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6 Path integral in field theory

In the previous lecture, we talked about path integral formulation of Quantum

Mechanics. We will now show how a small modification of that discussion will

give as a description of quantum field theory. We consider a chain of identical

masses connected to each other by identical springs. The Hamiltonian reads

H =

N∑
a=1

[
p2a
2m
+
k

2
(qa − qa−1)2

]
. (6.1)

We assume that the equilibrium distance between two neighbors is l and qa
describes a displacement of a particle a from its equilibrium position. We will

identify q0 with zero.

The computation of the time evolution operator has to be modified but

only slightly. Indeed, the position operator is now a vector q⃗ = (q1, ..., qN).

We are interested in a transition from an eigenstate of the operator q⃗, that

we denote as x⃗i , at t = ti to an eigenstate of the operator q⃗ that we denote

as x⃗f , at t = tf . Specifically,

q⃗|x⃗i ,f ⟩ = x⃗i ,f |x⃗i ,f ⟩. (6.2)

We then write the matrix element of the evolution operator as

U(x⃗f , x⃗i ; tf , ti) = ⟨x⃗f |e−iH(tf−ti )/ℏ|x⃗i⟩. (6.3)

To re-write the quantity U(x⃗f , x⃗i ; tf , ti) we proceed in exactly the same way

as in the previous lecture, i.e. we split the time interval into segments, insert

identity operators into strategic places and replace them with integrals over

coordinates using completeness relations

1 =

∫
dx⃗ |x⃗⟩⟨x⃗ |. (6.4)

It is then obvious that when all is said and done, we obtain

U(x⃗f , x⃗i ; tf , ti) = ⟨x⃗f |e−iH(tf−ti )/ℏ|x⃗i⟩ =
∫
[Dx⃗(t)]e iS/ℏ|x⃗(ti )=x⃗i ,x⃗(tf )=x⃗f . (6.5)

The action reads

S =

tf∫
ti

dτL(x⃗(τ), ˙⃗x(τ)) =

tf∫
ti

dτ

N∑
a=1

[
mẋ2a
2
−
k(xa − xa−1)2

2

]
. (6.6)
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We would like to take the limit N →∞, l → 0, keeping lN = L fixed. We
then write

xa(t) = ϕ(t, ξ), (6.7)

where ξ = al is the equilibrium position of a particle “a” along the chain. We

replace the sum with the integral

N∑
a=1

→
L∫
0

dξ

l
, (6.8)

and write

lim
l→0

N∑
a=1

[
mẋ2a
2
−
k(xa − xa−1)2

2

]

= lim
l→0

L∫
l

dξ

l

[
m

2

(
∂ϕ(t, ξ)

∂t

)2
−
k

2
(ϕ(t, ξ)− ϕ(t, ξ − l))2

]
.

(6.9)

The last term on the right hand side reads

lim
l→0
(ϕ(t, ξ)− ϕ(t, ξ − l))→ l

∂ϕ(t, ξ)

∂ξ
. (6.10)

We obtain

S =

tf∫
ti

dτ

L∫
0

dξ

[
m

2l

(
∂ϕ(t, ξ)

∂t

)2
−
kl

2

(
∂ϕ(t, ξ)

∂ξ

)2]
. (6.11)

We remove the prefactor in a term with time derivatives by redefining ϕ

ϕ→
√
l

m
ϕ (6.12)

and find

S =

tf∫
ti

dτ

L∫
0

dξ

[
1

2

(
∂ϕ(t, ξ)

∂t

)2
−
kl2

2m

(
∂ϕ(t, ξ)

∂ξ

)2]
. (6.13)
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The combination of parameters kl2/m has the dimension of velocity squared;

we denote it as kl2/m = c2. Taking in addition the L→∞ limit, we find

S =

tf∫
ti

dτ

∫
dξ

[
1

2

(
∂ϕ(t, ξ)

∂t

)2
−
c2

2

(
∂ϕ(t, ξ)

∂ξ

)2]
. (6.14)

We see that in the continuous limit, our system of oscillators is described by

the “field” ϕ(t, ξ); this field parameterizes a displacement of a particle at the

point ξ and at time t from its equilibrium position. The quantum transition

amplitude from a quantum state with the definite value of the filed ϕi at at

t = ti to a quantum field with the definite value of the field ϕ = ϕf at t = tf
is given by a path integral

⟨ϕf (ξ), tf |ϕi(ξ), ti⟩ = U(ϕf , ϕi ; tf , ti) =
∫
[Dϕ] e

iS
ℏ |ϕ(tfi )=ϕi ,f , (6.15)

where the integration goes over all fields with the following boundary condi-

tion ϕ(tf ,i , x) = ϕf ,i(x). Note that Eq.(6.15) implies that in our quantum

theory the field ϕ(ξ) is a quantum operator, just like a position operator

q⃗ = (q1, ...., qN) in N-body quantum mechanics used to be. Since we went

from the latter to the former by taking the N → ∞ limit, quantum field
theory is quantum mechanics with infinitely many degrees of freedom.

It is clear that the above discussion generalizes to a four-dimensional

Minkowski space. In particular, for a scalar field theory defined by the ac-

tion

S =

∫
d4x

(
1

2
∂µϕ∂

µ ϕ−
m2

2
ϕ2 + V (ϕ)

)
(6.16)

the vacuum-to-vacuum transition in the presence of a source J(x) is given

by1

⟨0|0⟩J =
∫
[Dϕ]e iS[ϕ]+i

∫
d4xJ(x)ϕ(x). (6.17)

The Green’s functions in that theory are then obtained by taking functional

derivatives w.r.t. the source J(x).

There are a few things that are worth discussing in connection with the

path integral. For example, let us compute the propagator in a Quantum Field

1From now on, we will again use relativistic units, so that ℏ = 1 and c = 1.
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Theory of a free scalar field. First, we take the J → 0 limit in Eq. (6.17).
Since ⟨0|0⟩ = 1, we find

1 =

∫
[Dϕe iS[ϕ]. (6.18)

To make sure this is ensured automatically, we rewrite Eq. (6.17) as follows

⟨0|0⟩J =
Z[j ]

Z[0]
, (6.19)

where

Z[j ] =

∫
[Dϕ] e iS[ϕ]+i

∫
d4xJ(x)ϕ(x). (6.20)

Next, consider the free theory, i.e. V (ϕ) = 0. To compute Z[j ], we can

do the following. First, we rewrite the action S by integrating by parts and

discarding contributions at infinity. We find

S[ϕ] +

∫
d4xJϕ =

∫
d4x

[
−
1

2
ϕ(□+m2)ϕ+ Jϕ

]
(6.21)

Let us change integration variables in the path integral, i.e. instead of inte-

grating over the field ϕ, we will integrate over the field ξ defined as

ϕ = ξ + (□+m2)−1J. (6.22)

Clearly, [Dϕ] = [Dξ] and

−
1

2
ϕ(□+m2)ϕ+ Jϕ = −

1

2
ξ(□+m2)ξ +

1

2
J(□+m2)−1J. (6.23)

Hence, we find

Z[j ] =

∫
[Dξ] e iS[ξ] e i

∫
1
2
J(□+m2)−1J = Z[0] e i

∫
1
2
J(□+m2)−1J. (6.24)

It follows that

⟨0|0⟩J = e i
∫
1
2
J(□+m2)−1J. (6.25)

We are now in position to compute the propagator of a scalar particle in a

free field theory. From the discussion about Quantum Mechanics, we know

that

⟨0|Tφ(x)φ(y)|0⟩ =
δ2

i2δJ(x)δJ(y)
⟨0|0⟩J

∣∣∣
J=0
. (6.26)
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A simple computation gives

⟨0|Tφ(x)φ(y)|0⟩ = G(x, y), (6.27)

where

G(x, y) = −i(□+m2)−1(x, y). (6.28)

The function G(x, y) satisfies the following equation

(□+m2)G(x, y) = −iδ(x − y). (6.29)

To find the function G(x, y) we use the momentum-space representation and

obtain the usual expression for the propagator

G(x, y) =

∫
d4p

(2π)4
i

p2 −m2 e
−ip(x−y). (6.30)

Note that in this set up the i0 prescription that we need to introduce to re-

cover the true Feynman propagator can be thought of as an addition of a small

imaginary part to the mass m2 → m2 − i0 and the sign of this term ensures
the convergence of the functional integral by damping the exponential.

Scalar fields are not the only fields that we need to construct realistic

theories of Nature; we also require vector bosons (spin-one particles) and

fermions (spin one half). A naive extension of the above formalism to vector

bosons is, in principle, straightforward; all we need to do is to integrate over

four fields Aµ, µ = 0, 1, 2, 3 at each point. If one looks at this problem more

carefully, one uncovers subtleties similar to what we saw when we discussed

quantization of QED last semester. However, for fermions, problems arise at

a much earlier stage because proper quantization of fermion fields requires us

to declare them to be anticommuting operators. Obviously if we write

⟨0|Tψ(x)ψ̄(y)|0⟩
∫
[Dψ̄][Dψ] ψ(x)ψ̄(y)e iSD , (6.31)

and assume that ψ and ψ̄ in the path integral are classical functions, this

anticommutativity property seems impossible to realize. To see how this can

be done we need to introduce the so-called Grassmann numbers.

Ordinary numbers or c-numbers commute. That is, if x and y are two

c-numbers, then

xy = yx. (6.32)
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Grassmann number anticommute. If θ1 and θ2 are two Grassmann numbers,

then

θ1θ2 = −θ2θ1. (6.33)

This assumption has many consequences which we will now explore. The first

one is that a square of any Grassmann number is zero

θ2 = 0. (6.34)

Grassmann numbers can be added or multiplied by a constant, so this is no

different in comparison with ordinary numbers.

The anticommutativity makes functions of Grassmann numbers almost

trivial. Indeed, any function of a Grassmann number f (θ), that can be Taylor-

expanded, reads

f (θ) = A+ Bθ. (6.35)

Any function of two Grassmann numbers, that I will denote as θ and θ̄ contains

just four terms

f (θ, θ̄) = A+ Bθ + Cθ̄ +Dθ̄θ. (6.36)

The reason we talk about Grassmann variables is that we would like to

use them to describe fermionic fields in the path integral. This means that

we need to understand how to perform analogs of definite integrals over

commuting variables. All the integrals over Grassmann variables that we

might be interested in follow from three rules

1. Linearity∫
dη (Af1(η) + Bf2(η)) = ±A

∫
dηf1(η)± B

∫
dηf2(η), (6.37)

where ± depends on whether A and B are Grassmann or c-variables.
Note that the integration measure dη behaves as a Grassmann variable

in the context of commuting or anti-commuting with other variables.

2. Translation invariance∫
dηf (η) =

∫
dη f (η + θ). (6.38)

6



3. Normalization ∫
dη dη̄ e η̄η = 1. (6.39)

We now show how to use these requirements to integrate any function

of Grassmann variables. We will start with one variable. Then, using transla-

tional invariance, we find∫
dη (A+ Bη) =

∫
dη (A+ Bη + Bξ) . (6.40)

Using linearity, we find

Bξ

∫
dη = 0. (6.41)

Since B and ξ are arbitrary, this implies that∫
dη = 0. (6.42)

From the normalization condition, we find

1 =

∫
dη dη̄ (1 + η̄η) =

∫
dηη

∫
dη̄η̄. (6.43)

We then choose ∫
dηη =

∫
dη̄η̄ = 1, (6.44)

and these rules are sufficient to integrate any function over Grassmann vari-

ables.

In particular, consider the following integral

In(A) =

∫
dη1, , , dηn dη̄1, , , dη̄ne

η̄iAi jηj , (6.45)

over 2n Grassmann variables η̄1,..,N and η1,,N. The matrix Ai j is assumed to be

Hermitian and can be diagonalized by a unitary transformation. This integral

equals to

In(A) = det[A]. (6.46)

To prove this result, we change the integration variables using the eigenvectors

of the matrix A. Writing

ηi =

n∑
k=1

ckv
(k)
i , (6.47)
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where {ck} are the new Grassman variables and v (k)i is the i-th component

of the eigenvector v (k) of the matrix A. These vectors satisfy the following

equations

Ai jv
(k)
j = λkv

(k)
i , k ∈ {1...N}. (6.48)

Then2

In(A) =

∫
dc1, , , dcn dc̄1, , , dc̄ne

N∑
k=1

λk c̄kck
. (6.49)

There is only one term in the expansion of the exponential function that does

not integrate to zero – namely, the one where each variable ck and each

variable c̄k appear exactly once. Then

In(A) =
∏

λk = detA. (6.50)

The last thing we need, in addition to the integration, are the rules for

taking derivatives with respect to Grassmann variables. The first rule is that

these derivatives anticommute, i.e.

∂2

∂θ∂ξ
= −

∂2

∂ξ∂η
. (6.51)

The second rule is that
∂

∂θi
θj = δi j . (6.52)

We will now use the Grassmann variables to illustrate the quantization of

the Dirac field. We write

Z[η̄, η] =

∫
[Dψ][Dψ̄]e iS[ψ̄,ψ]+i

∫
d4x(η̄ψ+ψ̄η), (6.53)

where ψ, ψ̄, η, η̄ are four-component Grassmann variables and

S =

∫
d4x ψ̄Aψ, (6.54)

where

A = iγµ∂
µ −m, (6.55)

2One has to prove that the measure is invariant under if the unitary transformation of

integration variables is performed.
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is the Dirac operator. The Green’s functions are computed by calculating η

and η̄ derivatives of

⟨0|0⟩η̄,η =
Z[η̄, η]

Z[0, 0]
. (6.56)

To write ⟨0|0⟩η̄,η in a useful form, we shift the integration variables as follows

ψ = ξ − A−1η, ψ̄ = ξ̄ − η̄A−1. (6.57)

Then,

S[ψ̄, ψ] +

∫
d4x(η̄ψ + ψ̄η) = S[ξ̄, ξ]−

∫
d4x η̄ A−1 η, (6.58)

and

⟨0|0⟩η̄,η = e−i
∫
d4x η̄ A−1 η. (6.59)

The Green’s functions of the free Dirac field are then obtained by taking

the derivatives w.r.t. η and η̄. The anti-commuting property of the field

operators is ensured because derivatives w.r.t. η and η̄ anticommute.
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