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10 Quark-gluon scattering in QCD

The spinor-helicity methods that we discussed in the previous lecture can be
used for an efficient computation of the scattering amplitudes. To this end,
consider the amplitude for quark-gluon scattering process which we write in
a somewhat strange way, as a decay of an empty space into qggg final state

0 — q(p1, i) + G(pa.j) + 9(p2, @) + 9(ps, b), (10.1)

where a, b, I, j refer to color indices of the corresponding particles.
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Figure 1: The three Feynman diagrams of the process 0 — q(p1) + G(ps) +

g(p2) + g(ps).

There are three diagrams that contribute to this process; two “abelian”
and one “non-abelian”, that involves triple gluon couplings. We will take the
left-handed spinor (1] for the outgoing quark with momentum p; and the left-
handed spinor |4] for the outgoing (right-handed) anti-quark with momentum
ps. The expression for the matrix element is

: . €x(p1 + P2)és €3(p1 + P3)éz
iM=—ig*(1| {— (£7t%), + ————(t"t7) ; ¢ 14]
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_ g2fabct,§ (€2 - €3(p2 — p3)x + €3x(2p3 + P2) - €2 + eon(—2p> — p3)es) .

(10.2)

Here, t*P are the SU(3) Lie algebra generators in the fundamental represen-
tation and ¢ are the SU(3) structure constants.

The SU(3) generators are normalized Tr [t7t?] = §°/2 and, as Lie alge-
bra generators, they satisfy the commutation relation

tth — tPt? = jFabege, (10.3)



We can use this relation to remove the SU(3) structure constants from
the expression for the amplitude. Also, we rescale t? = Ta/\/ﬁ, to have
Tr [T°T*?] = §°°. As the result of this, the amplitude is written as the sum
of two terms

M = (—>2 (MU(TITP)y + Mo(TPT?);5) (10.4)

where

I [(Héz(l L P
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+€3,(2p3 + p2) - €2 + €2, (—2p2 — P3)€3)] :
(10.5)

€2 €3(P3 — P2
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My, = — [<1’€3(1 + 3)é,/4]  (1v4]

+e3u(—2p3 — p2) - €2 + €2, (22 + P3)€3)] :

Next, we note an interesting property of the above amplitude. If we write
M; = M(1,2,3,4), then M, = M(1,3,2,4), so it is sufficient to compute
one function of external momenta to get the full result. We note that out
of three diagrams that contribute to the amplitude M only two contribute
to the function M;. The diagram that does not contribute has its external
particles arranged in such a way that they can not be ordered (clockwise) as
P1, P2, P3,: Pa.

The amplitude M(1,2,3,4) is called “color-ordered” . It is transversal (i.e.
gauge-invariant) and independent of color indices of the colliding partons;
because of this it is a simpler object to compute than the full amplitude. One
can show that one can arrange the QCD Feynman rules in such a way that
a direct computation of color-ordered amplitudes for any process becomes
possible.

We now calculate the color-ordered amplitude M(1.,2,3,4,). As the
first step, we consider equal photon helicities, starting from the right-handed
gluons. The relevant formula reads

é\R:rYME‘/}%:%(|k1<r|+|r>[k|)' (10.6)
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so that

(1|é3r = <;/:2:)><1f3>[3|
3 (10.7)

. V2
(1|éxr = @<1f2>[2|-

Furthemore, we have seen that the scalar products of polarization vectors with
same helicities vanishes if the two vectors have identical reference momenta

€3r - €2r ~ (1213). (10.8)
It is then easy to see that if we choose r, = r3 = p;, the amplitude vanishes

M:i(q1,. 9or. 935, Ga, ) = 0. (10.9)

Similar argument can be used to prove that amplitude M (q1,, 92,, 93, Qa, )
vanishes as well. Indeed,

€L = —%(VWI + [krl) (10.10)
so that
€3 4] = —%m[@‘”:
\jﬁ (10.11)
€2L‘4] = —@‘2”@4]

So, we choose r; = r3 = ps and find M1(qy,, 92,,93,, Gs,) = 0.

Next, we will study the color-ordered amplitude where the two photon
polarizations are different. Specifically, we consider M(qy,, 925, 93,, Ga, ). The
explicit expression for the amplitude reads

(Llear(l +2)ear|4]  (1y*4]

S12 Sia

M=—

(€2R t €31 (Pz - Ps)u
(10.12)

+€31,(2p3 + P2) - €2r + €2ru(—2P2 — P3)€sr) |-



To understand how to simplify computations, we will study contributing
terms in Eq.(10.12) separately. The first term reads

2(1r)[2/(1 +2)[3)[r54] _ 2(1r2)[21](13)[r34]

(ra2)[rs3] (ra2)[rs3]
(10.13)

(1|éar(1 4 2)és]4] = —

The third and the fourth terms in Eq.(10.12) contain the following spinor
products

(1 t]ess, = (1]esd] = — Y214
[r33]
V2(1r,)[24] (10.14)
(1v*4]eary = (1|€2r4] = )

Hence, we conclude that if we choose r; = ps and r» = p; all contribu-
tions in Eq.(10.13) and Eq.(10.14) vanish; therfore, only the second term in
Eq.(10.12) contributes. We find

_ 11(2-3)4
Mi(q1,. 92,.93,, Ga,) = M €2R " €31 (10.15)
14

To simplify it further, we use momentum conseration
(11(2 — 3)|4] = —2(13)[34], (10.16)
and compute the product of two polarization vectors

(r#2] (=1)[rz7,3) (1v#2][4,3) (13)[42]

CRIGLT A2 V2[m3]  2(12)[43] | (12)[43] (10.17)
We therefore find ( use s14 = 53 = —(23)[23] )
M(qu, . Gonr Gs, T, ) = 2(13)[34] (13)[42]  2(13)%[42] (10.18)

(23)[23] (12)[43]  (12)(23)[23]

We can simplify this expression by multiplying it by 1 = (13)/(13). It follows
from momentum conservation that

(13)[32] = (113]2] = (1 (-1 — 2 —4) 2] = —(14)[42]. (10.19)
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Then,
2(13)3(43)

12)(23)(34)(41)
Next, we will compute the second color-ordered amplitude M(qy,, 92, , 934, G4, ).
We will again go through the same exercise of trying to force as many terms as

possible to vanish. We will do it slightly differently this time. The amplitude
reads

(10.20)

Ml(qlLv gQRv g3Lv (74L) = _<

_ (1120 (1 4 2)ésr|4] ~ (1ym4]

S12 S14

M =

(€2L : €3R(P2 - P3)u
(10.21)

+e3ru(2p3 + P2) - €21 + €20, (—2P2 — p3)€sr) |-

Lets focus on the “non-abelian” contribution to this amplitude. There are
three terms that involve

pP3 €1, P2-€3r, €21 *E€3R. (10.22)

Since
€21 - €3r ~ [R3](r32), (10.23)

we can ensure that all terms in Eq.(10.22) vanish if r, ~ p3 and r3 ~ ps.
With these choices of reference vectors, we find

(1]é = —%,
] \/§|2>[34] (10.24)
SR 03y
Therefore, we find
M(ar,, . G5 o, ) = 2(12)[34][31](12)  2[34][31](12) (10.25)

s2[32](23)  [21][32)(23)

For further simplifications, multiply both numerator and denominator with
(12)(42). Then

2[34][31](12)%(42)

MG 920 95 Bn) = 17327 (23) (12) (42) (10.26)
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Now, in the denominator use
[32](42) = —[32](24) = —[3|2|4) = [3|1]4) = [31](14), (10.27)

so that
2[34](12)2(42)

M(ar,. 9o, 9350 Tay) = 21](14Y (23)(12) (10.28)

To simplify it further, note that since s;» = s34, we have

[34](43) = [21](21) © % . %. (10.29)
] 2(12)3(42
M(qy,. 92, 935 Ta, ) = ~12)(23) (34) (41" (10.30)

Amplitudes for other helicity configurations can be obtained from the com-
puted by replacing all square brackets with angle brackets and vice versa. Note
that up to a sign, this replacement also makes €}’ out of €% etc. Hence, for
example, it follows from Eq. (10.30) that

2[12]3[42]
[12][23][34][41]

M(quvg2Rrg3LvC_74R) - - (1031)

To compute the amplitudes squared, one needs to square the amplitude,
sum over colors and spins. This is a straightforward procedure. The only
comment to make is that computing | M|? of the helicity amplitude is straight-
forward. Indeed, consider

[12]°[42] ([12]")°[42]"

IM(Gss. 925 9. ) = Ao afizaa] [y pap e 03
However, since
[]l]" = (]G = 2s, (10.33)
we find A
IM(Gh Gor oy i) = 22528 = 258 (10.34)

2 - 2

where in the last step we used the Mandelstam variables.



