
TTP2
Lecture 8

Kirill Melnikov

TTP KIT

November 29, 2023



8 Quantiazation of QCD

We will now discuss quantization of a non-abelian gauge theory, that we will

refer to as QCD although our discussion will be sufficiently general.1 The

starting point is again the expression for the path integral2

Z =

∫
DA(a)µ e iS[A]. (8.1)

The action S is given by

L = −
1

2
Tr

[
F̂ µνF̂µν

]
, (8.2)

where

F̂µν = ∂µÂν − ∂νÂµ − igs [Âµ, Âν]. (8.3)

We do not write the source J explicitly; we will easily add it when it becomes

necessary.

Similar to the discussion in the previous lecture, the path integral Z is badly

divergent because we integrate over all possible QCD fields including those

that are connected to each other by gauge transformations and, therefore,

have identical action S. Following what we did for the QED case, we would

like to separate the integration over gauge-equivalent fields and remove them

from path integral. The formula for the “integral representation on unity”

holds and we find

Z =

∫
DA(a)µ Dχ(a) δ(G(a)[Aχ]) det

[
dGa[Aχ]

dχb

]
e iS[A]. (8.4)

We will consider the Lorentz gauge again

Ga[A] = ∂µAaµ − f a(x). (8.5)

We then take the gauge field Aaµ that satisfies the gauge condition G[A] =

0. To compute dG[Aχ]/dχ at χ = 0, we require an infinitesimal gauge

transformation of the field Aaµ. It reads

Âχµ = Âµ + i [χ̂, Âµ] +
1

gs
∂µχ̂. (8.6)

1Quantum Chromodynamics or QCD for short is a theory that describes strong interac-

tions; it is a non-abelian gauge theory with the gauge group SU(3).
2Note that we integrate over all gauge, i.e. four components of the Lorentz vector Aµ

and N2 − 1 independent Lie algebra directions, A(a).
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Then,

Ga[Aχ] = ∂µAaµ − f a(x) +
1

gs
∂µ

(
∂µχ

a − gs f abcχbAcµ
)
. (8.7)

Hence,3

gs
d Ga[Aχ]

dχb
= ∂µ

(
∂µδ

ab − gsf abcAcµ
)
= ∂µDab

µ . (8.8)

We find that in variance with the Abelian case, the determinant of dG/dχ

does depend on the gauge field and, therefore, cannot be taken outside of

the integral over Aµ. In fact, using the rules of integration over Grassmann

variables, we can write

det
[
∂µDab

µ

]
∼

∫
Dη(x) Dη̄(x) e iSghost[η̄,η,Aµ], (8.9)

where η̄a and ηa are scalar Grassmann (anti-commuting) fields in the adjoint

representation of the gauge group that we refer to as “ghost fields” and

Sghost =

∫
d4x η̄a(x) ∂µDab

µ ηb(x). (8.10)

A peculiar feature of Eq. (8.9) is that once these ghost fields become part

of the description of a non-abelian quantum field theory, they will describe

quantum fields whose excitations are scalar particles in the adjoint represen-

tation of the non-Abelian gauge group, that satisfy Fermi statistics.

Although this sounds mysterious (since we always say that scalar particles

are boson), their role in the construction of a non-abelian quantum field the-

ory is clear. According to Eq. (8.9), ghost fields provide a convenient way

to compute a complicated determinant that appeared when we restricted an

integral over fields Aaµ to an integral over gauge-unequivalent field configura-

tions.

The representation of the determinant as an integral over ghost fields

is very useful for constructing perturbative description of non-abelian gauge

theories since contributions of ghosts can be easily incorporated into Feynman

diagrams and Green’s functions.

Apart from the appearance of these peculiar ghost particles, the rest of

the calculation follows the same path as the QED calculation. We introduce

an integral over functions f a(x) to get a gauge-fixing term into a Lagrangian.

3Eq. (8.8) should contain a delta-function since dχ(x)/dχ(y) = δ(x − y). Since this δ
function appears in all terms, I don’t display it.
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Finally, to write the final expression for the path integral of QCD, we also

add fermion fields in the fundamental representation of the gauge group to

the theory. We find

Z =

∫
DAµ D ηDη̄ D ψDψ̄e iSQCD[A,η̄,η,ψ̄,ψ], (8.11)

where

SNA =

∫
d4x

[
−
1

2
Tr [FµνF

µν]−
1

ξ
Tr

[
(∂µÂ

µ)(∂νÂ
ν)
]

+ η̄a∂µ(δab∂µ − gsf abcAcµ)ηb + ψ̄ (iγµDµ −m)ψ

]
,

(8.12)

and Dµ = ∂µ − igsT aAa,µ.
Although the above result is valid for a general gauge theory, we will be

primarily interested in QCD. Gauge bosons of QCD are called gluons and

fermions in the fundamental representation of SU(3) are called quarks. QCD

Feynman rules follow from the above action in a straightforward way. They

read4

• the gluon propagator:

a

µ

b

νp
=
−iδab

p2 + i0

(
gµν − (1− ξ)

pµpν

p2

)
.

• the quark propagator:

p
=

i

p̂ −m + i0 .

• the gluon-quark vertex:

a, µ
= igsγ

µT a

4As usual, four-momentum conserving delta-functions are omitted in all vertices. Fur-

thermore, in “real” QCD there is more than one quark field. Quarks have different masses,

but their interactions with gluons are identical. Different quarks interact with each other by

exchanging gluons.
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• the three-gluon vertex:

p1

p2
p3

a, µ

b, ν

c, ρ

=

gsf
abc

[
gµν(p1 − p2)ρ

+ gνρ(p2 − p3)µ

+ gρµ(p3 − p1)ν
]

• the four-gluon vertex:

a, µ b, ν

c, ρ d, σ

=

−ig2s
[
f abef cde(gµρgνσ − gµσgνρ)
+ f acef bde(gµνgρσ − gµσgνρ)
+ f adef bce(gµνgρσ − gµρgνσ)

]
• the ghost propagator:

a b

p
=

iδab

p2 + i0

• the gluon-ghost vertex:

p a, µ

b

c

= gsf
abcpµ
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