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2 Renormalized perturbative expansion in φ4 theory

In this lecture, we will discuss the construction of the renormalized perturba-

tion theory in a Quantum Field Theory of a scalar field φ with φ4 interaction.

The Lagrangian reads

L =
1

2
∂µφ ∂

µφ−
1

2
m2φ2 −

λ

4!
φ4. (2.1)

From the discussion in the previous lecture, we know that if we start calcu-

lating Green’s functions in this theory, we will find ultraviolet divergencies.

These divergencies affect Green’s functions with zero, one, two, three and

four external legs. Since the theory is invariant under φ → −φ symme-
try, connnected Green’s functions with odd number of φ-fields do not exist.

Hence, we only need to understand what to do with Green’s functions with

two and four external legs.1 Note that the Green’s function with two external

legs is the propagator of the field φ which depends on the mass parameter m.

Furthermore, the amputated connected Green’s function with four external

legs is proportional to the coupling constant λ. Hence, we may suspect that

some divergencies can be absorbed into a definition of the physical mass m

and the physical coupling constant λ, both of which need to be operationally

defined. Furthermore, as we have discussed in the previous semester, in the

vicinity of the physical mass m2phys, the two point function has the following

behavior

⟨0|Tφ(x)φ(x)|0⟩ ∼
Z

p2 −m2phys
. (2.2)

The construction of asymptotic states requires, however, that at p2 ∼ m2,
the propagator in the above equation reads 1/(p2−m2). To accomplish this,
we have to renormalize the field operators, as we have seen last semester.

The bottom line of this discussion is that all quantities in the Lagrangian,

such as the field, the mass parameter and the coupling constant do not need

to be “physical” (e.g. the physical mass of the particle). To make this more

clear, we rewrite the Lagrangian in Eq. (2.1) as follows

L =
1

2
∂µφ0 ∂

µφ0 −
1

2
m20φ

2
0 −
λ0
4!
φ40. (2.3)

1Green’s functions with no external legs do not contribute to scattering amplitudes and

cross sections.
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We call the quantities with subscript 0 bare and distinguish them from physical

parameters that can be determined through e.g. experimental measurements.

To make this distinction explicit, we write

φ0 = Z
1/2φ, m20 = Zmm

2, λ0 = Zλλ. (2.4)

Then, we rewrite Eq. (2.3) as

L =
1

2
∂µφ ∂

µφ−
1

2
m2φ2 −

λ

4!
φ4 + Lct, (2.5)

where

Lct =
1

2
(Z − 1)∂µφ ∂µφ−

1

2
m2(ZmZ − 1)φ2 −

λ

4!
(ZλZ

2 − 1)φ4, (2.6)

is called the counter-term Lagrangian.

We can easily determine Feynman rules for the Lagrangian L treating the

term −λφ4/4! and all terms in Lct as perturbations. The Feynman rules read

p
=

i

p2 −m2 + i0 ,

= −iλ,

⊗
= ip2(Z − 1)− im2(ZmZ − 1),

⊗
= −iλ(ZλZ2 − 1).

(2.7)
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At this point we do not know what the parameters Z, Zm and Zλ actually

are. To fix them, we will require that m is the physical mass of a particle

that corresponds to an excitation of the field φ, φ is the physical field and λ

is the coupling constant that can be determine by measuring the scattering

amplitude of the four φ-particles at rest.

Once we start computing the Green’s functions in perturbation theory, we

will find that the above requirements are not satisfied automatically. How-

ever, we will see that we will be able to choose all the Z-factors, order by

order in the perturbative expansion, to ensure that they are fulfilled.

Let us now formulate the above conditions precisely. Consider first the

two-point function. Denoting the self-energy as Σ(p2) (the relevant diagrams

contribute to −iΣ(p2)), we can write the two-point function as

⟨0|Tφ(x)φ(0)|0⟩ →
i

p2 −m2 −Σ(p2) . (2.8)

The condition that the two-point function must satisfy reads

⟨0|Tφ(x)φ(0)|0⟩ →
i

p2 −m2 + non− resonant terms, (2.9)

as p2 → m2. This is only possible if

Σ(p2)|p2=m2 = 0,
dΣ(p2)

dp2
|p2=m2 = 0. (2.10)

It is important to emphasize that when Σ is computed all relevant contribu-

tions, including the ones from the counter-term Lagrangian, are accounted for

and adjusted accordingly to ensure that conditions in Eq. (2.10) are satisfied.

Let us compute Σ(p2) at one loop. We will start with the counter-term

Lagrangian. Using the relevant Feynman rule from Eq. (2.7), we find

⊗
= −iΣct(p) = i(Z − 1)p2 − im2(ZmZ − 1). (2.11)

3



Next, we consider the one-loop contribution to the self-energy. It reads

= −iΣ(1) = −i
λ

2

∫
ddk

(2π)d
i

k2 −m2

=
iλΓ(1 + ϵ)

(4π)d/2
(m2)1−ϵ

2ϵ(1− ϵ) ,

(2.12)

and it is p2-independent. We stress that this feature (p2-independence) is the

peculiarity of φ4 theory.

The full self-energy Σ is the sum of Σct and Σ
(1) so that we require

Σct +Σ
(1) = 0, at p2 = m2,

dΣct
dp2

+
dΣ(1)

dp2
= 0, at p2 = m2.

(2.13)

Since Σ(1) is independent of p2, the above equations simplify; from the second

one we find

Z − 1 = 0, (2.14)

which we rewrite as

Z = 1 +O(λ2). (2.15)

since we have computed Σ(1) through O(λ) only.

Then, we use the first equation in Eq. (2.13) where we employ the (by

now) known value of Z, and find

Zm = 1−
Σ

m2
= 1 +

λΓ(1 + ϵ)

(4π)d/2
(m2)−ϵ

2ϵ(1− ϵ) +O(λ
2). (2.16)

With this counter-term, the two-point function in φ4 theory becomes finite

and the limit ϵ → 0 can be taken. Note that in this case this limit is trivial
since, with the above counter-term, the two-point function receives no one-

loop corrections. This, however, is a feature that is particular to φ4-theory at

one loop.
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Figure 1: The four-point Green’s function.

The next thing to discuss is the four-point amputated connected Green’s

function shown in Fig. 1. If we denote the momenta of the four particles in

this Green’s function as p1, p2, p3, p4 and consider p1,2 to be incoming and

p3,4 – outgoing. At leading order we find

G(p1, p2, p3, p4) = −iλ. (2.17)

The one-loop contribution can be written as

G(1)(p1, p2, p3, p4) =

3∑
i=1

F (q2i )

= + + ,

(2.18)

where q1 = p1 + p2, q2 = p1 − p3 and q3 = p1 − p4 and

F (q2) =
λ2

2

∫
ddk

(2π)d
1

(k2 −m2)((k + qi)2 −m2)
. (2.19)

It is easy to see that F (q2) is divergent and that its divergence is independent

of q2. We find

F (q2) =
iλ2Γ(1 + ϵ)

(4π)d/2

[
1

2ϵ
+ Ffin(q)

]
. (2.20)
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As we mentioned earlier, the definition of the physical coupling constant

is that the scattering amplitude of four particles at rest is given by −iλ.
This kinematic point corresponds to p1 = p2 = p3 = p4 = (m, 0⃗), so that

q1 = p1 + p2 = Q, where Q = (2m, 0⃗) and q3 = p1 − p3 = q3 = p2 − p4 = 0.
Therefore,

G(1)|rest =
iλ2Γ(1 + ϵ)

(4π)d/2

[
3

2ϵ
+ Ffin(Q) + 2Ffin(0)

]
. (2.21)

At the threshold the full amplitude is

−iλ
[
1−
λΓ(1 + ϵ)

(4π)d/2

(
3

2ϵ
+ Ffin(Q) + 2Ffin(0)

)
+ (ZλZ

2 − 1)
]
. (2.22)

According to the condition that we imposed on the four-point Green’s func-

tion, the expression in square brackets has to be equal to 1. Because we

already found the the wave function renormalization constant Z is 1+O(λ2),
we derive

Zλ = 1 +
λΓ(1 + ϵ)

(4π)d/2

[
3

2ϵ
+ Ffin(Q) + 2Ffin(0)

]
. (2.23)

Using Zλ, we obtain the following result for the four-point Green’s function

at an arbitrary kinematic point

G({pi}) = −iλ

(
1−

λ

16π2

[
3∑
i=1

Ffin(q
2
i )− Ffin(Q2)− 2Ffin(0)

])
. (2.24)

where we took the ϵ→ 0 limit as appropriate.
Although we achieved our goals by removing divergences from the Green’s

functions and ensuring that conditions imposed on them are satisfied,2 it is

instructive to compute the Green’s function explicitly. We find

F (q2) =
iλ2Γ(1 + ϵ)

2(4π)d/2ϵ

1∫
0

dx (m2 − q2x(1− x))−ϵ. (2.25)

Expanding in ϵ, we find

Ffin(q
2) = −

1

2

1∫
0

dx ln(m2 − x(1− x)q2). (2.26)

2Admittedly, only at one loop.
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This integral can be computed explicitly in terms of logarithmic and rational

functions. However, this computation requires a little bit of care because

the argument of the logarithm is a quadratic form. To simplify it, I will

consider the case when s = (p1 + p2)
2 ≫ m2, |t| = |(p3 − p1)2| ≫ m2 and

|u| = |(p1 − p4)2| ≫ m2 and perform the calculation with the logarithmic
accuracy.

If |q2| ≫ m2, we easily find (with the logoarithmic accuracy)

Ffin(q
2) ≈ −

1

2
ln(|q2|). (2.27)

On the contrary, if q2 = 0 or q2 = 4m2, then

Ffin(0) = −
1

2
lnm2, (2.28)

or

Ffin(4m
2) = −

1

2
ln
m2

2
, (2.29)

respectively. Hence, the amputated four-point Green’s function becomes

(with the logarithmic accuracy)

G({pi}) = −iλ
(
1−

λ

16π2

[
ln

(
stu

m6

)
+ · · ·

])
+O(λ3). (2.30)

This formula shows an interesting feature which is worth pointing out. We

have constructed a perturbative expansion of the scattering amplitude in the

coupling constant λ. We see, however, that the expansion parameter can

be very different since the size of the corrections is not determined by the

coupling constant λ but rather by the quantity λ ln s/m2 which can be much

larger than λ itself. Looking back at our calculation, it is easy to understand

the origin of these logarithms. Indeed, terms ln s, ln(−t), ln(−u) come from
computing the loop for a given set of momenta p1,2,3,4. However, lnm

2 terms

come from the renormalization condition which is set at the threshold of the

process φ(p1) + φ(p2)→ φ(p3) + φ(p4) where energies of all particles are m.
This understanding and the possibility to change the renormalization con-

dition, since the result of the calculation should not depend on it (provided

of course that one changes the parameters accordingly), should allow us to

account for certain types of “kinematically enhanced” corrections to all orders

in perturbation theory. Methods to do so are known as the renormalization

group methods and we will talk about them later.
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