quantities

need to be established to make theoretical predictions unambiguous. In this

lecture we will discuss a few concepts and tools that will allow us to streamline

this procedure and make it work in any Quantum Field Theory.

To define an interacting quantum theory fully, we need the concept of the

regularization. To understand what this means we should remind ourselves

about our experiences with one-loop QED computations. We saw that if we

start with a standard QED action

S =

∫
d4x

(
−
1

4
FµνF

µν + ψ̄(i ∂̂ −m)ψ − eψ̄γµψAµ
)
, (1.1)

and try to compute, say, a one-loop contribution to the matrix element of

the electromagnetic current ⟨e(p2)|Jµ(0)|e(p1)⟩, we will not be able to per-
form the calculation because the result diverges at large values of the loop

momentum.1 Specifically, we will face integrals of the form∫
d4k

(2π)4
kαkβ

((k + p1)2 −m2)((k + p2)2 −m2)k2
, (1.2)

that cannot be calculated as written. We addressed this problem by introduc-

ing a “heavy photon” into the theory and subtracting its contribution from

matrix elements that contain contributions of an actual “physical” photon.

If we do this, the above integral gets the modified as

lim
M→∞

∫
d4k

(2π)4
kαkβ

((k + p1)2 −m2)((k + p2)2 −m2)

(
1

k2
−

1

k2 −M2

)
. (1.3)

This is a convergent integral but, as a reminder that the limit M → ∞
cannot be taken before the integration over k is performed, it depends on the

logarithm of M.

1We have seen that there are also infra-red divergences, but we will ignore them for now.
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The procedure that we just described is called the Pauli-Villars regular-

ization. Another possible regularization is the cut-off regularization where,

after the Wick rotation, all integrals are restricted to a finite volume of a

four-dimensional Eucledian space-time.

It is important to understand that we introduce a regularization as an

intermediate step to define the theory and to expose the nature of divergences

that are present in the theory. Eventually, we will have to get rid of the

regularization by expressing predictions through physical quantities and we

will show that in certain theories that are called renormalizable, doing so

allows to remove the dependence on the regularization procedure completely.

Since the regularization plays an auxiliary, technical role, there is a freedom

to choose how it is done. A good regularization should not lead to unneces-

sary technical complications and, ideally, should not violate symmetries of a

particular quantum field theory that we try to regularize. One of the most

commonly used regularization procedure is the so-called dimensional regular-

ization which is defined as a formal extension of a quantum field theory to a

d-dimensional space-time.

Note that d is usually written as d = 4 − 2ϵ and that ϵ is a complex
parameter. The dependence of the results of perturbative computations on

d is supposed to be provided by analytic functions of d . Such functions can

be defined for some values of d , where a calculation makes sense, and then

analytically continued to the region around d = 4 which is of interest to

us. This practice is standard in complex analysis. As we will see, results of

perturbative computations already depend on d in the right way, so that the

analytic continuation becomes a mere recognition of the properties of the

functions that are used to express the results.

To see how this works, consider the following integral

I(n, d) =

∫
ddk

(2π)d
1

(k2 −m2 + i0)n . (1.4)

Performing the Wick rotation, which formally amounts to writing k0 → ik0,

we find

I(n, d) = i(−1)n
∫
ddkE
(2π)d

1

(k2E +m
2)n
, (1.5)

where kE is the Eucledian momentum and k
2
E = k

2
0+k

2
1+....k

2
d−1.

2 Introducing

2Note that this sum already requires a definition for a complex-valued d .
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a radial coordinate, we write

I(n, d) =
i(−1)nΩd
(2π)d

∫
kd−1E dkE
(k2E +m

2)n
=
i(−1)nΩd
2(2π)d

∞∫
0

(k2E)
(d−2)
2 dk2E

(k2E +m
2)n

. (1.6)

where Ωd = 2π
d/2/Γ(d/2) is the d-dimensional solide angle. To compute the

last integral, we write

k2E = m
2

(
u

1− u

)
, 0 < u < 1, (1.7)

and find∫
(k2E)

(d−2)
2 dk2E

(k2E +m
2)n

. = (m2)
d−2
2
+1−n

1∫
0

(1− u)n−2−
d−2
2 u

(d−2)
2 du

= (m2)d/2−n
Γ(n − d/2)Γ(d/2)

Γ(n)
.

(1.8)

Using this result in Eq. (1.6), we find

I(n, d) =

∫
ddk

(2π)d
1

(k2 −m2 + i0)n

=
i(−1)n(m2) d2−n

(4π)d/2
Γ(n − d

2
)

Γ(n)
.

(1.9)

Let us first check that Eq. (1.9) gives what we want. The dependence

of I(n, d) on d appears in two places: first as power in md and (4π)d and

also it appears in the argument of a Γ-function. Both, the Γ-function and an

algebraic power function can be defined to be analytic functions in a complex

plane. The Γ-function is known to have simple poles when its argument

vanishes or is a negative integer. Hence, the above formula for In defines an

analytic function of d that can be calculated for any value of d in the entire

complex plane except for a countable set of values.

We are interested in d = 4. However, it is easy to see that there are many

values of n for which choosing d = 4 leads to Γ-functions with negative integer

arguments. Consider n = 2 as an example. Then Γ(2 − 4/2) = Γ(0) = ∞.
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Hence, instead of computing I(n = 2, d = 4) we compute I(2, 4− 2ϵ) where
ϵ is assumed to be small. This computation is easy to do. To this end, we

use the following property of the Γ-function

zΓ(z) = Γ(1 + z), (1.10)

and the fact that

lim
z→0
Γ(1 + z) = 1− γEϵ+O(ϵ2), (1.11)

where γE is the so-called Euler constant.

For n = 2 we find

Γ

(
n −

d

2

)
= Γ(2− 2 + ϵ) = Γ(ϵ) =

Γ(1 + ϵ)

ϵ
, (1.12)

so that

I(2, d) =
iΓ(1 + ϵ)

(4π)d/2ϵ
(m2)−ϵ. (1.13)

The factor Γ(1 + ϵ)/(4π)d/2 in the above formula will appear quite often

in calculations that use the dimensional regularization. For this reason it is

convenient to keep this factor unexpanded in ϵ.

As another example, consider n = 1. We write

Γ(n − d/2)→ Γ(−1 + ϵ) =
Γ(ϵ)

ϵ− 1 =
Γ(1 + ϵ)

ϵ(ϵ− 1) , (1.14)

and find

I(1, d) =
iΓ(1 + ϵ)

(4π)d/2ϵ

(m2)1−ϵ

(1− ϵ) . (1.15)

We note that the result in Eq. (1.9) implies that we can interchange

integration and the differentiation with respect to m. Indeed, it is easy to

check that one can either differentiate the right hand side of Eq. (1.9) or

the integral representation on the left hand side of this equation and get the

same result. In general, changing the order of integration and differentiation

with respect to a parameter works only for absolutely convergent integrals.

However, formulas that we use define any integral to an absolutely convergent

integral since they are obtained by an analytic continuation.
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It is important to stress that sometimes this leads to “strange” results for

integrals provided that we think about these integrals as Riemann integrals.

For example, the result in Eq. (1.9) implies that I(n, d) is identically zero for

n ≤ 0. This follows from the fact that I(n, d) ∼ 1/Γ(n) and Γ(n) = ∞ for
n = 0 or n being negative integer. Therefore, all integrals of the form∫

ddk (k2)n, n > 0, (1.16)

are set to zero in the context of a consistent application of rules of dimensional

regularization.

In fact, allowed manipulations of dimensionally-regulated integrals are the

same as for absolutely convergent integrals. They include

• all changes of variables including momenta re-scaling and momenta
shifts are allowed;

• the summation and integration can be interchanged;

• parameter differentiation and integration can be interchanged.

To see implications of these rules, consider the following integral

Iα =

∫
ddk (k2)α, (1.17)

where α is an arbitrary (not necessarily integer) parameter. Changing the

loop momentum k = λ k1, we find

Iα = λ
2α+d Iα. (1.18)

Since this equation should hold for arbitrary λ, we conclude that Iα = 0.

The above rules allow us to calculate any loop integral using dimensional

regularization. To see this, consider a generic one-loop integral. We write

IN =

∫
ddk

(2π)d

N∏
i=1

1

(k + pi)2 −m2i
. (1.19)

We use Feynman parameters to write

N∏
i=1

1

(k + pi)2 −m2i
= Γ(N)

∫
[dx ]N

((k + PN)2 − ∆N)N
, (1.20)
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where PN =
N∑
i=1

pixi , ∆N = P
2
N−

N∑
i=1

(p2i −m2i )xi + i0 and [dx ]N =
N∏
i=1

dxi δ(1−
N∑
i=1

xi). To compute IN, we interchange integration over Feynman parameters

and the loop momentum, shift the loop momentum k → k − PN and find

IN = Γ(N)

∫
[dx ]N

∫
ddk

(2π)d
1

(k2 − ∆N)N

=
i(−1)NΓ(N − d

2
)

(4π)d/2

∫
[dx ]N

(∆N)N−d/2
.

(1.21)

In general, the remaining integration over Feynman parameters is highly non-

trivial but for generic momenta p1,..,N it should not lead to additional diver-

gencies. However, we are often interested in computing Feynman integrals for

exceptional momenta, e.g. for the on-shell p2i = m
2
i or the light-like p

2
i = 0

ones, in which case infra-red divergences may appear. If this happens, inte-

gration over Feynman parameters also becomes singular in the d → 4 limit.
However, it can be treated in the same way as the loop integration namely as

an analytic continuation from values of d where the integral over Feynman

parameters converges to values of d which are of interest to us.

We have now discussed one of the most popular (if not the most popu-

lar) ways to regularize ultraviolet divergences of loop integrals in perturbation

theory in a generic quantum field theory. We will now study which Green’s

functions need to be regularized.

To be concrete, we will consider Quantum Electrodynamics. We will also

deal with Green’s functions for generic values of the incoming momenta to

avoid the need to deal with infra-red divegencies. We consider a typical con-

tribution to an amputated one-particle-irreducible Green’s function in QED.

We can characterize it by

• the number of external electron and photon lines that we will refer to
as Nl and Nγ;

• the number of internal (loop momentum dependent) lepton and photon
propagators that we will denote as Pl and Pγ;

• the number of vertices which involve internal (loop momentum depen-
dent) lines;
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• the number of loops L.

We will be interested in understanding what happens to a diagram charac-

terized by the above parameters if all loop momenta become very large. One

can think about this in the following way – let us combine all loop momenta

into a single vector in the 4L-dimensional space and study what happens

when the radial component of this vector becomes very large (infinite). We

can also think about scaling all loop momenta by the same parameter λ and

considering the limit λ→∞. The dependence of the result on λ tells us how
the integrals diverges or converges in the integration region where all loop

momenta become large.

For a particular Feynman integral I, we write

I(Nl , Nγ, Pl , Pγ, V, L) ∼ λD, (1.22)

where D is called the superficial degree of divergence. To compute it, we note

that in QED vertices are momenta-independent, each photon propagator is

1/k2 ∼ 1/λ2 and each fermion propagator is k̂/k2 ∼ 1/λ. We then find

D = 4L− Pl − 2Pγ. (1.23)

We would like to express D through quantities that are easier to access than

Pl and Pγ. To do so, we note that the number of loops is given by

L = Pl + Pγ − V + 1. (1.24)

This formula is valid because the number of loops equals to the number

of independent momenta that remain in the Green’s function after we have

accounted for the momentum conservation in each vertex. Then, we have

Pl +Pγ momenta to integrate over to start with and there are V momentum-

conservation conditions to satisfy for internal momenta. However, one of

these vertex δ-functions turns into a momentum conservation condition for

the external momenta, this is the reason for V → V − 1.
In QED, we can relate the number of vertices in a diagram to the number

of internal and external lines. Indeed, each vertex has two electron lines and

one photon line. Consider the photon lines. Since each vertex contains one

photon line, it appears that the number of vertices equals to the number of
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photon lines. However this is wrong because internal photon lines count twice

since they appear in two vertices. Hence, the following equations are valid

V = 2Pγ + Nγ, V = Pl +
1

2
Nl . (1.25)

Note that it follows from the above equation that

2Pγ − Pl =
1

2
Nl − Nγ. (1.26)

This equation will be important in the next step. We write

D = 4L− Pl − 2Pγ = 4(Pl + Pγ − V + 1)− Pl − 2Pγ. (1.27)

We use the second equation in Eq. (1.25) to write V in terms of Pl and Nl
and obtain

D = 2Pγ − Pl + 4− 2Nl . (1.28)

We can further simplify this equation using Eq. (1.26). We finally find

D = 4− Nγ −
3

2
Nl . (1.29)

This formula has important implications. Indeed, the parameter D tells us

the overall degree of divergence of a diagram that contributes to a particular

Green’s function. This is not the only divergence that may exists in a diagram

since there can be sub-diagrams in a diagram that diverge. However, as we

will see, when thinking about what to do with potential divergences, it is

important to imagine that divergences can be removed iteratively, starting

from sub-diagrams and continuing to an overall divergence that cannot be

obtained by studying Green’s functions with less loops. From this perspective,

knowing the overal degree of divergence is very important.

Eq. (1.29) tells us that whether or not a particular QED Green’s function

is divergent (D ≥ 0) or convergent (D < 0), depends entirely on the number

and type of external lines. The number of divergent Green’s functions is

obviously finite since Nγ, Nl ≥ 0. Because external leptons can only appear
in pairs, seven QED Green’s functions are potentially divergent:

1. Nγ = Nl = 0, with D = 4;

8



2. Nγ = 1, with D = 3;

3. Nγ = 2 with D = 2;

4. Nγ = 3 with D = 1;

5. Nγ = 4 with D = 0;

6. Nl = 2 with D = 1;

7. Nl = 2 and Nγ = 1, with D = 0.

This list can be further reduced. Indeed, the first Green’s function has no

external legs and, therefore, it is not needed for the construction of scattering

amplitudes and cross sections. The second Green’s function corresponds to

the vacuum expectation value of the field Aµ. This quantity vanishes because

of Lorentz invariance – there is no four-vector that this Green’s function can

depend upon. Furthermore, Green’s functions with odd number of photons

and no lepton fields vanish in QED because of Furry’s theorem; this implies

that also the fourth item on the list can be dropped.
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Hence, if we are interested in a systematic understanding of ultraviolet

divergences in QED, we need to find a way to make the following Green’s

functions finite

1. ⟨0|Tψ(x)ψ̄(0)|0⟩, D = 1;

2. ⟨0|TAµ(x)Aν(0)|0⟩, D = 2.

3. ⟨0|T ψ̄(x1)ψ(x2)Aµ(0)|0⟩, D = 0;

4. ⟨0|Aµ(x1)Aν(x2)Aα(x3)Aρ(0)|0⟩, D = 0.

Before we discuss how this can be done, it is useful to point out that

degrees of divergences in quantum field theories are affected by various fac-

tors. It is probably quite obvious that if everything else remains the same,

the increase in space-time dimension d makes ultraviolet divergences worth.

For example, in Eq. (1.23) 4L will turn into dL. We will not elaborate on

this further because we are not planning to study quantum field theories in a

space-time with dimensions that are different from 4.

Another important point is that the actual degree of divergence may de-

pend on the symmetry properties of a particular theory. For example, in QED,

gauge invariance and Lorentz symmetry reduce the degree of divergence sig-

nificantly. Indeed, as we will see later, in the above list, the two-point elec-

tron’s Green’s function has D = 0 rather than D = 1, the two-point photon

Green’s function has D = 0 instead of D = 2, and the four-photon Green’s

function is actually convergent.

Furthermore, the degree of divergence depends on the structure of inter-

actions that are present in a particular theory. In some cases this is quite

obvious. For example, some interactions contain derivatives which turn into

momenta which then contribute to the superficial degree of divegence. But

there also cases that are more subtle. To see this, consider a theory defined

by the following Lagrangian

L =
1

2
∂µφ ∂

µφ−
1

2
m2φ2 − λφn, (1.30)

where φ is the scalar field.

We now consider an L-loop graph with Pφ internal lines, Nφ external lines

and V vertices. To find the degree of divergence, we note that

D = 4L− 2Pφ,
L = Pφ − V + 1,

(1.31)
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and since the total number of lines in case of a graph with V vertices is nV

and since each internal line has to be counted twice, we have

nV = Nφ + 2Pφ. (1.32)

Combining the three equations, we find

D = 4− Nφ + (n − 4)V. (1.33)

We see that, depending on n this equation leads to very different conclusions.

If n = 4, the situation is very similar to that in QED since the degree of

divergence only depends on the type of the Green’s function (i.e. for Nφ > 4,

there are no overal divergencies anymore). On the contrary, if n > 4, every

Green’s function becomes divergent at sufficiently high order in perturbation

theory because the degree of divegence increases with the increase in the

number of vertices. Hence, if we are to define a prescription that makes

Green’s function convergent, in a theory with n > 4 we will have to cook

up such a prescription for all Green’s functions.3 Such theories are called

non-renormalizable.

Note also that 4 − n is the mass dimension of the coupling λ. Hence,
non-renormalizable theories are theories where a coupling has negative mass

dimension.

As we will see, in theories where the number of divergent Green’s functions

is finite, it is possible to absorb the divergences into a redefinition of various

parameters of the theory. Such theories are called renormalizable and, as

we have seen, the requirement of the renormalizability restricts the types of

interactions that one can introduce into a Lagrangian. For a long time being

renormalizable was considered to be an important criterion for a field theory

to be “valid”, but this perception has significantly changed in recent years.

3And there are infinitely many of them.
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