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3 Renormalized perturbation theory for QED

In this lecture we will construct the renormalized perturbation theory for

Quantum Electrodynamics (QED). We will consider a theory with a single

lepton, the electron. The Lagrangian reads

L = −
1

4
F (0)µν F

µν
0 + ψ̄0(i ∂̂ −m0)ψ0 − e0ψ̄0γµψ0A

µ
0 , (3.1)

where Fµν = ∂µAν − ∂νAµ is the field-strength tensor. Similar to the case
of the φ4 theory, we interpret all the quantities in the above Lagrangian as

bare quantities. These bare quantities are indicated by a subscript 0. The

physical quantities are related to bare quantities by means of a multiplicative

renormalization. We write

ψ0 = Z
1/2
2 ψ, Aµ0 = Z

1/2
3 Aµ, m0 = Zmm, e0 = Zee. (3.2)

We now rewrite the Lagrangian as follows

L = −
1

4
FµνF

µν + ψ̄(i ∂̂ −m)ψ − eψ̄γµψAµ + Lct, (3.3)

where the counter-term Lagrangian reads

Lct =−
δ3
4
FµνF

µν + ψ̄(δ2i ∂̂ −mδm)ψ − eδe ψ̄γµψAµ, (3.4)

where

δ3 = Z3 − 1, δ2 = Z2 − 1, δm = (ZmZ2 − 1), δe = (ZeZ2Z
1/2
3 − 1).

(3.5)

The renormalization constants are unknown at this point. As we already

discussed in the previous lecture, we will determine them order by order in

perturbation theory by insisting that divergent Green’s functions satisfy (phys-

ical) conditions that we impose on them.

The Feynman rules1 that follows from the QED Lagrangian in Eq. (3.4)

are then

•
p

µ ν
the photon propagator: −igµν/(p2 + i0);

1The Feynman rules refer to Feynman gauge. If a general gauge is used, it may be

necessary to also renormalize the gauge parameter.
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•
p

the electron propagator: i/(p̂ −m + i0);

•
µ
an (amputated) electron-photon vertex: −ieγµ;

•
⊗

µ ν
a counter-term contribution to the photon propagator:

−i(gµνp2 − pµpν)δ3;

•
⊗

a counter-term contribution to the electron propagator:

i(p̂δ2 − δm);

•
µ

⊗
a counter-term for an electron-photon vertex: −ie δeγµ

.

We now describe conditions that we impose on the relevant Green’s func-

tions. First, electron’s self-energy Σ̂ should fulfill the following equations

Σ̂(p̂)|p̂=m = 0,
dΣ̂(p̂)

dp̂

∣∣∣∣∣
p̂=m

= 0. (3.6)

These two conditions ensure that m is the physical mass of the electron

and that the electron field ψ is properly normalized. We have talked about

these conditions in the previous semester.

There is a similar condition that the photon self-energy (which in this case

is called vacuum polarization) has to satisfy, however there is an important

difference which concerns the mass of the photon. In QED, the mass of the

photon is zero, as the consequence of gauge invariance. Since we regularize

QED in such a way that gauge-invariance is not broken, we expect that the

photon mass remains zero automatically and this condition does not need to
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be imposed. Technically, this follows from the fact that the photon vacuum

polarization has the following form

iΠµν(p) = i(gµνp2 − pµpν)Π(p2), (3.7)

where the function Π(p2) is not singular at p2 = 0. To see what this form

implies, we compute the photon propagator by summing up the vacuum po-

larization contributions. To this end, it is convenient to write

iΠµν(p) = iδµνT p
2Π(p2), (3.8)

where

δµνT = g
µν −

pµpν

p2
. (3.9)

Then, the photon propgator Dµν becomes

Dµν =
−igµν

p2
+
−igµα
p2

iδαβT p
2Π(p2)

−igνβ
p2
+ ... (3.10)

We then replace the metric tensor with δµνT + p
µpν/p2 everywhere in the

above formula. Since pαδ
αβ
T = 0, when doing so the pµpν terms can be

simply dropped everywhere except in the first term in Eq. (3.10). Then, we

find

Dµν =
−ipµpν

p2
+

−iδµνT
(p2 + i0)(1− Π(p2)) . (3.11)

The first term is essentially a gauge term, which does not contribute to matrix

elements because of the electromagnetic current conservation. The second

term in the actual propagator, with a pole at p2 = 0.

To have properly normalized asymptotic states, the residue at this pole

has to be one. This implies that the vacuum polarization function Π(p2) has

to satisfy the following condition

Π(p2) = 0, at p2 = 0. (3.12)

Finally, we would like e to be the physical charge of the electron.This

parameter can be defined as the on-shell limit of the amputated Green’s

function which involves the electromagnetic field at zero momentum and two

on-shell electrons at rest.
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Figure 1: Electron self-self energy and photon vacuum polarization diagrams.

Among the various Green’s functions in QED that have a non-negative

superficious degree of divergence, the only one that is not part of this list

is the four-photon Green’s function. However, as we mentioned earlier, this

Green’s function is actually finite thanks to the gauge invariance. So, we will

not need to discuss it.

We will now compute the renormalization constants explicitely. The elec-

tron self-energy was discussed last semester but we repeat this discussion here

since we a) will employ the dimensional regularization and b) have to consider

the counter-term contributions. We write

iΣ(p̂) = iΣ1l(p̂) + iΣct, (3.13)

where the first term on the right-hand side is the one-loop contribution and

the second term is the counter-term contribution. The one-loop contribution

reads (see Fig. 1)

iΣ1l(p̂) = (−ie)2
∫
ddk

(2π)d
γα(p̂ + k̂ +m)γα
k2((k + p)2 −m2) . (3.14)

Since we use the dimensional regularization, we need to be careful with γ-

matrices since their Lorentz indices should be considered to be d-dimensional.

This has consequences; for example one can show that the following equation

holds

γα(p̂ + k̂ +m)γα = (2− d)(p̂ + k̂) + dm. (3.15)

Then, we combine the propagators in Eq. (3.14) using Feynman parameters

and integrate over the loop momentum k using results discussed in the first
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lecture. We find

iΣ1l(p̂) = −
ie2Γ(1 + ϵ)

(4π)d/2ϵ

1∫
0

dx
(2− d)p̂(1− x) + dm
(m2x − p2x(1− x))ϵ . (3.16)

We note that the divergent part of this quantity can easily be computed. We

find

iΣ1l(p̂)

∣∣∣∣∣
div

= −
iΓ(1 + ϵ)

(4π)d/2
1

ϵ
(−p̂ + 4m) . (3.17)

To determine the constants Z2 and Zm we need to know Σ(p̂) and its

derivative at p̂ = m. We will now compute the corresponding contributions.

First, taking p̂ = m and p2 = m2, and using d = 4− 2ϵ, we find

iΣ1l |p̂=m = −
ie2Γ(1 + ϵ)

(4π)d/2ϵ
m1−2ϵ

1∫
0

dx
2 + 2x(1− ϵ)

x2ϵ

= −
ie2Γ(1 + ϵ)

(4π)d/2ϵ
m1−2ϵ

(
2

1− 2ϵ + 1
)
= −

ie2Γ(1 + ϵ)

(4π)d/2ϵ
m1−2ϵ

3− 2ϵ
1− 2ϵ.

(3.18)

Since we require that Σ = 0 at p̂ = m, we derive the following equation

0 = −
ie2Γ(1 + ϵ)

(4π)d/2ϵ
m1−2ϵ

3− 2ϵ
1− 2ϵ + i(p̂ δ2 − δmm)|p̂=m, (3.19)

where the last term is the counter-term contribution.

The second condition that needs to be satisfied is that the derivative of

Σ(p̂) w.r.t. p̂ at p̂ = m vanishes. We will start with computing the derivative

of Σ1l(p̂). We will use the fact that

p2 = p̂p̂, (3.20)

so that
∂

∂p̂
p2 = 2p̂. (3.21)
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Since we use dimensional regularization, we can interchange integration

and differentiation. Therefore, we find

∂

∂p̂

1∫
0

dx
(2− d)p̂(1− x) + dm
(m2x − p2x(1− x))ϵ =

1∫
0

dx
[ (2− d)(1− x)
(m2x − p2x(1− x))ϵ

+ ϵ2x(1− x)p̂
(2− d)p̂(1− x) + dm
(m2x − p2x(1− x))ϵ+1

]
.

(3.22)

We then set p̂ → m and find

∂

∂p̂
iΣ1l(p̂)|p̂=m = −

ie2Γ(1 + ϵ)m−2ϵ

(4π)d/2ϵ

1∫
0

dx x−2ϵf (x), (3.23)

where

f (x) =
4ϵ

x
− 2 + 2ϵ− 4ϵ2 + (2− 6ϵ+ 4ϵ2)x. (3.24)

Integrating over x , we find

∂

∂p̂
iΣ1l(p̂)|p̂=m =

ie2Γ(1 + ϵ)m−2ϵ

(4π)d/2ϵ

3− 2ϵ
1− 2ϵ. (3.25)

We then compute the derivative of the full self-energy contribution, including

the counter-term, and require that it vanishes at p̂ = m. We obtain the

following equation

0 =
ie2Γ(1 + ϵ)m−2ϵ

(4π)d/2ϵ

3− 2ϵ
1− 2ϵ + iδ2, (3.26)

from where δ2 and Z2 can be determined. We find

Z2 = 1−
e2Γ(1 + ϵ) m−2ϵ

(4π)d/2 ϵ

3− 2ϵ
1− 2ϵ. (3.27)

Then, from Eq. (3.19) we determine δm and Zm, using teh result for Z2 in

Eq. (3.27). We find

Zm = 1−
e2Γ(1 + ϵ) m−2ϵ

(4π)d/2 ϵ

3− 2ϵ
1− 2ϵ, (3.28)
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so that Zm = Z2. The peculiar equality of these renormalization constants is

an accident and does not have deep physical meaning.

Next, we consider the photon vacuum polarization contribution (see Fig. 1).

We write

iΠµν(p) = (−1)e2
∫
ddk

(2π)d
Tr

[
γµ(k̂ + p̂ +m)γν(k̂ +m)

]
(k2 −m2)((k + p)2 −m2) . (3.29)

where the (−1) pre-factor appears because of the closed fermion loop.
In general we can write

iΠµν = iΠ(p)(gµνp2 − pµpν) + pµpν iΠL(p). (3.30)

We will now prove that at one loop ΠL(p) = 0 (c.f. Eq. (3.7)).
2 To this

end, we contract iΠµν with pµpν and make use of the fact that pµpν(g
µνp2−

pµpν) = 0. Hence, we find

iΠL(p) = −
e2

(p2)2

∫
ddk

(2π)d
Tr

[
p̂ (k̂ + p̂ +m) p̂ (k̂ +m)

]
(k2 −m2)((k + p)2 −m2) . (3.31)

We then write

(k̂ +m)p̂(k̂ + p̂ +m)

= (k̂ +m)
(
(k̂ + p̂ −m)− (k̂ −m)

)
(k̂ + p̂ +m)

= (k̂ +m)
(
(k + p)2 −m2

)
− (k2 −m2)(k̂ + p̂ +m).

(3.32)

We now use this expression in Eq. (3.31) and find

iΠL(p) =
e2

(p2)2

∫
ddk

(2π)d

[
Tr

[
p̂ (k̂ + p̂ +m)

]
(k + p)2 −m2 −

Tr
[
p̂ (k̂ +m)

]
k2 −m2

]
. (3.33)

Because integrals in the above equation are regularized, we can consider them

separately. We then shift the loop momentum k → k − p in the first integral
and observe that it becomes equal to the second one which, however, enters

with the minus sign. Hence, we conclude that

ΠL(p
2) = 0. (3.34)

2In fact, this statement is true at any number of loops.
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We derived this result for the one-loop contribution to the photon vacuum

polarization but it is valid for an arbitrary loop order; the reason for this is the

fact that Aµ couples to the conserved current.

To determine the function Π(p), we compute the trace and contract the

result with the metric tensor. Computation of the trace is straightforward.

By convention, even in d-dimensional space, we use

Tr [1] = 4. (3.35)

Hence, formulas for traces of γ-matrices do not change and we find

Tr
[
γµ(k̂ + p̂ +m)γν(k̂ +m)

]
= 4

(
kµ(k + p)ν + kν(k + p)µ + gµν

(
m2 − k · (k + p)

))
= 4

(
2kµkν + kµpν + kνpµ + gµν

(
m2 − k · (k + p)

))
.

(3.36)

Contracting with gµν, we obtain

iΠ(p) = −
4e2

(d − 1)p2

∫
ddk

(2π)d
2k · (k + p) + d(m2 − k · (k + p))
(k2 −m2)((k + p)2 −m2) . (3.37)

To simplify this expression, we rewrite the numerator in terms of the two

propagators that appear in the denominator. Introducing the notation

d1 = k
2 −m2, d2 = (k + p)

2 −m2, (3.38)

we write

2k(k + p)+ d(m2− k(k + p)) = 2m2+(1− ϵ)p2− (1− ϵ)(d2+ d1), (3.39)

so that

iΠ(p) = −
4e2

(d − 1)p2

∫
ddk

(2π)d

(2m2 + (1− ϵ)p2
d1d2

− (1− ϵ)
(
1

d2
+
1

d1

))
.

(3.40)

Since ∫
ddk

(2π)d
1

d1
=

∫
ddk

(2π)d
1

d2
, (3.41)
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we finally obtain

iΠ(p) = −
4e2

(d − 1)p2

∫
ddk

(2π)d

(2m2 + (1− ϵ)p2
d1d2

−
2(1− ϵ)
d1

)
. (3.42)

Since the renormalization condition for the photon vacuum polarization is

formualted at p2 = 0, we need to know the value of Π(p) at p2 = 0. To

compute it, we combine the propagators d1 and d2 and integrate over the

shifted loop momentum. We find

iΠ(p) = −
4

(3− 2ϵ)p2
ie2Γ(1 + ϵ)

(4π)d/2ϵ

1∫
0

dx

[
2m2 + (1− ϵ)p2

∆ϵ
− 2m2−2ϵ

]
,

(3.43)

where

∆ϵ = m2 − p2x(1− x). (3.44)

It is straightforward to compute Π(p) at p2 = 0 but, since there is a

pre-factor 1/p2, it is useful to organize this computation in such a way that

such the expansion is easy to obtain. We write

iΠ(p) = −
4

(3− 2ϵ)
ie2Γ(1 + ϵ)m−2ϵ

(4π)d/2ϵ

1∫
0

dx
[2m2 (∆̃−ϵ − 1)

p2
+ (1− ϵ)∆̃−ϵ

]
,

(3.45)

where

∆̃ = 1−
p2

m2
x(1− x). (3.46)

We can now trivially compute iΠ(0) that we require for the renormalization

condition. Indeed, since

lim
p2→0

m2
(
∆̃−ϵ − 1

)
p2

= ϵx(1− x). (3.47)

we find

iΠ(p2 = 0) = −
4

3ϵ

ie2Γ(1 + ϵ)m−2ϵ

(4π)d/2
. (3.48)

The full contribution to the photon vacuum polarization is the sum of the

loop contribution and the counter-term. Working out the required condition,

we find

Π(p2 = 0)− δ3 = 0, (3.49)
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q = 0
µ

p

p

k

Figure 2: The electron-photon vertex for kinematics used for the electric

charge counter-term computation.

which implies

Z3 = 1−
4

3ϵ

e2Γ(1 + ϵ)m−2ϵ

(4π)d/2
. (3.50)

To complete the renormalization program of QED at one loop we require

the calculation of δe, the charge renormalization constant. This counterterm

is determined by the requirement that electron-photon interaction vertex is

given by physical electric charge e without any corrections at the vanishing

value of the photon momentum q = 0. Similar to all other computations

that we have done in this lecture, to find the counter-term we first require

the computation of the interaction vertex at q = 0 and for external electrons

being on-shell, i.e. p2 = m2. We make use of the QED Feynman rules and

write

Γµ = −e3
∫
ddk

(2π)d
ūpγ

α(k̂ + p̂ +m)γµ(k̂ + p̂ +m)γαup
k2((k + p)2 −m2)((k + p)2 −m2) . (3.51)

Combining propagators using the Feynman parameters, we derive the fol-

lowing result

Γµ = −2e3
∫
[dx ]3

∫
ddk

(2π)d
ūpγ

α(k̂ + p̂ +m)γµ(k̂ + p̂ +m)γαup
((k + P12)2 − P 212)3

, (3.52)

where P12 = (x1 + x2)p, [dx ]3 = dx1dx2dx3δ(1− x1 − x2 − x3), and we made
use of the on-shell condition for the electron momentum, p2 = m2. We then

shift the loop momentum k → k − P12 and find

Γµ = −2e3
∫
[dx ]3

∫
ddk

(2π)d
ūpγ

α(k̂ + p̂x3 +m)γ
µ(k̂ + p̂x3 +m)γαup

(k2 − P 212)3
,

(3.53)
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where we have used P12 = p(1− x3). Next, using spherical symmetry of the
integral, we can discard terms that are linear in k and simplify quadratic ones

using the following replacement rule

kαkβ →
1

d
k2gαβ. (3.54)

Hence, we find

Γµ = −2e3
∫
[dx ]3

∫
ddk

(2π)d
1

(k2 − P 212)3
ūp

[
γαγργµγργα

k2

d

+ γα(p̂x3 +m)γ
µ(p̂x3 +m)γα

]
up.

(3.55)

To simplify this formula further, we use

γαγµγα = (2− d)γµ, (3.56)

which gives

γαγργµγργα = (2− d)2γµ. (3.57)

To simplify the second term, we use

γαP̂ γµP̂ γα = (2− d)P̂ γµP̂ ,
γα(P̂ γµ + γµP̂ )γα = d(γ

µP̂ + P̂ γµ),
(3.58)

and find

ūpγ
α(p̂x3 +m)γ

µ(p̂x3 +m)γαup

= ūpγ
µup m

2
[
(2− d)x23 + 2dx3 + 2− d

]
.

(3.59)

Finally, integrating over k , we find

Γµ = −ūpγµup
2i e3 Γ(1 + ϵ)

(4π)d/2

∫
[dx ]3

[(2− d)2
d

1

ϵ∆ϵ

−
1

2

(
(2− d)2

d
(1− x3)2 + (2− d)x23 + 2dx3 + (2− d)

)
m2

∆1+ϵ

]
,

(3.60)

where

∆ = m2(1− x3)2 (3.61)
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It is straightforward to integrate over x3. The integration measure turns into∫
[dx ]3 =

1∫
0

dx3(1− x3) (3.62)

After that, integration over x is straightforward and we find

Γµ = −ūγµup
ie3Γ(1 + ϵ)m−2ϵ

(4π)d/2
(3− 2ϵ)
ϵ(1− 2ϵ) . (3.63)

We should add the counter-term contribution to this result and require that

the sum vanishes. Hence, we find

δe +
e2Γ(1 + ϵ)m−2ϵ

(4π)d/2
(3− 2ϵ)
ϵ(1− 2ϵ) = 0. (3.64)

We note that the loop contribution in the above equation equals Z2− 1 (c.f.
Eq. (3.27) ). Therefore,

δe + 1− Z2 = 0. (3.65)

Then

ZeZ
1/2
3 Z2 − 1 + 1− Z2 = 0⇔ Ze = Z

−1/2
3 , (3.66)

where Z3 is given in Eq. (3.50). The above equality of δe and Z2 is the

consequence of the Ward identity for the electron photon vertex that we

discussed in the last lecture of the previous semester.
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