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7 Path integral and gauge invariance: the QED case

We have seen that integrating over all values of classical fields allows us to

compute Green’s functions in Quantum Field Theory. Consider now Quantum

Electrodynamics. We will not consider fermion fields since they are not needed

for this discussion. Hence, in order to compute Green’s functions in QED,

we will need to study a path integral of the form

Z[J] =

∫
DAµ e iS[A]+

∫
d4x JµAµ, (7.1)

where DAµ means that we have to integrate over four components of the
field Aµ at each space-time point and

S[A] =

∫
d4x L, (7.2)

with

L = −
1

4
F µνFµν. (7.3)

The quantity N is the normalization factor. It plays no role in the computation

of Green’s functions. The current Jµ is supposed to be convserved.

The path integral is clearly not the most mathematically transparent quan-

tity in general but it is easy to see that Z[J], as defined above, is especially

problematic. The reason it is problematic is related to gauge invariance. In-

deed, thanks to gauge invariance, for each value of the field Aµ(x), there are

infinitely many fields related to Aµ by gauge transformations which do not

change the action S[A]. Z[J] is (very!) infinite and no further computations

are possible.

To make Z somewhat more sensible, one can argue that the integration

in Eq. (7.1) should only include fields that are unrelated by gauge transfor-

mations. Hence, as the first step, we would like to rewrite the path integral

in such a way that integration over fields that are not related by gauge trans-

formations and fields that are gauge-equivalent are separated.

To see how this can be done, suppose that we choose the generalized

Lorentz gauge, i.e. we write

∂µA
µ(x) = f (x), (7.4)
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where f (x) is an arbitrary function. For each point x , we can write

Aµ = Aµ⊥ + ∂
−2 ∂µf (x) (7.5)

where

Aµ⊥ = (g
µν − ∂−2∂µ∂ν)Aν. (7.6)

The field Aµ⊥ has three independent components to integrate over and the

longitudinal component of the field Aµ is completely determined by the gauge-

fixing condition and does not need to be integrated over. Hence, what we

would like to do is to restrict the integration measure in the path integral to

A⊥,µ, effectively.

We will now describe a smart and very general way to do that which is

also generalizable to non-abelian gauge theories. We will consider a general

gauge condition

G[A] = 0. (7.7)

The quantity G can be a function of Aµ and also include differential operators.

Now, for each Aµ that satisfies the above equation, we consider other fields

related to it by a gauge transformation,

Aχµ = Aµ + ∂µχ. (7.8)

We then write unity in a complicated way, by integrating over all possible

functions χ

1 =

∫
Dχ δ(G[Aχ]) det

(
dG[Aχ]

dχ

)
. (7.9)

To understand this formula, consider the following n-dimensional integral

I =

∫
dna⃗ δ(n)(g⃗(a⃗)). (7.10)

Suppose that g⃗(a⃗0) = 0. Then, to compute I, we write a⃗ = a⃗0+ ξ⃗ and obtain

I =

∫
dnξ⃗ δ(n)

(
Âξ⃗

)
, (7.11)

where Âi j = ∂gi/∂aj , computed at the point a⃗ = a⃗0. Next, we write

δ(n)
(
Âξ⃗

)
=

∫
dn r⃗

(2π)n
e i r⃗ Âξ⃗, (7.12)
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and find

I =

∫
dnξ⃗ dn r⃗

(2π)n
e i r⃗ Â ξ⃗. (7.13)

To finalize this integration, we assume that the matrix A⃗ has an orthonormal

set of n eigenvectors, that we use to define a reference frame for both vectors

ξ⃗ and r⃗ . We then find

I =
∏
λ−1m =

1

det[Â]
. (7.14)

Hence, if we want the integral to be equal to one, we have to write

1 =

∫
dna⃗ δ(n)(g⃗(a⃗)) det

[
∂gi
∂aj

]
. (7.15)

Eq. (7.9) is a generalization of the above equation to the case of an infinitely-

dimensional vector space.

We now insert Eq. (7.9) into the functional integral in Eq. (7.1). We find

Z =

∫
DAµ Dχ δ(G[Aχ]) det

(
dG[Aχ]

dχ

)
e iS[A]. (7.16)

Next, we note that

Aχµ = Aµ + ∂µχ. (7.17)

Hence, we can replace the integration over Aµ with the integration over A
χ
µ (

DAµ = DAχµ). Furthermore, since S is gauge-invariant, the following equation
holds S[Aχµ] = S[Aµ]. Combing all these equations, we find

Z =

∫
Dχ

∫
DAχµ δ(G[Aχ]) det

(
dG[Aχ]

dχ

)
e iS[A

χ], (7.18)

which shows that integration over all possible functions χ is separated from

the integration over fields Aµ none of which are gauge-equaivalent.

Next, to be specific, we go back to fixing the gauge by using the Lorentz

gauge condition

G[A] = ∂µA
µ − f (x). (7.19)

Then,

G[Aχ] = ∂µA
µ + ∂2χ− f (x), (7.20)
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so that

det

(
dG[Aχ]

dχ

)
= det

(
∂2
)
. (7.21)

Since ∂2 is independent of Aµ, we can take it outside the integration over A
χ.

Then, renaming Aχ → A, we obtain

Z =

∫
Dχ det

(
∂2
) ∫
DAµ δ(∂µAµ − f (x)) e iS[A]. (7.22)

The integration over χ and det(∂2) can be included into a normalization

factor N . The remaining integral is independent of the function f (x) (by
construction, the path integral is independent of the gauge choice) and the

δ-function selects fields that cannot be related to each other by the gauge

transformation.

There is an additional useful trick that we can use. Consider “reduced”

functional integral

Z =

∫
DAµ δ(∂µAµ − f (x))e iS[A]. (7.23)

Since this integral is independent of f (x), we can integrate over all possible

functions f with an arbitrary weight

Z =

∫
Df e−i

∫
d4x

f (x)2

2ξ

∫
DAµ δ(∂µAµ − f (x)) e iS[A]. (7.24)

We can now interchange the order of integration and remove the function

f (x) completely, since f = ∂µA
µ. Hence, our final result for Z reads

Z =

∫
DAµ e iSQED[A], (7.25)

where

SQED[A] =

∫
d4x

[
−
1

4
Fµν F

µν −
(∂µA

µ)2

2ξ

]
. (7.26)

We see that the net effect of these complicated manipulations is the

appearance of the ξ-dependent term in the action. Let us discuss the signifi-

cance of this term. To this end, we extend the above computation to write

the vacuum-to-vacuum transition in the presence of the source

⟨0|0⟩J =
Z[J]

Z[0]
, (7.27)
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where

Z[J] =

∫
DAµ e iSQED[A]+i

∫
d4xJµAµ. (7.28)

We are interested in finding the propagator for the field Aµ. To this end,

we rewrite the action by integrating by parts and find

SQED[A] =

∫
d4x
1

2
Aµ Tµν A

ν (7.29)

where

Tµν =
(
∂2gµν − ∂µ∂ν

)
+
1

ξ
∂µ∂ν. (7.30)

Similar to scalar and fermion cases, we change the integration variable Aµ →
Bµ where

Aµ = Bµ − (T−1)µνJν, (7.31)

and find

⟨0|0⟩J = e−
i
2

∫
d4x1d

4x2 J
µ(x1)T

−1
µν J

ν(x2). (7.32)

The photon propagator is then

⟨0|TAµ(x1)Aν(x2)|0⟩ =
δ2⟨0|0⟩J

i2δJµ(x1)δJν(x2)
|J=0 = iT−1µν (x1, x2). (7.33)

To find the inverse of the operator T µν, we switch to the momentum

space and write

iT−1µν (x1, x2) =

∫
d4k

(2π)4
Dµν(k)e

−ikα(xα1 −xα2 ). (7.34)

Then

T µν(k) Dνρ(k) = ig
µ
ρ , (7.35)

where

Tµν(k) = −k2gµν +
(
1−
1

ξ

)
kµkν. (7.36)

It is easy to see why we need a gauge-fixing term in the QED action to

find a photon propagator. Indeed, the original QED action corresponds to

the ξ→∞ limit of Eqs. (7.35,7.36). However, in that case Tµν(k) posseses
an eignevector (kµ) with zero eignevalue. As the result T µν(k) cannot be
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inverted and the photon propagator cannot be computed. The presence of

the gauge-fixing term solves this problem. After some algebra, we find

Dµν =
−i
k2 + i0

(
gµν − (1− ξ)

kµkν

k2

)
. (7.37)

The Feynman gauge propagator corresonds to the choice ξ = 1 but there are

many other choices that are legitimate.
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