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11 One-loop computations in QCD

We will continue with some examples of the one-loop computations in QCD.

As we will see, some of these calculations are similar to what we have discussed

in QED and some are different. We will also mostly focus on studying general

properties of the results and exploring the ultraviolet divergences to set up

a stage for a discussion of the renormalization of QCD. We will use the

dimensional regularization throughout this lecture. We will also work in the

Feynman gauge, i.e. ξ = 1.

Figure 1: One-loop vacuum polarization diagrams in QCD.

In QED, the one-loop corrections to the gluon propagator are related to

vacuum polarization diagrams with leptons. In QCD there are gluon-quark,

three-gluon, four-gluon and ghost-gluon vertices. Hence, there are four one-

loop vacuum polarization diagrams in QCD. We note that a diagram with a

four-gluon vertex vanishes in dimensional regularization because its loop part

is a scaleless integral ∫
ddp

(2π)d
Num

p2 + i0
= 0. (11.1)

The next simplification comes from the fact that the vacuum polarization

diagram with quarks can be easily read off from the calculation in QED. The

main difference is that quarks and gluons carry color and that quarks (for our

purposes here) are massless.

We first address the issue of color. The quark-gluon vertex involves SU(3)

generators; hence, denoting color indices of the two external gluon lines in

the two-point function as a and b, we find that the following “color factor”

has to be computed

takiδkmδi jt
b
jm = Tr

[
tatb

]
= TRδ

ab, (11.2)

where TR = 1/2 is a normalization factor for SU(3) generators in the fun-

damental representation. Apart from this, the calculation is identical to that
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of QED. Therefore, we take Eq. (??), set m2 → 0, replace e2 with g2s and
obtain

iΠabq (p) = −
ig2s Γ(1 + ϵ)(−p2)−ϵ

(4π)d/2 ϵ
TRδ

ab Γ
2(1− ϵ)
Γ(1− 2ϵ)

4(1− ϵ)
(3− 2ϵ)(1− 2ϵ) . (11.3)

The subscript q indicates that this is a quark-loop contribution to the gluon

vacuum polarization.

Restoring dependence on gluon’s polarization indices, we write

p p

a, µb, ν
= iΠab,µνq (p) = (p2gµν − pµpµ) iΠab(p). (11.4)

As the next step, we consider the one-loop diagram which describes the

contribution of the gluon loop to the gluon vacuum polarization. Note that

these diagrams exist because gluons interact with gluons which is a special

feature of non-abelian (as opposed to abelian, e.g. QED) gauge theories.

The corresponding expression reads

p p

k − p

k

a, µb, ν

d, σ

c, ρ

= iΠab,µνg = −
g2s
2

∫
ddk

(2π)d
1

k2
1

(k − p)2N
µν(k, p)f acd f bdc ,

(11.5)

where the factor 1/2 is the symmetry factor,

Nµν = V
µρσ
3g (−p, p − k, k)V3g,νρσ(p,−k, k − p), (11.6)

and the three-gluon vertex (all momenta incoming) is defined as

V3g(p
a1,µ1
1 , pa2,µ22 , pa3,µ33 ) = gsf

a1a2a3V3g(p
µ1
1 , p

µ2
2 , p

µ3
3 ), (11.7)

with

V3g(p
µ1
1 , p

µ2
2 , p

µ3
3 ) = g

µ1µ2(p1 − p2)µ3 + gµ2µ3(p2 − p3)µ1 + gµ3µ1(p3 − p1)µ2.
(11.8)

The calculation proceeds in the standard way. First, we deal with the color

algebra using

f acd f bcd = CAδ
ab, (11.9)
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where CA = 3 for the group SU(3).

The calculation proceeds in the standard way. First, we deal with the color

algebra using

f acd f bcd = CAδ
ab, (11.10)

where CA = 3 for the group SU(3).

Then, we integrate over the loop momentum. To do so, we combine the

two denominators using the Feynman parameters

∫
ddk

(2π)d
1

k2
1

(k − p)2 =
1∫
0

dx
1

((k − px)2 + p2x(1− x))2 . (11.11)

We change the loop momentum k = l + xp. Upon doing so, the numerator

function turns into

Nµν = Nµναβ2 lαlβ + N
µνα
1 lα + N

µν
0 , (11.12)

where tensors N2,1,0 on the right hand side are l-independent. We find

Nµναβ2 lαlβ = −2gµν l2 + (6− 4d)lµlν,
Nµν0 = −gµνp2((1 + x)2 + (2− x)2)

+ pµpν((2− d)(1− 2x)2 + 2(1 + x)(2− x)).
(11.13)

The integration over l can be easily performed. First wee simplifying the

tensor and vector integrals∫
dd l

(2π)d
lαlβ

(l2 − ∆)2 =
gαβ

d

∫
dd l

(2π)d
l2

(l2 − ∆)2 ,∫
dd l

(2π)d
lα

(l2 − ∆)2 = 0.
(11.14)

Then, using ∫
dd l

(2π)d
1

(l2 − ∆)2 =
iΓ(1 + ϵ)

(4π)d/2ϵ
∆−ϵ∫

dd l

(2π)d
l2

(l2 − ∆)2 =
iΓ(1 + ϵ)

(4π)d/2ϵ

2− ϵ
1− ϵ ∆

1−ϵ.

(11.15)
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Using these results and after a fair amount of algebra, we arrive at the

following integral representation of the gluon loop contribution to the gluon

vacuum polarization

iΠab,µνg =
ig2s (−p2)−ϵΓ(1 + ϵ)

(4π)d/2ϵ
CAδ

ab

1∫
0

dx

(x(1− x))ϵ
{

gµνp2
[
−
3(3− 2ϵ)
2(1− ϵ) x(1− x) +

1

2
(2− x)2 +

1

2
(1 + x)2

]
+ pµpν

[
(1− ϵ) (1− 2x)2 − (1 + x)(2− x)

] }
.

(11.16)

To compute these integrals, we use

1∫
0

dx xα−1(1− x)β−1 =
Γ(α)Γ(β)

Γ(α+ β)
. (11.17)

We then find

iΠab,µνg =
ig2s (−p2)−ϵΓ(1 + ϵ)

(4π)d/2ϵ
CAδ

ab Γ
2(1− ϵ)
Γ(1− 2ϵ)

×
1

(3− 2ϵ)(1− 2ϵ)

[
gµνp2

(
19

4
− 3ϵ

)
− pµpν

(
11

2
−
7

2
ϵ

)]
.

(11.18)

It follows from Eq. (11.18) that – in variance to the quark-loop contri-

bution – the gluon-loop contribution to the gluon vacuum polarization is not

transversal, i.e. pµΠ
ab,µν
g ̸= 0.

However, the transversality is recovered if, in addition to the gluon loop

we also consider ghost-loop contribution to the gluon vacuum polarization.

Using Feynman rules presented in lecture 8, we write

p p

k

k + p

a, µb, ν

d

c

= iΠab,µνgh = −g2s f acd f bcd
∫
ddk

(2π)d
1

k2(k + p)2
kµ(k + p)ν.

(11.19)

Note that there is an additional (−1)-factor that contributes o the above
formula; this factor is needed because ghost fields anti-commute, so that for

closed ghost loops same rules as for fermions apply.
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The calculation of Πab,µνgh proceeds in the same way the calculation of the

gluon loop. We first compute the color factor. Then, we combine Feynman

propagators, shift the loop momentum, integrate over the shifted momentum

and obtain

Πab,µνgh =
ig2s (−p2)−ϵΓ(1 + ϵ)

(4π)d/2ϵ
CAδ

ab

1∫
0

dx

(x(1− x))ϵ

× x(1− x)
{ gµνp2
2(1− ϵ) + p

µpν
}
.

(11.20)

Integrating over x , we find

Πab,µνgh =
ig2s (−p2)−ϵΓ(1 + ϵ)

(4π)d/2ϵ
CAδ

ab Γ
2(2− ϵ)
Γ(4− 2ϵ)

{ gµνp2
2(1− ϵ) + p

µpν
}
. (11.21)

This contribution is also not transversal. However, if we add the gluon loop

and the ghost loop, we find

iΠab,µνg+gh =
ig2s Γ(1 + ϵ)

(4π)d/2ϵ
δabCA(−p2)−ϵ

Γ2(1− ϵ)
Γ(1− 2ϵ)

×
5− 3ϵ

(3− 2ϵ)(1− 2ϵ)(g
µνp2 − pµpν).

(11.22)

The full one-loop contribution to the gluon vacuum polarization is given

by the sum of the quark, gluon and ghost contribution. Before adding them

together, we note that more than one quark exists in Nature and each of them

can contribute to the gluon vacuum polarization. We will treat all quarks as

massless and we will denote their number by nf . Then

iΠab,µν = iΠab,µνg+gh + nf iΠ
ab,µν
q . (11.23)

The full result reads

iΠab,µν =
ig2s Γ(1 + ϵ)

(4π)d/2ϵ
δab(−p2)ϵ

(
gµνp

2 − pµpν
) Γ2(1− ϵ)
Γ(1− 2ϵ)

×
[
CA

5− 3ϵ
(3− 2ϵ)(1− 2ϵ) − nf TR

4(1− ϵ)
(3− 2ϵ)(1− 2ϵ)

]
.

(11.24)

In the next lecture, we will discuss the one-loop renormalization of QCD; to

do this, we will require the 1/ϵ singularities of the above equation. Performing
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the expansion (and keeping certain terms unexpanded for future convenience),

we find

iΠab,µν ≈
ig2s Γ(1 + ϵ)

(4π)d/2ϵ
δab

(
gµνp

2 − pµpν
) [5
3
CA −

4

3
nf TR

]
. (11.25)

We continue with the discussion of the quark self-energy. The calculation

is similar to what we have done for the electron self-energy in QED; the

difference is that we will consider quarks to be massless. Furthermore, we

will focus on the UV-divergent contributions to the electron self-energy. I will

sketch how the corresponding calculation can be done. The quark self energy

reads

p p + k

k

= iΣi jq = −g2s (tata)i j
∫
ddk

(2π)d
γµ(p̂ + k̂)γµ
k2(p + k)2

. (11.26)

First we compute the color factor

(tata)i j = CF δi j , (11.27)

where CF = 4/3 for the group SU(3).

Next, we simplify the numerator of the integrand in Eq. (11.32). Since

we are interested in divergent 1/ϵ contributions only, we can make use of the

algebra of γ-matrices in four dimensions. Then

γµ(p̂ + k̂)γµ = −2(p̂ + k̂). (11.28)

After that, combining the propagators, shifting the loop momentum k →
l − xp and discarding linear terms in the shifted momentum l , we find

iΣq = g
2
sCF δi j2p̂

1∫
0

dx (1− x)
∫
dd l

(2π)d
1

(l2 − ∆2)2 , (11.29)

where ∆2 = −p2x(1−x). We have already encountered the remaining integral
over l several times. Using earlier results, we obtain

iΣq,i j ≈
ig2s Γ(1 + ϵ)

(4π)d/2ϵ
δi jCF p̂, (11.30)
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where only divergent terms are shown. Note an important fact that, in the

case of a massless quark, the self-energy is proportional to p̂ and, therefore, if

a quark is massless to begin with, its mass cannot be generated perturbatively.

Finally, we will compute divergent contributions to three-point (ampu-

tated) Green’s functions that describe interactions between a quark and a

gluon. The first diagram is QED-like; it reads

a
µ

k + p2

k + p1

p2

p1

k = V̂ 1,µa,i j = g
3
s

∫
ddk

(2π)d
(tbtatb)i j γ

ρ 1

k̂ + p̂2
γµ

1

k̂ + p̂1
γρ
1

k2
.

(11.31)

We are interested in ultraviolet divergence; it originates from the region where

the loop momentum k is very large. Neglecting p2,1 in quark propagators, we

find

V̂ 1,µa,i j ≈ g
3
s (t

btatb)i j

∫
ddk

(2π)d
1

(k2)3
γρk̂γµk̂γρ

1

k2
, (11.32)

and all terms that were discarded when moving from Eq. (11.31) to Eq. (11.32)

give only ϵ-finite contributions. Averaging over directions of k and performing

algebra of γ-matrices in four dimensions, we find

γρk̂γµk̂γρ →
k2

4
γργαγµγαγρ → k2γµ. (11.33)

Hence, Eq. (11.32) turns into

V̂ 1,µa,i j ≈ g
3
s (t

btatb)i j γ
µ

∫
ddk

(2π)d
1

(k2)2
→

ig3s Γ(1 + ϵ)g
3
s

(4π)d/2ϵ
γµ (tbtatb)i j

= igst
a
ijγ
µ g

2
s Γ(1 + ϵ)g

3
s

(4π)d/2ϵ
(CF − CA/2).

(11.34)

In the last step we computed the color factor and factored out the tree-level

Green’s function igst
a
ijγ
µ.

The second diagram that we want to consider involves the three-gluon

vertex. To understand how the ultraviolet-divergent contribution is generated

we count powers of the loop momentum. Then, the three-gluon vertex is
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linear in the loop momentum, quark-gluon vertex is momentum-independent,

each of the two gluon propagators is 1/k2 and the quark propagator is /k .

Hence, this diagram may have a logarithmic divergence; we can capture it

if, when writing the integrand, we keep the loop momentum everywhere and

neglect all the external momenta. In this approximation, the expression for

the diagram reads

a
µ

k − p2

k − p1

p2

p1

k = V̂ 2,µa,i j ≈ig
3
s f
abc(tctb)i j

∫
ddk

(2π)d
1

(k2)2

× V3g(0µ,−kσ, kρ) γρ
1

k̂
γσ.

(11.35)

To simplify this expression, we note that

i f abc(tctb)i j =
CA
2
taij . (11.36)

To further simplify the integrand, we write

V3g(0
µ,−kσ, kρ) = gµρkσ − 2gρσkµ + gσµkρ, (11.37)

and note that

V3g(0
µ,−kσ, kρ)γρ

1

k̂
γσ =

1

k2
(2k2γµ + 4k̂kµ)→ 3γµ. (11.38)

where in the last step we averaged over directions of the loop momentum k .

We then find

V̂ 2,µa,i j ≈ g
3
sCAt

a
ij γ

µ

∫
ddk

(2π)d
3

(k2)2
= igst

a
ijγ
µ (
3CA
2
)
g2s Γ(1 + ϵ)

(4π)d/2ϵ
. (11.39)

The full (divergent) one-loop contribution to the quark-gluon vertex is

given by the sum of Eq. (11.34) and Eq. (11.39). It reads

V̂ µa,i j = V̂
1,µ
a,i j + V̂

2,µ
a,i j ≈ igst

a
ijγ
µ (CF + CA)

g2s Γ(1 + ϵ)

(4π)d/2ϵ
. (11.40)

The Green’s functions whose divergences we have computed, are not the

only Green’s functions that exhibit ultraviolet divergences. However, as we

explain in the next lecture, we have computed sufficient number of Green’s

functions to determine all the needed counterterms to renormalize Quantum

Chromodynamics at one loop.
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