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10 Quark-gluon scattering in QCD

The spinor-helicity methods that we discussed in the previous lecture can be

used for an efficient computation of the scattering amplitudes. To this end,

consider the amplitude for quark-gluon scattering process which we write in

a somewhat strange way, as a decay of an empty space into qq̄gg final state

0→ q(p1, i) + q̄(p4, j) + g(p2, a) + g(p3, b), (10.1)

where a, b, i , j refer to color indices of the corresponding particles.
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Figure 1: The three Feynman diagrams of the process 0→ q(p1) + q̄(p4) +
g(p2) + g(p3).

There are three diagrams that contribute to this process; two “abelian”

and one “non-abelian”, that involves triple gluon couplings. We will take the

left-handed spinor ⟨1| for the outgoing quark with momentum p1 and the left-
handed spinor |4] for the outgoing (right-handed) anti-quark with momentum
p4. The expression for the matrix element is

iM = −ig2⟨1|
{
ϵ̂2(p̂1 + p̂2)ϵ̂3

s12

(
tatb

)
i j
+
ϵ̂3(p̂1 + p̂3)ϵ̂2

s13

(
tbta

)
i j

}
|4]

− g2f abctci j
⟨1γλ4]
s14

(ϵ2 · ϵ3(p2 − p3)λ + ϵ3λ(2p3 + p2) · ϵ2 + ϵ2λ(−2p2 − p3)ϵ3) .

(10.2)

Here, ta,b are the SU(3) Lie algebra generators in the fundamental represen-

tation and f abc are the SU(3) structure constants.

The SU(3) generators are normalized Tr
[
tatb

]
= δab/2 and, as Lie alge-

bra generators, they satisfy the commutation relation

tatb − tbta = i f abctc . (10.3)
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We can use this relation to remove the SU(3) structure constants from

the expression for the amplitude. Also, we rescale ta = T a/
√
2, to have

Tr
[
T aT b

]
= δab. As the result of this, the amplitude is written as the sum

of two terms

M =

(
g√
2

)2 (
M1(T

qT b)i j +M2(T
bT a)i j

)
, (10.4)

where

M1 = −

[
⟨1|ϵ̂2(1̂ + 2̂)ϵ̂3|4]

s12
−
⟨1γµ4]
s14

(ϵ2 · ϵ3(p2 − p3)µ

+ϵ3µ(2p3 + p2) · ϵ2 + ϵ2µ(−2p2 − p3)ϵ3)

]
.

M2 = −

[
⟨1|ϵ̂3(1̂ + 3̂)ϵ̂2|4]

s13
−
⟨1γµ4]
s14

(ϵ2 · ϵ3(p3 − p2)µ

+ϵ3µ(−2p3 − p2) · ϵ2 + ϵ2µ(2p2 + p3)ϵ3)

]
.

(10.5)

Next, we note an interesting property of the above amplitude. If we write

M1 = M(1, 2, 3, 4), then M2 = M(1, 3, 2, 4), so it is sufficient to compute

one function of external momenta to get the full result. We note that out

of three diagrams that contribute to the amplitude M only two contribute

to the function M1. The diagram that does not contribute has its external

particles arranged in such a way that they can not be ordered (clockwise) as

p1, p2, p3, p4.

The amplitudeM(1, 2, 3, 4) is called “color-ordered”. It is transversal (i.e.

gauge-invariant) and independent of color indices of the colliding partons;

because of this it is a simpler object to compute than the full amplitude. One

can show that one can arrange the QCD Feynman rules in such a way that

a direct computation of color-ordered amplitudes for any process becomes

possible.

We now calculate the color-ordered amplitude M(1L, 2, 3, 4L). As the

first step, we consider equal photon helicities, starting from the right-handed

gluons. The relevant formula reads

ϵ̂R = γµϵ
µ
R =

√
2

⟨rk⟩ (|k ]⟨r |+ |r⟩[k |) , (10.6)
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so that

⟨1|ϵ̂3R =
√
2

⟨r33⟩
⟨1r3⟩[3|

⟨1|ϵ̂2R =
√
2

⟨r22⟩
⟨1r2⟩[2|.

(10.7)

Furthemore, we have seen that the scalar products of polarization vectors with

same helicities vanishes if the two vectors have identical reference momenta

ϵ3R · ϵ2R ∼ ⟨r2r3⟩. (10.8)

It is then easy to see that if we choose r2 = r3 = p1, the amplitude vanishes

M1(q1L, g2R , g3R , q̄4L) = 0. (10.9)

Similar argument can be used to prove that amplitudeM1(q1L, g2L, g3L, q̄4L)

vanishes as well. Indeed,

ϵ̂L = −
√
2

[rk ]
(|r ]⟨k |+ |k⟩[r |) , (10.10)

so that

ϵ̂3L|4] = −
√
2

[r33]
|3⟩[r34],

ϵ̂2L|4] = −
√
2

[r22]
|2⟩[r24].

(10.11)

So, we choose r2 = r3 = p4 and find M1(q1L, g2L, g3L, q̄4L) = 0.

Next, we will study the color-ordered amplitude where the two photon

polarizations are different. Specifically, we consider M(q1L, g2R , g3L, q̄4L). The

explicit expression for the amplitude reads

M = −

[
⟨1|ϵ2R(1̂ + 2̂)ϵ3L|4]

s12
−
⟨1γµ4]
s14

(ϵ2R · ϵ3L(p2 − p3)µ

+ϵ3Lµ(2p3 + p2) · ϵ2R + ϵ2Rµ(−2p2 − p3)ϵ3L)

]
.

(10.12)
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To understand how to simplify computations, we will study contributing

terms in Eq.(10.12) separately. The first term reads

⟨1|ϵ̂2R(1̂ + 2̂)ϵ̂3L|4] = −
2⟨1r2⟩[2|(1̂ + 2̂)|3⟩[r34]

⟨r22⟩[r33]
= −
2⟨1r2⟩[21]⟨13⟩[r34]
⟨r22⟩[r33]

.

(10.13)

The third and the fourth terms in Eq.(10.12) contain the following spinor

products

⟨1γµ4]ϵ3Lµ = ⟨1|ϵ̂3L4] = −
√
2⟨13⟩[r34]
[r33]

,

⟨1γµ4]ϵ2Rµ = ⟨1|ϵ̂2R4] =
√
2⟨1r2⟩[24]
⟨r22⟩

,

(10.14)

Hence, we conclude that if we choose r3 = p4 and r2 = p1 all contribu-

tions in Eq.(10.13) and Eq.(10.14) vanish; therfore, only the second term in

Eq.(10.12) contributes. We find

M1(q1L, g2L, g3L, q̄4L) =
⟨1|(2̂− 3̂)|4]

s14
ϵ2R · ϵ3L. (10.15)

To simplify it further, we use momentum conseration

⟨1|(2̂− 3̂)|4] = −2⟨13⟩[34], (10.16)

and compute the product of two polarization vectors

ϵ2R · ϵ3L =
⟨r2γµ2]√
2⟨r22⟩

(−1)[r3γµ3⟩√
2[r33]

= −
⟨1γµ2][4γµ3⟩
2⟨12⟩[43] = −

⟨13⟩[42]
⟨12⟩[43] . (10.17)

We therefore find ( use s14 = s23 = −⟨23⟩[23] )

M(q1L, g2R , g3L, q̄4L) = −
2⟨13⟩[34]
⟨23⟩[23]

⟨13⟩[42]
⟨12⟩[43] =

2⟨13⟩2[42]
⟨12⟩⟨23⟩[23] . (10.18)

We can simplify this expression by multiplying it by 1 = ⟨13⟩/⟨13⟩. It follows
from momentum conservation that

⟨13⟩[32] = ⟨1|3̂|2] = ⟨1
(
−1̂− 2̂− 4̂

)
2] = −⟨14⟩[42]. (10.19)
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Then,

M1(q1L, g2R , g3L, q̄4L) = −
2⟨13⟩3⟨43⟩

⟨12⟩⟨23⟩⟨34⟩⟨41⟩ . (10.20)

Next, we will compute the second color-ordered amplitudeM(q1L, g2L, g3R , q̄4L).

We will again go through the same exercise of trying to force as many terms as

possible to vanish. We will do it slightly differently this time. The amplitude

reads

M = −

[
⟨1|ϵ̂2L(1̂ + 2̂)ϵ̂3R|4]

s12
−
⟨1γµ4]
s14

(ϵ2L · ϵ3R(p2 − p3)µ

+ϵ3Rµ(2p3 + p2) · ϵ2L + ϵ2Lµ(−2p2 − p3)ϵ3R)

]
.

(10.21)

Lets focus on the “non-abelian” contribution to this amplitude. There are

three terms that involve

p3 · ϵ2L, p2 · ϵ3R, ϵ2L · ϵ3R. (10.22)

Since

ϵ2L · ϵ3R ∼ [r23]⟨r32⟩, (10.23)

we can ensure that all terms in Eq.(10.22) vanish if r2 ∼ p3 and r3 ∼ p2.
With these choices of reference vectors, we find

⟨1|ϵ̂2L = −
√
2⟨12⟩[3|
[32]

,

ϵ̂3R|4] =
√
2|2⟩[34]
⟨23⟩ .

(10.24)

Therefore, we find

M(q1L, g2L, g3R , q̄4L) =
2⟨12⟩[34][31]⟨12⟩
s12[32]⟨23⟩

=
2[34][31]⟨12⟩
[21][32]⟨23⟩ . (10.25)

For further simplifications, multiply both numerator and denominator with

⟨12⟩⟨42⟩. Then

M(q1L, g2L, g3R , q̄4L) =
2[34][31]⟨12⟩2⟨42⟩
[21][32]⟨23⟩⟨12⟩⟨42⟩ . (10.26)
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Now, in the denominator use

[32]⟨42⟩ = −[32]⟨24⟩ = −[3|2̂|4⟩ = [3|1̂|4⟩ = [31]⟨14⟩, (10.27)

so that

M(q1L, g2L, g3R , q̄4L) =
2[34]⟨12⟩2⟨42⟩
[21]⟨14⟩⟨23⟩⟨12⟩ . (10.28)

To simplify it further, note that since s12 = s34, we have

[34]⟨43⟩ = [21]⟨21⟩ ↔
[34]

[21]
=
⟨12⟩
⟨34⟩ . (10.29)

M(q1L, g2L, g3R , q̄4L) = −
2⟨12⟩3⟨42⟩

⟨12⟩⟨23⟩⟨34⟩⟨41⟩ . (10.30)

Amplitudes for other helicity configurations can be obtained from the com-

puted by replacing all square brackets with angle brackets and vice versa. Note

that up to a sign, this replacement also makes ϵµL out of ϵ
µ
R etc. Hence, for

example, it follows from Eq. (10.30) that

M(q1R , g2R , g3L, q̄4R) = −
2[12]3[42]

[12][23][34][41]
. (10.31)

To compute the amplitudes squared, one needs to square the amplitude,

sum over colors and spins. This is a straightforward procedure. The only

comment to make is that computing |M|2 of the helicity amplitude is straight-
forward. Indeed, consider

|M(q1R , g2R , g3L, q̄4R)|2 = 4
[12]3[42]

[12][23][34][41]

([12]∗)3[42]∗

[12]∗[23]∗[34]∗[41]∗
. (10.32)

However, since

[i j ][i j ]∗ = [i j ]⟨j i⟩ = 2si j , (10.33)

we find

|M(q1R , g2R , g3L, q̄4R)|2 =
s12s24
s223

=
4st

u2
, (10.34)

where in the last step we used the Mandelstam variables.
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