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5 Path integral in Quantum Mechanics

The standard formulation of Quantum Mechanics involves Hamilton operator

H that, for a system with one degree of freedom, reads

H =
p2

2m
+ V (q). (5.1)

The variables p and q are momentum and position operators that satisfy the

following quantization condition

[p, q] = −iℏ. (5.2)

Together with the Schrödinger equation

iℏ
∂

∂t
|Ψ⟩ = H|Ψ⟩, (5.3)

and the interpretation of the function Ψ(q) = ⟨q|Ψ⟩ as a probability ampli-
tude, the above equations provide the foundation for quantum mechanics.

On the contrary, in classical mechanics, we usually start with the La-

grangian formalism where dynamics of a mechanical system follows from the

minimum of an action

S =

∫
dtL(q, q̇, t). (5.4)

The function L(q, q̇, t) is the Lagrange function with q̇ being the velocity.

One can also study classical mechanics using the Hamilton formalism but it

is clearly not as prominent there as in Quantum Mechanics where it appears

to be the only game in town. Hence, one may wonder if there is a place for

the Lagrange formalism in Quantum Mechanics?

To answer this question, we consider a quantum mechanical system de-

scribed by the Hamiltonian in Eq.(5.1). We assume that at a time t = ti the

system is in a state with a definite coordinate x = xi ; we would like to find a

probability amplitude that at t = tf the system is in a state with a definite

coordinate x = xf . These states are formally defined as eigenstates of the

q-operator

q|xi ,f ⟩ = xi ,f |xi ,f ⟩, (5.5)

We compute the probability amplitude by solving the Schrödinger equation

Eq.(5.3)

|Ψ(t)⟩ = e−iH(t−ti )/ℏ|Ψ(ti)⟩, (5.6)
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identifying |Ψ(ti)⟩ with |xi⟩ and projecting |Ψ(tf )⟩ on |xf ⟩. The desired prob-
ability amplitude then reads

U(xf , xi ; tf , ti) = ⟨xf |e−iH(tf−ti )/ℏ|xi⟩. (5.7)

Our goal is to rewrite the expression Eq.(5.7) in a particular way. To this

end, we split the time interval [tf , ti ] into N + 1 segments where eventually

N will be considered to be large, N →∞. The length of a single segment is

δt =
(tf − ti)
N + 1

. (5.8)

We then write the time evolution operator as a product of N+1 time evolution

operators, one for each segment

e−iH(tf−ti )/ℏ = e−iHδt/ℏe−iHδt/ℏ.....e−iHδt/ℏ
N+1 times

. (5.9)

As the next step, we insert complete set of states at intermediate times.

To do so, we use the completeness relation for eigenstates of the q-operator

1 =

∫
dxk |xk⟩⟨xk |. (5.10)

Eigenstates of the position operator are normalized as

⟨x |y⟩ = δ(x − y). (5.11)

We obtain

U(xf , xi ; tf , ti) = ⟨xf |e−iHδt/ℏe−iHδt/ℏ.....e−iHδt/ℏ|xi⟩

=

∫ N∏
k=1

dxk⟨xf |e−iHδt/ℏ|xN⟩⟨xN |e−iHδt/ℏ|xN−1⟩.....⟨x1|e−iHδt/ℏ|xi⟩.
(5.12)

We see that the primary object to explore is the matrix element

⟨xa|e−iHδt/ℏ|xb⟩, (5.13)

with δt being arbitrary small because of the N →∞ limit. Since δt is small,
we replace the exponential with its expansion through first order in δt. We

write

e−iHδt/ℏ ≈ 1− i
Hδt

ℏ
. (5.14)
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Since

⟨xa|1|xb⟩ = δ(xa − xb), ⟨xa|V (q)|xb⟩ = V ((xa + xb)/2)δ(xa − xb), (5.15)

the only non-trivial matrix element is ⟨xa|p2/(2m)|xb⟩. To compute it, we
make use of the complete set of momentum eigenstates and write

⟨xa|
p2

2m
|xb⟩ =

∫
dpa
2πℏ

dpb
2πℏ
⟨xa|pa⟩⟨pa|

p2

2m
|pb⟩⟨pb|xb⟩

=

∫
dpa
2πℏ

dpb
2πℏ
⟨xa|pa⟩

p2a
2m
2πℏδ(pa − pb)⟨pb|xb⟩ =

∫
dpa
2πℏ

p2a
2m
e ipa(xa−xb)/ℏ,

(5.16)

In deriving this result, we have used

1 =

∫
dpa
2πℏ
|pa⟩⟨pa|, ⟨pa|pb⟩ = 2πℏδ(pa−pb), ⟨xa|pa⟩ = e ipaxa/ℏ, (5.17)

and ⟨pa|xa⟩ = ⟨xa|pa⟩∗. We will further use

δ(xa − xb) =
∫
dpa
2πℏ
e ipa(xa−xb)/ℏ, (5.18)

to write the matrix element of e.g. the potential energy V (q) and of the

kinetic energy in a similar way.

We exponentiate back the matrix elements of Hδt/ℏ operator and write

⟨xa|e−iHδt/ℏ|xb⟩ =
∫
dpa
2πℏ
e
ipa(xa−xb)/ℏ− iδtℏ

(
p2a
2m
+V ((xa+xb)/2)

)
. (5.19)

We now put this result back into a formula for the time evolution operator

U(xf , xi ; tf , ti), Eq.(5.12). We find

U(xf , xi ; tf , ti) =

∫ N∏
k=1

dxk

N+1∏
k=1

dpk
2πℏ

N+1∏
k=1

[
e
ipk (xk−xk−1)

ℏ e
− iδtℏ

(
p2
k
2m
+V ((xk+xk−1)/2)

)]

=

∫ N∏
k=1

dxk

N+1∏
k=1

dpk
2πℏ

e

N+1∑
k=1

[
ipk (xk−xk−1)

ℏ − iδtℏ

(
p2
k
2m
+V ((xk+xk−1)/2)

)]
,

(5.20)

where we identified x0 with xi and xN+1 with xf .
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All integrals over momenta pk in Eq.(5.20) are Gaussian and it is straight-

forward to compute them. We find∫
dpk
2πℏ
e
ipk ξk
ℏ −

iδt
ℏ
p2
k
2m =

√
mi

2πδtℏ
e i
mξ2
k

2δtℏ , (5.21)

where ξk = xk − xk−1. We use this result in a formula for U, Eq.(5.20), and
arrive at

U(xf , xi ; tf , ti) =

[
mi

2πδtℏ

]N+1
2
∫ N∏
k=1

dxk e
iÔ, (5.22)

where

O =
N+1∑
k=1

[
im(xk − xk−1)2

2δtℏ
−
iδt

ℏ
V

(
xk + xk−1
2

)]

=
i

ℏ

N+1∑
k=1

δt

[
m

2

(
xk − xk−1
δt

)2
− V

(
xk + xk−1
2

)]

=
i

ℏ

tf∫
ti

dτL(x(τ), ẋ(τ)).

(5.23)

We note that in the last step we replaced the sum over k with an integral

over time τ and recognized that the summand in next-to-last equation is

the Lagrange function. The integral over τ is supposed to be taken over

trajectories that start at x = xi at t = ti , end at x = xf at t = tf and go

through points x1, x2, ..., xN at τ = ti + δt, ti + 2δt, etc. Hence,

U(xf , xi , tf , ti) =

[
mi

2πδtℏ

]N+1
2
∫ N∏
k=1

dxk e

i
ℏ

tf∫
ti

dτL(ẋ(τ),x(τ))

=

[
mi

2πδtℏ

]N+1
2
∫ N∏
k=1

dxk e
i
ℏS[tf ,ti ,x(τ)],

(5.24)

where in the last step we replaced the integral of the Lagrange function by

the action S. Note that the integration over xk implies that we obtain the

time evolution operator in quantum mechanics by adding contributions of all

possible trajectories with fixed initial and final points with weights proportional

to the complex exponential of the classical action.
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We now formally take the limit N → ∞, write the integration measure
and a prefactor as

lim
N→∞

[
mi

2πδtℏ

]N+1
2

N∏
k=1

dxk = [Dx(t)], (5.25)

and obtain the final expression for the time evolution operator in quantum

mechanics

U(xf , xi , tf , ti) =

∫
[Dx(t)] e

i
ℏS[tf ,ti ,x(τ)]|x(tf )=xf ,x(ti )=xi . (5.26)

Eq.(5.26) provides the “path integral representation” of the time-evolution

operator in quantum mechanics. We call this object path integral or an inte-

gral over paths because we have to integrate over all trajectories that connect

points x = xf and x = xi but are, otherwise, arbitrary. We note that Eq.(5.26)

does what we wanted to accomplish since it provides us with the formulation

of quantum mechanics where Lagrange functions and classical actions play

a prominent role. Note also that in contrast to classical mechanics, where

“true” trajectories follow from the action minima δS = 0, i.e. the least ac-

tion principle, in quantum mechanics the time evolution is determined by all

directories each with the weight e
i
ℏS.

This result Eq.(5.26) also explains why classical trajectories are special.

Indeed, classical mechanics corresponds to the ℏ → 0 limit; in that case

S/ℏ →∞ and the integrand in Eq.(5.26) oscillates very rapidly and averages
to zero. The largest contributions to the integral come from trajectories

where the phase is stationary (methods of steepest descent etc. in complex

analysis). Such trajectories are exactly the ones that minimize the action S,

i.e. from trajectories that lead to δS = 0.

Often, we need to know a transition amplitude from the state |i⟩ to the
state |f ⟩ which are different from eigenstates of the position operator. Then
we write

⟨f |e−iH(tf−ti )/ℏ|i⟩ =
∫
dxf dxi⟨f |xf ⟩⟨xi |i⟩⟨xf |e

−iH(tf −ti )
ℏ |xi⟩

=

∫
dxf dxiΨ

∗
f (xf )Ψi(xi)U(xf , xi ; tf , ti).

=

∫
dxf dxiΨ

∗
f (xf )Ψi(xi)

∫
[Dx(t)] e

i
ℏS[tf ,ti ,x(τ)]|x(tf )=xf ,x(ti )=xi .

(5.27)
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We can also write the last formula as

⟨f |e−iH(tf−ti )/ℏ|i⟩ =
∫
[Dx(t)] Ψ∗f (xf )Ψi(xi) e

i
ℏS[tf ,ti ,x(τ)], (5.28)

where now the integration over initial and final points of the path is also

included in the measure.

The two wave functions Ψf (xf ) and Ψi(xi) are somewhat annoying al-

though they are needed if we are interested in the matrix element of the

time evolution operator. However, as we move to quantum field theory we

will be interested in a transition from the ground state of the theory to the

ground state of the theory that occurs over infinitely long time, i.e. |i⟩ → |0⟩,
|f ⟩ → |0⟩, ti → −∞ and tf → +∞, as well as the Green’s functions. As we
will now show, it is possible to omit the wave functions in Eeq. (5.28) in such

a case. Indeed, we can write

⟨xf |e−iH(tf−ti )/ℏ|xi⟩ = ⟨xf |e−iHtf e iHti/ℏ|xi⟩ = ⟨xf , tf |xi , ti⟩, (5.29)

where

|xi , ti⟩ = e iHti/ℏ|xi⟩, ⟨xf , tf | = ⟨xf |e−iHtf /ℏ. (5.30)

We insert full set of states of the Hamiltonian H

|xi , ti⟩ = e iHti/ℏ|xi⟩ =
∑
e iHti/ℏ|n⟩⟨n|xi⟩ =

∑
e iEnti/ℏΨ∗n(xi). (5.31)

We will assume that the energy of the ground state is zero and energies of

all other states are positive.

We now consider a special limit of this formula, i.e. we take ti → −T (1−
i ϵ), T →∞, and ϵ > 0 and small. We find

lim
T→∞

|xi , ti⟩ = Ψ∗0(xi)e−iHT (1−iϵ)/ℏ|0⟩, (5.32)

and with tf = T (1− i ϵ)

lim
T→∞
⟨xf , tf | = ⟨0|e−iHT (1−iϵ)/ℏΨ0(xf ). (5.33)

Then,

lim
T→∞
⟨xf |e−iH(tf−ti )/ℏ|xi⟩ = lim

T→∞
U(xf , xi , tf , ti)

= Ψ0(xf )Ψ
∗
0(xi)⟨0|e−iH(tf−ti )/ℏ|0⟩,

(5.34)
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where tf = T (1− i ϵ) and ti = −T (1− i ϵ).
The time evolution operator U(xf , xi , tf , ti) is computed through an inte-

gral over paths that start at x = xi and end at x = xf . Suppose we integrate

over xf , xi also considering limits as shown in the above equation. Then

N⟨0|0⟩ = lim
tf ,i→±T (1−iϵ)

∫
[Dx(t)] e

i
ℏS[tf ,ti ,x(τ)], (5.35)

where

N =

∣∣∣∣∫ dxΨ0(x)∣∣∣∣2 (5.36)

Absorbing the normalization factor N into the measure and omitting i ϵ, we

finally write

lim
tf ,i→±∞

⟨0|e−iH(tf−ti )/ℏ|0⟩ = lim
tf ,i→±∞

∫
[Dx(t)] e

i
ℏS[tf ,ti ,x(τ)]. (5.37)

Since vacuum states on the l.h.s. of this equation are eigenstates of the

Hamiltonian H, the above equation is not very interesting since it tells us

that the path integral on the r.h.s., with all normalizations included, should

evaluate to 1. However, this form is important since it allows us to study

Green’s functions.

To see this, let us generalize the previous discussion to the following matrix

element

⟨xf , tf |q(t1)|xi , ti⟩. (5.38)

Here q(t1) is the position operator in Heisenberg representation; it is given by

q(t1) = e
iHt1/ℏqe−iHt1/ℏ. (5.39)

We use this respresentation in Eq.(5.38), insert a completeness relation in

two strategic places and find

⟨xf , tf |q(t1)|xi , ti⟩ = ⟨xf |e−iH(tf−t1)/ℏqe−iH(t1−ti )/ℏ|xi⟩∫
dx1 x1⟨xf |e−iH(tf−t1)/ℏ|x1⟩⟨x1e−iH(t1−ti )/ℏ|xi⟩

(5.40)

It is easy to realize now that the product of two matrix elements of the time

evolution operators can be written as a path integral with additional factor in

the integrand i.e.

⟨xf , tf |q(t1)|xi , ti⟩ =
∫
[Dx(t)] x(t1) e iS/ℏ|x(tf )=xf ,x(ti )=xi . (5.41)
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To generalize this further, we can consider an integral∫
[Dx(t)] x(t1) x(t2) e iS/ℏ|x(tf )=xf ,x(ti )=xi . (5.42)

To write this in the form of a matrix element of time-dependent position

operators, we need to know what time is larger t1 or t2.
1 To keep all the

options open, we introduce the time-ordering operator T and write

Tq(t1)q(t2) = θ(t1 − t2) q(t1)q(t2) + θ(t2 − t1) q(t2)q(t1). (5.43)

Then, it is straightforward to see following the discussion of the matrix ele-

ment in Eq.(5.38) that

⟨xf , tf |Tq(t1)q(t2)|xi , ti⟩ =
∫
[Dx(t)] x(t1) x(t2) e iS/ℏ|x(tf )=xf ,x(ti )=xi .

(5.44)

It is now clear that we can generalize the above formula to the Green’s

function with arbitrary number of q-insertions. We find

⟨0|Tq(t1)....q(tn)|0⟩ =
∫
[Dx ] x(t1) x(t2)....x(tn) e iS/ℏ. (5.45)

There is another interesting way to write a representation for all such

Green’s functions. Consider the following functional

Z[j ] = ⟨0|0⟩j =
∫
[Dx ] e i(S+

∫
dτ j(τ)x(τ))/ℏ, (5.46)

defined for an arbitrary function j(t). Physically, it is introduced to study the

response of the system that we want to study to an external force j(t) in

the linear approximation. Apart from physics, Z[j ] provides us with a tool to

compute all the correlation functions. Indeed, taking the functional derivative

of Z[j ] w.r.t. j(t1), we obtain

ℏδZ[j ]
iδj(t1)

=

∫
[Dx ] x(t1) e i(S+

∫
dτj(τ)x(τ))/ℏ. (5.47)

Taking this derivative n times, we find

ℏnδnZ[j ]
iδj(t1)iδj(t2)...iδj(tn)

=

∫
[Dx ] x(t1) x(t2)....x(tn) e iS/ℏ

= ⟨0|Tq(t1)....q(tn)|0⟩.
(5.48)

Hence, Z[j ] is a generating functional for the Green’s functions of the theory.
1The order of operators is important since q(t1) and q(t2) do not commute in general.
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