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9 Spinor-helicity methods and simple computations in QCD

We have seen that a non-abelian theory can be quantized and Feynman rules

can be formulated. In its simplest form, this theory contains massless force

carriers – the gluons – and quarks which we will also consider to be massles.

In principle, computations of amplitudes and cross sections in such a theory

can be performed using standard rules of particle physics. In practice, such

calculations become complex and rapidly lead to unwieldy expressions. Meth-

ods exist to keep such computations manageable and we will discuss them in

the next lectures.

Consider a theory of a single massless Dirac fermion ψ. The Lagrangian

is

L = ψ̄
(
i ∂̂
)
ψ. (9.1)

The Dirac equation is

i ∂̂ψ = 0, (9.2)

which, in momentum space becomes

p̂U(p) = 0, p̂V (p) = 0, (9.3)

depending on whether we take positive-energy(particle) or negative-energy

(anti-particle) solutions. We see that in the massless case there is no dif-

ference in equations for particles and anti-particles. Finding one solution is

therefore sufficient.

The algebra is simplified if we take γ matrices in the Weyl repreentation

where

γµ =

[
0 σµ

σ̄µ 0

]
. (9.4)

and σµ = (1, σ⃗) and σ̄µ = (1,−σ⃗). The Pauli matrices are

σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0

0 −1

]
. (9.5)

The matrix γ5 is taken to be

γ5 =

[
−1 0
0 1

]
. (9.6)
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We can use the matrix γ5 to construct projection operators on to upper and

lower parts of the four-component spinors U and V . The projection operators

are

P̂L =
1− γ5
2

, P̂R =
1 + γ5
2

. (9.7)

Let us write

U(p) =

(
uL(p)

uR(p)

)
, (9.8)

where uL(p) and uR(p) are two-component spinors. Since

p̂ =

[
0 pµσ

µ

pµσ̄
µ 0

]
, (9.9)

and p̂U(p) = 0, the two-component spinors satisfy the following (Weyl) equa-

tions

pµσ
µuR(p) = 0, pµσ̄

µuL(p) = 0. (9.10)

Suppose that we have a left-handed spinor uL(p) that satisfies the Weyl

equation. We can use it to construct a spinor that satisfies the Weyl equation

for the right-handed spinor. Indeed, let us take

ũR(p) = iσ2uL(p)
∗. (9.11)

Then,

0 = iσ2 [pµσ̄
µuL(p)]

∗ = iσ2pµσ̄
µ∗u∗L(p)

= ipµσ2σ̄
µ(−1)δµ2uL(p)∗ = pµσµiσ2uL(p)∗ = pµσµũR(p),

(9.12)

and we conclude that ũR(p) is a right-handed spinor.

To get some physics insight into what left- and right-handiness means, we

write Weyl equations in component form

uR(p) =
σ⃗p⃗

p0
uR(p), uL(p) = −

σ⃗p⃗

p0
uL(p). (9.13)

For a massless particle, |p0| = |p⃗|. Hence, for positive p0, uR(p) describes an
incoming particle with spin along the direction of its momentum and uL(p)

describes an incoming particle with spin in the direction that is opposite to its

momentum. Incoming particles can also be viewed as outgoing anti-particles.

We choose uL(p) to describe outgoing right-handed anti-particles and uR(p)
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to describe lef-handed outgoing anti-particles. Outgoing particles are de-

scribed by Dirac-conjugate spinors, as usual.

We now construct the four-component spinors from the two-component

ones

UL(p) = Np

(
uL(p)

0

)
, UR(p) = Np

(
0

uR(p)

)
, (9.14)

where Np is the normalization constant that we will determine later. We now

introduce the following notations for the four-component spinors

UL(p) = p ], UR(p) = p ⟩,
UL(p) = ⟨ p, UR(p) = [ p.

(9.15)

Very often, for simplicity of notation, we will replace the momentum label in

the spinor by its label , e.g. pi ]→ i ], etc. The conjugate spinors are obtained

in the standard way. We find

UL(p) = Np
(
0, uL(p)

†) , UR(p) = Np
(
−uR(p)†, 0

)
. (9.16)

It is now easy to derive first results for the spinor products.

UL(p)UL(q) = ⟨ p q ] = 0, UR(p)UR(q) = [ p q ⟩ = 0, (9.17)

However, ⟨pq⟩ and [pq] spinor products do not need to vanish and we compute
them in the next step. For this, we will need explicit expressions for left- and

right-handed spinors.

Let us choose the left-handed spinor to be

UL(p) = Np

(
uL(p)

0

)
, uL(p) =

(
a

b

)
,

p⃗σ⃗

p0

(
a

b

)
= −

(
a

b

)
.

(9.18)

where a, b are two complex numbers. We assume that they are normalized in

the standard way

u+L (p)uL(p) = 1 → |a|2 + |b|2 = 1. (9.19)

To construct the right-handed spinor, we write

UR(p) = Np

(
0

iσ2uL(p)
∗

)
, (9.20)
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and since

iσ2 =

(
0 1

−1 0

)
we find iσ2uL(p)

∗ =

(
b∗

−a∗
)
. (9.21)

We now have all the spinors fixed and can compute the spinor products. We

will need Dirac-conjugate spinors as well. They are

UL(p) = Np (0, 0, a
∗, b∗) , UR(p) = Np (b,−a, 0, 0) , (9.22)

We now compute the normalization condition using the completeness re-

lation∑
λ∈(L,R)

Uλ(p)⊗ Uλ(p) = N2p
[(

uL(p)

0

)
⊗
(
0, u+L (p)

)
+

(
0

uR(p)

)
⊗
(
u+R (p), 0

)]

= N2p

[
0 uL ⊗ u+L (p)

uR ⊗ u+R (p) 0

]
.

(9.23)

To proceed further, we need the density matrix of the two-component spinors

uL and uR. Since these spinors describe normalized quantum mechanical

states with ± spin projections on the axis n⃗ = p⃗/p0, it follows that uL(p) ⊗
u+L (p) and uR(p) ⊗ u

+
R (p) are projection operators whose explicit expression

is known from (spin one-half) Quantum Mechanis

uL(p)⊗ u+L (p) =
1− n⃗σ⃗
2

=
p0 − p⃗σ⃗
2p0

=
pµσ

µ

2p0
,

uR(p)⊗ u+R (p) =
1 + n⃗σ⃗

2
. =

p0 + p⃗σ⃗

2p0
=
pµσ̄

µ

2p0
.

(9.24)

Hence, we find∑
λ∈(L,R)

Uλ(p)⊗ Uλ(p) =
N2p
2p0

[
0 pµσ

µ

pµσ̄
µ 0

]
=
N2p
2p0

pµγ
µ. (9.25)

Since the density matrix for a massless Dirac fermion with momentum p

should be equal to p̂, we conclude that the normalization constant should be

choosen as Np =
√
2p0.
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To construct spinors explicitly, we need to solve the equation

n⃗σ⃗

(
a

b

)
= −

(
a

b

)
, n⃗ =

p⃗

|p⃗| . (9.26)

which is equivalent to finding the wave function of the spin 1/2 state polarized

along−n⃗ axis. The solutions of this problem are given in any book on quantum
mechanics and we just borrow them from there. So, writing the vector n⃗ as

n⃗ = (sin θ cosφ, sin θ sinφ, cos θ) (9.27)

we find

uL(p) =

(
a

b

)
=

(
− sin θ

2
e−iφ/2

cos θ
2
e iφ/2

)
. (9.28)

This solution is, of course, not unique since the phase of uL(p) is arbitrary.

But, once we choose uL(p) and with the rules for constructing uR(p) from

the complex-conjugate uL, all phases for spinor products are determined.

We are now in position to compute spinor products and discuss some

relations between them. We will start with

⟨pq⟩ = UL(p)UR(q) = NpNq
(
0, u+L (p)

)( 0

uR(q)

)
= NpNqu

+
L (p)uR(q)

= NpNq(u
T
L (p))

∗uR(q) = NpNq(u
T
R(q)u

∗
L(p))

= NpNq(u
+
R (q)uL(p))

∗ =
[
UR(q)UL(p)

]∗
= [qp]∗.

(9.29)

Next, let us consider ⟨pq⟩[qp]. It reads

⟨pq⟩[qp] = UL(p)UR(q)UR(q)UL(p) = Tr
[
UL(p)⊗ UL(p)UR(q)⊗ UR(p)

]
.

(9.30)

The two matrices that appear in that formula are

UL(p)⊗ UL(p) =
[
0 pµσ

µ

0 0

]
, UR(q)⊗ UR(Q) =

[
0 0

qµσ̄
µ 0

]
. (9.31)

As the result

Tr
[
UL(p)⊗ UL(p)UR(q)⊗ UR(p)

]
= 2pµq

µ, (9.32)
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where we have used

Tr [σµσ̄ν] = 2gµν. (9.33)

Therefore, we find

⟨pq⟩[qp] = 2pq. (9.34)

Since [qp] = ⟨pq⟩∗, we find

|⟨pq⟩|2 = |[qp]|2 = 2pq or ⟨pq⟩ =
√
|2pq|e iφpq , [qp] =

√
|2pq|e−iφpq .

(9.35)

This formula is usually refered to as the statement that spinor products are

square roots of the corresponding four-momenta scalar products.

Next property of spinor products that we want to discuss is the anti-

symmetry. To see it, consider

⟨pq⟩ = UL(p)UR(q) = NpNq
(
0, uL(p)

+
)( 0

uR(q)

)
= NPNq

(
0, 0, a∗p, b

∗
p

)
0

0

b∗q
−a∗q


= NpNq

(
a∗pb

∗
q − b∗pa∗q

)
= (−1)NpNq

(
a∗qb

∗
p − b∗qa∗p

)
= −⟨qp⟩.

(9.36)

Therefore, we conclude that spinor products satisfy the following equations

⟨pq⟩ = −⟨qp⟩, [pq] = −[qp], (9.37)

where the latter relation can be proved in a similar manner.

In practical computations, we often need to compute matrix elements of

(products) of Dirac matrices between different spinors. For those cases there

are a few identities that can be used. For example, there is a relation

UR(p)γ
µUR(q) = UL(q)γ

µUL(p) (9.38)

that we will now prove. Using explicit representation for left- and right-handed

spinors, we obtain

UL(q)γ
µUL(p) = NpNquL(q)

+σ̄µuL(p),

UR(p)γ
µUR(q) = NpNquR(p)

+σµuR(q).
(9.39)
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We will now use a relation between two-component left- and right-handed

spinors uR(q) = iσ2u
∗
L(q), to rewrite UR(p)γ

µUR(q) as

UR(p)γ
µUR(q) = NpNquR(p)

+σµuR(q) = NPNqu
T
L (p) σ2σ

µσ2 u
∗
L(q).

(9.40)

Since

σ2σ
µσ2 =


σµ µ = 0

−σµ µ = 1, 3

σµ µ = 2

, (σµ)T = (−1)δµ2σµ, (9.41)

we can write

σ2σ
µσ2 = (σ̄

µ)T . (9.42)

Then,

NPNqu
T
L (p) σ2σ

µσ2 u
∗
L(q) = NpNqu

T
L (p) (σ̄

µ)Tu∗L(q) = NpNquL(q)
+σ̄µu(p).

(9.43)

We conclude

[pγµq⟩ = ⟨qγµp]. (9.44)

Further relations between different spinor products are obtained using

Fiertz identities for σµ matrices. We start by writing

σµab (σµ)cd = σ
0
abσ

0
cd − σ⃗abσ⃗cd = δabδcd − σ⃗abσ⃗cd . (9.45)

To simplify the second term, we write

σ⃗abσ⃗cd = Aδadδcb − Bδabδcd . (9.46)

Using the fact that δabσ
i
ab = 0 and that σ⃗abσ⃗bc = 3δac , we find two equations

for A and B

0 = A− 2B, 3 = 2A− B,⇒ B = 1, A = 2. (9.47)

For the σ-matrices, the result reads

(σµ)ab (σµ)cd = (σ̄
µ)ab (σ̄µ)cd = 2 (δabδcd − δadδbc)

= 2ϵaceϵbde = 2(iσ2)ac(iσ2)bd .
(9.48)

The significance of this equation is that the order of spinor indices, as they

appear on the left- and the right-hand sides is different and this can be used

for simplifications of spinor products. Indeed, consider
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⟨pγµq]⟨kγµl ] = UL(p)γµUL(q)UL(k)γµUL(l)
= NpNqu

+
L (p)σ̄

µuL(q) NkNlu
+
L (k)σ̄µuL(l)

= NpNqNkNl [uL(p)]
∗
a (σ̄µ)ab [uL(q)]b[uL(k)]

∗
c (σ̄µ)cd [uL(l)]d

= 2NpNqNkNl [uL(p)]
∗
aiσ

2
ac [uL(k)]

∗
c [uL(q)]biσ

2
bd [uL(l)]d

(9.49)

To simplify this expression, we use the relation between left- and right-handed

spinors

iσ2u
∗
L = uR, (9.50)

to write

NpNk [uL(p)]
∗
aiσ

2
ac [uL(k)]

∗
c = NpNk [uL(p)]

∗
a[uR(k)]a = NpNkuL(p)

+uR(k) = ⟨pk⟩,
NqNl [uL(q)]biσ

2
bd [uL(l)]d = −u+R (q)uL(l) = [lq].

(9.51)

Hence, we find an identity

⟨pγµq]⟨kγµl ] = 2⟨pk⟩[lq]. (9.52)

Similarly

[kγµl⟩⟨pγµq] = 2[kq]⟨pl⟩. (9.53)

Finally, spinor products obey Schouten identities of the following form

⟨i j⟩⟨kl⟩+ ⟨ik⟩⟨l j⟩+ ⟨i l⟩⟨jk⟩ = 0,
[i j ][kl ] + [ik ][l j ] + [i l ][jk ] = 0.

(9.54)

To prove the Schouten identities note that, due to the antisymmetry of

a spinor product ⟨i j⟩ = −⟨j i⟩, the left hand sides of the above equations are
antisymmetric w.r.t. j, k and l . However, a fully anti-symmetric combination

of three two-components object ( well, effectively two-component) is zero.

Indeed, suppose we write a right-handed spinor (so effectively two component

object) as

φ⟩ = j⟩⟨kl⟩+ k⟩⟨l j⟩+ l⟩⟨jk⟩. (9.55)

This spinor can be decomposed as

φ⟩ = aξξ⟩+ aηη⟩, (9.56)
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where ξ and η are two basis spinors. It is easy to see that ⟨jφ⟩ = ⟨kφ⟩ =
⟨lφ⟩ = 0 ( this follows from ⟨j j⟩ = 0 and the antisymmetry of spinor products).
These equations imply

aξ⟨jξ⟩+ aη⟨jη⟩ = 0, (9.57)

and similar equations for other spinors. The solution aξ = aη = 0 which

implies that φ⟩ = 0. The Schouten identities then follows.
Another useful equation is a relative of the Gordon identity, but for mass-

less spinors

⟨pγµp] = UL(p)
(
0 σµ

σ̄µ 0

)
UL(p) = Tr

[
UL(p)⊗ ŪL(p)

(
0 σµ

σ̄µ 0

)]
= Tr

[(
0 pνσ

ν

0 0

)(
0 σµ

σ̄µ 0

)]
= pνTr (σ

νσ̄µ) = 2pµ.

(9.58)

There is a relation between matrix elements of products of γ-matrices that

allows us to reverse the order of elements of the matrix prodcuts. Indeed,

⟨p|γµ1 ....γµ2N+1 |q] = ŪL(p)γ
µ
1 ....γ

µ2Nn1UL(q)

= NPNq
(
0, u+L (p)

)( 0 σµ1....σµ2n+1

σ̄µ1....σ̄µ2n+1 0

)(
uL(q)

0

)
= NpNqu

+
L (p)σ̄

µ1....σ̄µ2n+1uL(q) = NpNqu
T
L (q)σ̄

µ2n+1,T ...σ̄µ1,Tu∗L(p)

= NpNq u
T
L (q)σ2σ

µ2n+1...σµ1σ2u
∗
L(p) = NpNquR(q)

+σµ2n+1...σµ1uR(p),

(9.59)

where we used σ2σ̄
µσ2 = (σ

µ)T . Hence, we obtain

⟨p|γµ1 ....γµ2n+1|q] = [q|γµ2n+1....γµ1 |p⟩. (9.60)

Similarly

[p|γµ1 ....γµ2n+1q⟩ = ⟨q|γµ2n+1....γµ1p]. (9.61)

A relation for even number of γ matrices reads

[p|γµ1....γµ2n |q] = −[q|γµ2n ...γµ1p],
⟨p|γµ1....γµ2n |q⟩ = −⟨q|γµ2n ...γµ1p⟩.

(9.62)

Finally, consider ⟨pγµq]γµ. This is a matrix, such that it depends on the
spinors constructed out of p and q momenta and that has the property that
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it must contain i⟩[j and i ]⟨j , where i = p, q and j = p, q since γµ is helicity
conserving. Hence, we can write

⟨pγµq]γµ = A1|q]⟨p|+ A2|p⟩[q|+ A3|p]⟨q|+ A4|q⟩[p|. (9.63)

The coefficients A1..4 can be constrained by considering matrix elements of

the right-hand side and the left hand side with various spinors. Taking the

matrix element with respect to ⟨p and q], we find A4 = 0. Taking the matrix
element with respect to [q and p⟩, we find A3 = 0. Hence,

⟨pγµq]γµ = A1|q]⟨p|+ A2|p⟩[q|. (9.64)

To find A1 and A2, we consider matrix elements with repspect ⟨k and |l ],
where k and l are independent momenta. We find

A2⟨kp⟩[ql ] = ⟨pγµq]⟨kγµl ] = 2⟨pk⟩[lq], (9.65)

which means that A2 = 1. We find A1 in a similar way. We obtain

⟨pγµq]γµ = 2 (|q]⟨p|+ |p⟩[q|) . (9.66)

This concludes our discussion of the spinor algebra.

We can make use of the spinors that we discussed above to compute

scattering amplitudes with massless quarks and anti-quarks. However, we

also need a convenient way to deal with massless bosons – the gluons –

in scattering amplitudes. It turns out that it is possible to write the gluon

polarization vector as a matrix element of a Dirac matrix taken between two

spinors. This representation of the polarization vector will allow us to simplify

calculations of the scattering amplitudes considerably.

To construct it, we note that the polarization vector ϵ of a massless par-

ticle with momentum k is a four-vector that satisfies the following conditions

0 = ϵµk
µ, ϵµr

µ = 0, ϵµϵ
µ,∗ = −1. (9.67)

The first condition is “transversality”, the second condition is the gauge

choice ( r 2 = 0, rµA
µ = 0 and the last condition is the normalization. The

sum over two physical polarizations reads∑
λ∈(1,2)

ϵµλϵ
∗ν
λ = −gµν +

kµr ν + kνrµ

k · r . (9.68)

10



Given the two massless vectors k and r , it is easy to construct a four-

vector that satisfies the transversality and the gauge choice conditions. In

fact, there are two such vectors; they read

ηµ1 = [rγ
µk⟩, ηµ2 = ⟨rγµk ]. (9.69)

It is obvious that, thanks to the Dirac equation for massless spinors, the

transversality and the gauge conditions are fullfilled. To claim that the two

η vectors can be choosen as polarization vectors for massless gauge bosons,

we will have to normalize them, check their orthogonality and make sure that

the sum over polarizations works out correctly.

To do this, we need to find complex conjugate vectors. To this end,

consider

η∗µ1 = ([rγ
µk⟩)∗ =

(
UR(p)γ

µUR(k)
)∗
=

(
u+R (r)σ

µuR(k)NrNk
)∗

= uTR(r)σ
µ∗u∗R(k)NrNk = uL(r)

T∗iσT2 σ
∗µ(−i)σ∗2uL(k)NrNk

(9.70)

Using σ∗2 = −σ2, σT2 = −σ2 and σ2σµ∗σ2 = σ̄µ, we find

uL(r)
T∗iσT2 σ

∗µ(−i)σ∗2uL(k)NrNk = NrNkuL(r)+σ̄µuL(k) = ⟨rγµk ], (9.71)

which means

η∗µ1 = η
µ
2 and ηµ∗2 = η

µ
1 . (9.72)

Therefore,

η∗1 · η2 = η2 · η2 = ⟨rγµk ]⟨rγµk ] ∼ ⟨r r⟩[kk ] = 0, (9.73)

which implies that the two η vectors are indeed orthogonal.

To normalize the η-vectors, we need to compute

η1 · η∗1 = η1 · η2 = [rγµk⟩⟨rγµk ] = ⟨r ( [rγµk⟩γµ ) |k ]

= 2⟨r ( |r ]⟨k |+ |k⟩[r | ) |k ] = 2⟨rk⟩[rk ] = −
(√
2[rk ]

)(√
2[rk ]

)∗
.

(9.74)

Therefore, for normalized vectors we choose ( the signs are choosen for con-

venience)

ϵµ1 = −
[rγµk⟩√
2[rk ]

, ϵµ2 =
⟨rγµk ]√
2⟨rk⟩

, (9.75)
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To understand what these vectors correspond to, we will evaluate them in

a familiar kinematic case. Consider a photon propagating in the +z direction,

so that its momentum is kµ = E (1, 0, 0, 1). The vector rµ is taken to be

rµ = E (1, 0, 0,−1). Then

|k ] = UL(k) = Nk
(
φ−
0

)
, φ− =

(
0

1

)
,

k⟩ = UR(k) = Nk
(

0

iσ2φ
∗
−

)
= Nk

(
0

φ+

)
, φ+ =

(
1

0

)
,

(9.76)

Next, we need similar formulas for r -spinors. We find

⟨r | = UL(r) = Nr
(
0, φT+

)
,

[r | = UR(r) = Nr
(
−φT−, 0

)
.

(9.77)

Therefore,

[rk ] = −NrNkφT−φ− = −NrNk , ⟨rk⟩ = NrNk . (9.78)

Then,

[r |γµk⟩ = −NrNkφT−σµφ+ = −NrNk (0, 1, i , 0) ,
⟨rγµk ] = ([r |γµk⟩)∗ = −NrNk (0, 1,−i , 0) .

(9.79)

Hence, we find

ϵµ1,2 = −
1√
2
(0, 1,±i , 0) . (9.80)

We will consider calculations of scattering amplitudes assuming that all

particles are outgoing. For this, we need complex-conjugates of actual polar-

ization vectors. Hence, we write

ϵµ2 =
⟨rγµk ]√
2⟨rk⟩

= −
1√
2
[0, 1,−i , 0] = −

1√
2
[0, 1, i , 0]∗ = ϵ∗µR , etc. (9.81)

So, to summarize, we will use polarization vectors for outgoing massless vector

bosons

ϵ∗µR =
⟨rγµk ]√
2⟨rk⟩

, ϵ∗µL = −
[rγµk⟩√
2[rk ]

. (9.82)
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In what follows, I will skip the complex-conjugate notation for the sake of

simlpicity.

The polarization vectors have peculiar transformation properties with re-

spect to changing the reference vector. Indeed, consider a difference of two

polarization vectors with different reference vectors

ϵµR(k, r)−ϵ
µ
R(k, s) =

1√
2

(
⟨rγµk ]
⟨rk⟩ −

⟨sγµk ]
⟨sk⟩

)
=
(⟨rγµk ]⟨sk⟩ − ⟨sγµk ]⟨rk⟩)√

2⟨rk⟩⟨sk⟩
.

(9.83)

To simplify this further, we use the following equation

p̂ = |p]⟨p|+ |p⟩[p|. (9.84)

Then

⟨rγµk ]⟨sk⟩ = −⟨rγµk ]⟨ks⟩ = −⟨rγµk̂s⟩.
⟨sγµk ]⟨rk⟩ = ⟨rkγµs⟩.

(9.85)

Therefore,

ϵµR(k, r)− ϵ
µ
R(k, s) = −

⟨r
(
γµk̂ + k̂γµ

)
s⟩

√
2⟨r k̂⟩⟨sk⟩

= −
√
2kµ

⟨r s⟩
⟨rk⟩⟨sk⟩ . (9.86)

This result is important for the following reason. The on-shell scattering

amplitudes are transversal with respect to momenta of any of the exteranl

gluons. This is to say that if the scattering amplitudeM is written as

M = Mµϵµ(k), then Mµkµ = 0. (9.87)

Combining Eq.(9.86) and Eq.(9.87), we conclude that a different reference

vector can be choosen for each external vector boson without changing the

result for on-shell scattering amplitudes. This feature can be exploited to

simplify computation of scattering amplitudes dramatically, as we will see

shortly.

Note also an important property of polarization vectors for vector bosons

with different momenta but with identical reference vectors

ϵR(k1, r) · ϵR(k2, r) =
⟨rγµk1]√
2⟨rk1⟩

⟨rγµk2]√
2⟨rk2⟩

∼ ⟨r r⟩[kk ] = 0. (9.88)

The same line of reasoning applies also for the left-handed polarization vec-

tors. Hence, we find

ϵR(k1, r) · ϵR(k2, r) = 0, ϵL(k1, r) · ϵL(k2, r) = 0. (9.89)
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