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4 Non-abelian gauge theories

We have talked at length about the theory of electromagnetism – Quantum

Electrodynamics or QED. Let us remind ourselves about how this theory is

constructed. We start by writing the Dirac Lagrangin

L = ψ̄(x)(i∂µγ
µ −m)ψ(x) (4.1)

This Lagrangian is invariant under global (i.e. xµ-independent) U(1)-transformations.

Indeed, writing

ψ(x) = e iαψ1(x), ψ̄(x) = ψ̄1(x)e
−iα, (4.2)

we find that

L[ψ̄, ψ] = L[ψ̄1, ψ1]. (4.3)

Suppose we would like this transformation to be local, i.e. xµ-dependent.

Then,

ψ(x) = e iα(x)ψ1(x), ψ̄(x) = ψ̄1(x)e
−iα(x), (4.4)

It is easy to see that in this case

L[ψ̄, ψ] = L[ψ̄1, ψ1]− (∂µα) ψ̄1(x)γµψ1(x). (4.5)

To maintain the invariance of the Lagrangian under local U(1) transforma-

tions, we can add a vector field to it and let the vector field also transform

under local U(1) transformation. We write

L = ψ̄(iDµγ
µ −m)ψ, (4.6)

where Dµ = ∂µ + ieAµ. Assuming that

Aµ = Aµ1 − e−1∂µα(x), (4.7)

under a gauge transformation, we find

L[ψ̄, ψ, Aµ] = L[ψ̄1, ψ1, A1]. (4.8)

Hence, if we require that Lagrangians should be invariant under local gauge

transformations, the apeparance of gauge vector fields becomes unavoidable.

Moreover, these vector fields are massless since a term AµA
µ is inconsistent
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with the gauge invariance. Furthermore, the kinetic energy of the field is

described by the following term

L = −
1

4
FµνF

µν, (4.9)

where Fµν = ∂µAν−∂νAµ. Fµν is the field-strength tensor; in electrodynamics,
its elements are the electric and magnetic fields. For the following discussion,

it is convenient to write Fµν as the commutator of two covariant derivatives

[Dµ, Dν] = ieFµν. (4.10)

The usefulness of this representation is that it allows us to easily write an

expression for the field-strength tensor in a non-abelian case which we will

discuss now.

To this end, consider a theory that is slightly more complex than QED.

The theory contains two fermion fields instead of one. These fermions have

equal masses. We write the Dirac Lagrangian as a sum of two Lagrangians

L = ψ̄a(iγµ∂
µ −m)ψa + ψ̄b(iγµ∂µ −m)ψb. (4.11)

To make the above formula look more compact, we combine the two fermion

fields into a new field Ψ

Ψ(x) =

(
ψa(x)

ψb(x)

)
. (4.12)

Note that Ψ(x) has eight components since ψa,b are four-component spinor

fields. Then,

L = Ψ̄(x)(iγµ∂
µ −m)Ψ(x). (4.13)

The Lagrangian L is invariant under SU(2) rotations of the spinor Ψ(x)

Ψ(x) = ÛΨ1(x), (4.14)

where U is an xµ-independent SU(2) matrix. This transformation means that,

instead of ψa,b we may decide to consider linear combinations of these spinor

fields.

The matrix U can be written in the following form

U = e
i
3∑
i=1

τaαa
, (4.15)
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where αi are (real-valued) parameters and τ⃗1,2,3 are generators of the SU(2)

algebra. They satisfy the commutation relation

[τa, τb] = i f abcτ c . (4.16)

In principle, these commutation relations are general; in case of SU(2) τa =

σa/2 where σ1,2,3 are Pauli matrices, and f abc = ϵabc is a Levi-Cevita tensor.

We will now try to make the transformation in Eq. (4.14) local. Similar

to the QED case, the invariance of the Lagrangian is achieved by introducing

vector fields and requiring that changes of these fields compensate unwanted

changes in the Lagrangian once a local SU(2) rotation of the spinor Ψ is

performed. We write

L = Ψ̄(x)(iγµD
µ −m)Ψ(x), (4.17)

where

Dµ = ∂µ − igsÂµ(x). (4.18)

and Âµ is a two-by-two matrix that is yet to be determined.

We note that if the field Âµ(x) transforms as

Aµ(x) = U(x) Aµ1(x) U
+(x)−

i

gs
(∂µUU+, (4.19)

then

L[Ψ̄,Ψ, Âµ] = L[Ψ̄1,Ψ1, Â1,µ] (4.20)

As we already said Âµ(x) is a two-by-two matrix. We would like to argue

that if this matrix is chosen to belong to the algebra of the group SU(2),

meaning that it can be written as a linear combinaton of the SU(2) genera-

tors,

Âµ(x) =

3∑
a=1

Aaµ(x)τ
a, (4.21)

then gauge transformations do not change this property. Note that this

implies that there are N2 − 1 A(a)µ gauge fields in a theory with the group
SU(N).

To show this, we first consider infinitesimal gauge transformations

U(x) ≈ 1 + i ϵa(x)τa, (4.22)
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where summation over index a is assumed. We then find

Â1,µ ≈ Âµ − i ϵa
[
τa, Âµ

]
−
1

gs
(∂µϵ

a)τa +O(ϵ2). (4.23)

Hence, since

[τa, τb] = i f abcτ c , (4.24)

if the original field Âµ belongs to the Lie algebra, the field obtained as the

result of infinitesimal transformations also belongs to the Lie algebra. Since

any transformation that belongs to the SU(2) group can be obtained as a

sequence of infinitesimal transformations, we conclude that Eq. (4.21) always

holds and Âµ(x) belongs to the Lie algebra of SU(2).

We also need the kinetic term for the field Âµ. We have seen that in

the abelian case the kinetic term can be obtained from a commutator of two

covariant derivatives. We can try to do the same for the non-abelian case

and define

F̂µν =
i

gs
[Dµ, Dν], (4.25)

where the covariant derivative is given in Eq. (4.18). It is straighforward to

compute this commutator. We find

F̂µν = ∂µÂν − ∂νÂµ − igs [Âµ, Âν]. (4.26)

Since the gauge field belongs to the Lie algebra of the group SU(2), we can

write

[Âµ, Âν] = i f
abcAaµA

b
ντ
c , (4.27)

so that F̂µν = τ
aF
(a)
µν where

F aµν = ∂µA
a
ν − ∂νAaµ + gs f abcAbµAcν. (4.28)

We will use F̂µν to write the kinetic term as

Lkin = −
1

2
Tr

[
F̂µν F̂

µν
]
. (4.29)

The coefficient is chosen in such a way that in the limit gs → 0, we recover
a kinetic term for each of the A

(a)
µ fields.

1

1This assumes the standard normalization of the generators Tr[τaτb] = 1/2δab.
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To show that Lkin is invariant under the gauge transformations, we need

to understand how either Fµν or the covariant derivatives transform. This

can be easily done. Indeed, we start with the covariant derivative and change

the gauge field; then we find

Dµ = ∂µ − igsÂµ = ∂µ − igs
(
UÂ1,µU

+ −
i

gs
(∂µU)U

+

)
= U

(
∂µ − igsÂ1,µ

)
U+ = UD1,µU

+.

(4.30)

It follows that the field-strength tensor transforms in the same way

Fµν → UF̂µνU
+, (4.31)

and this makes the kinetic energy part of the Lagrangian invariant under gauge

transformations.

It is to be noted that Lkin alone defines a highly non-trivial theory in a

non-abelian case. This is because Lkin contains both triple and quartic terms

of the form gs(∂µA
a
ν)f

abcAbµA
c
ν and g

2
s f
abcAbµA

c
νf
ab1c1Ab1µ A

c1
ν . These interac-

tion terms imply that in non-abelian gauge theories gauge fields carry charges

and can interact with each other. These interactions have very important

consequences for physics. One of the most important consequences is the

so-called confinement of these non-abelian charges which means that parti-

cles with non-abelian charges cannot be observed as free particles in Nature.

Although there is clear empirical evidence that supports this statement, no

formal mathematical proof is currently known.

The most important non-abelian physical theories are Quantum Chromo-

dynamics (QCD) and the electroweak Standard Model. The Standard Model

is somewhat special because gauge symmetry in that case is broken by the

Higgs mechanism. Quantum Chromodynamics describes the strong force that

keeps nuclei together and, thus, is responsible for interactions between pro-

tons, neutrons and pions, among other thing. However, the Lagrangian of

QCD is a Lagrangian of a non-abelian theory with gauge group SU(3); it is

formulated using the language of quarks and gluons. Gluons are the “pho-

tons” of the strong field. Similar to quarks, they are not observable. We will

continue to talk about QCD in the following lectures.
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The discussion of the SU(2) theory that we had so far involved fermions

in the fundamental representation of the gauge group. However, since there

are infinitely many representations of the gauge group, there is more than

one way to construct a non-abelian theory even if the gauge group is fixed.

Consider, for example, a scalar field φ that transforms under the so-called

adjoint representation of SU(2). We write

φ̂ =

3∑
a=1

φ(a)τa, (4.32)

so that similar to the gauge field, φ belongs to the SU(2) algebra. The

transformation rule for the field φ is

φ̂→ U(x)φ̂U+(x). (4.33)

The kinetic term that involves the Lagrangian of the field φ reads

L = Tr[∂µφ ∂
µφ] =

3∑
a=1

1

2
∂µφ

(a)∂µφ(a). (4.34)

Clearly, the Lagrangian in Eq. (4.34) is not invariant under local gauge trans-

formations; to ensure that, we need to introduce a covariant derivative. We

then write

∂µφ̂→ [Dµ, φ̂]. (4.35)

Since both Dµ and φ̂ transform in the same way, we easily find a transforma-

tion rule for the covariant derivative acting on the field φ̂

[Dµ, φ̂]→ U[Dµ, φ̂]U
+. (4.36)

Hence, if we write the kinetic term of the Lagrangian as

L = Tr
[[
Dµ, φ̂

]
[Dµ, φ̂]

]
, (4.37)

it will be invariant under gauge transformations. We note that similar to

all other quantities that we considered in this lecture, the ”kinetic” term in

Eq. (4.37) contains interactions terms that define the coupling between the

gauge fields and the scalar fields.
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The first time gauge transformations appear in physics courses is when the

covariant formulation of electrodynamics is introduced. There we express the

electric and magnetic fields through the generalized vector potential Aµ, and

say that Maxwell’s equations do not change if we replace Aµ with Aµ+∂µf (x),

where f (x) is an atrbitrary function. We then argue that this freedom allows

us to impose certain conditions on the vector potential or, as we say, fix the

gauge.

There are different ways to do that; on of the most famous ones is to

require that

∂µA
µ = 0, (4.38)

which is the Lorentz gauge condition. To see why Eq. (4.38) is possible,

imagine that we have a generic vector potential Aµ1 . We then redefine the

vector potential by writing

Aµ1 = A
µ + ∂µf . (4.39)

We compute the divergence of both parts of the above equation and choose

f to be

f (x) = −
1

∂2
∂µA

µ
1 . (4.40)

With this choice, the vector potential Aµ satisfies the Lorentz condition.

Another popular choice is the so-called Coulomb or radiation gauge

∇⃗ · A⃗ = 0. (4.41)

In this case, function f (x) is computed in the same way as in the case of

the Lorentz gauge but we calculate a three- rather than four-dimensional

divergence.

Let us clarify the meaning of these gauge fixing equations. When we say

that we fix the gauge, we mean that there are no two vector potentials Aµ1
and Aµ2 that satisfy the gauge fixing condition (say the Coulomb one)

∇⃗ · A⃗1,2 = 0, (4.42)

and, at the same time, are related to each other by a gauge transformation,

i.e.

Aµ2 = A
µ
1 + ∂

µf (x) (4.43)
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To see this, we compute the divergence of both sides of the above equation

and find

0 = ∇2f (x). (4.44)

This is the Laplace equation. We need a solution that vanishes (or at least

is not singular) at infinity. This implies that f (x) = 0.

We now discuss to what extent the same gauge-fixing procedure can be

carried through in non-abelian theories. To this end we impose the analog of

the Coulomb gauge

∇⃗ · A⃗(a) = 0, (4.45)

on the non-abelian vector potential. The simplest “gauge configuration”

where this condition is satisfied is the “vacuum” configuration, with Aaµ = 0.

Obviously, this choice of the vector potential corresponds to F̂µν = 0; for this

value of F̂µν, the Lagrangian and the action S vanish.

We would like to investigate whether there are other time-independent

field configurations that are a) gauge transformations of Aaµ = 0 and b) satify

Eq. (4.45). A gauge transformation of Aµ = 0 is

Âµ =
i

gs
U+(x)∂µU(x). (4.46)

We would like to consider time-independent field-configurations, so that U(x)

does not depend on x0. Then, A0 = 0 and the above equation simplifies to

Âi =
i

gs
U+∂iU. (4.47)

We are interested in understanding whether or not the equation

0 = ∂i Âi → ∂i
[
U+∂iU

]
= 0, (4.48)

has solutions that are not infinite at |x⃗ | =∞ and anywhere else. In general,

U(x) = e iθ(x)n⃗
aτa . (4.49)

For the group SU(2) we can take θ(x) = f (r) and n⃗ = r⃗ /r , since there are

three generators of the SU(2) group. Hence, we mapped a sphere in the
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coordinate space onto a sphere in the SU(2) space. It is straightforward to

compute Âi by taking the derivatives. We find

Âi = −
1

gs

[
n⃗i f
′(r)n⃗ · τ⃗ +

sin(f (r))

r
(τi − n⃗i(n⃗ · τ⃗))

+
1− cos(f (r))

r
ϵibcτbn⃗c

]
.

(4.50)

To ensure that Ai satisfies the gauge condition, we compute the divergence of

Ai and requiring that it vanishes; we find that it is possible to do so provided

that the function f (r) satisfies the following equation

∂

∂r

(
r 2
∂f

∂r

)
− 2 sin [f ] = 0. (4.51)

To solve this equation, we need boundary conditions. Since we would like

the vector potential to be non-singular everywhere, we require f (0) = 0. It is

then possible to construct the series solution of the above equation at r = 0.

We find

f (r) = f ′r −
1

30
(f ′r)3 +

1

560
(f ′r)5 + ..., (4.52)

where f ′ = df (r)/dr at r = 0. It is clear from the solution that f ′ controls

the spatial extend of the solution.

To understand how this solution extends to r → ∞, it is convenient to
change variables and write r = es . Since r ∈ [0,∞], then s ∈ [−∞,∞]. To
write an equation using the s-coordinate, we note that

d

dr
= e−s

d

ds
, (4.53)

and find
∂

∂r

(
r 2
∂f

∂r

)
= e−s

d

ds
es
df

ds
=
d2f (s)

ds2
+
df

ds
. (4.54)

The differential equation then becomes

d2f

ds2
+
df

ds
− 2sin[f ] = 0. (4.55)

If we interpret s as time and f as a dispacement, the above equation describes

a motion of particle with the mass m = 1 in the potential V (f ) = 2 cos f

subject to a friction force.
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The small-r solution that we have found implies that the at s = −∞
the particle starts at a maximum of the potential (f = 0) and moves either

to the left and to the right, dependning on the sign of f ′. Because of the

friction, the particle never makes it to the next maximum (say f = 2π) and

starts moving back instead. After a few oscillations, the particle looses all its

energy and finally ends up at the minimum of the potential at f = π. Hence,

f → π at r →∞.
One can construct an approximate solutions for f (r) at r → ∞. Using

the explicit solutions and Eq. (4.50) one finds that at large values of r the

vector potential becomes

lim
r→∞

Ai →
2

gsr
ϵinc n⃗bτc . (4.56)

This analysis shows that the gauge fixing in non-Abelian gauge theories

is not complete, at least for some gauge fixing choices. However, fields that

escape the gauge fixing conditions are inversly proportional to the coupling

constant i.e Ai ∼ 1/gs ; so if the gauge coupling is small, then these fields are
very large.

In the next lectures we will study how to perform perturbative quantization

of QCD. An essential part of this procedure will be the gauge fixing which

will allow us to remove equivalent configurations from the so-called path

integral. Although, as we just discussed, the gauge-fixing is not complete in

non-Abelian theories, for the purpose of perturbative expansion we deal with

fields which are close to Aµ = 0 only and for such fields the gauge fixing

procedure is valid.
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