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12 One-loop renormalization in QCD

The goal of this lecture is to discuss the renormalization of QCD at one loop.

The Lagrangian reads

L = −
1

2
Tr
[
F̂µνF̂

µν
]
+ψ̄iD̂ψ+c̄a(−∂µDµab)c

b−
1

ξ
Tr
[
(∂µÂ

µ)(∂νÂ
ν)
]
. (12.1)

Although all the quantities that appear in this Lagrangian have already been

introduced in the previous lectures, we will repeat their definitions one more

time

F aµν = ∂µA
a
ν − ∂νAaµ + gsf abcAbµAcν,

Dµ = ∂µ − igsAaµta,
−∂µDµab = −∂

2δab − gs∂µf acbAcµ.
(12.2)

We use Eq. (12.2) to expose the dependence of the Lagrangian on fields

and couplings; at this point we interpret the fields and the coupling as bare

quantities. We then replace bare fields with the renormalized fields and bare

couplings with renormalized couplings, and find

L = LQCD + LQCD,ct, (12.3)

where

LQCD = −
1

2
Tr
[
F̂µνF̂

µν
]
+ ψ̄iD̂ψ + c̄a(−∂µDµabc

b)−
1

ξ
Tr
[
(∂µÂ

µ)(∂νÂ
ν)
]
,

(12.4)

and

LctQCD = (Z3 − 1)
[
−
1

4
F aµνF

µν,a

]
+ (Z2 − 1)ψ̄i ∂̂ψ + (Zc − 1)c̄a(−∂2)ca

+ gs(ZgZ2Z
1/2
3 − 1)Aaµψ̄γµtaψ − gs(ZgZ

3/2
3 − 1)f abc(∂µAaν)AbµAcν

−
g2s
4
(Z2gZ

2
3 − 1)f eabAaµAbν f ecdAcµAdν − gs(ZgZ

1/2
2 Zc − 1)f abc∂µ(Abµcc).

(12.5)

The renormalization constants that appear in the counter-term Lagrangian

are defined as follows1

g0 = Zggs , Aa,0µ = Z
1/2
3 Aaµ, ψ(0) = Z

1/2
2 ψ, ca0 = Z

1/2
c ca, ξ0 = Z3ξ.

(12.6)

1Note that the relation between g0 and gs shown below will change, c.f. Eq. (12.29).
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The last equation allows us to keep the gauge fixing term in the QCD La-

grangian but avoid having the corresponding term in the counter-term La-

grangian. Below we will explain why this is a sensible thing to do.

We also see from these equations that we only have four renormalization

constants in our disposal. However, the number of divergent Green’s function

is significantly larger. To find them, we will compute the superficial degree of

divergence of the various Green’s functions in QCD.

Suppose, we have an L-loop diagram with with Lq internal quark lines,

Lg internal boson lines, V3g three-gluon vertices and Vq qq̄g vertices. The

artificial degree of divergence is

D = 4L− Lq − 2Lg + V3g, (12.7)

since the three-gluon vertex is linear in the loop momentum. In addition, the

following equations are satisfied

L = Lg + Lq − V3g − Vq + 1,

Vq = Lq +
1

2
Nq,

3V3g + Vq = 2Lg + Ng.

(12.8)

Using these equations (start with replacing L with the r.h.s.), we find

D = 4−
3

2
Nq − Ng. (12.9)

We have not talked about ghosts where a slightly more careful analysis needs

to be performed. The net effect is that the number of external ghost lines

has to be added to Nq in the above formula to make it correct, and the final

result reads

D = 4−
3

2
(Nq + Ngh)− Ng. (12.10)

This equation implies that Green’s functions with up to four external gluons,

one gluon and qq̄, one gluon and two ghosts, quark self-energy and ghost

self-energy are divergent. These Green’s functions are not independent; in

fact they are related by the gauge invariance of the theory so that if the

regularized theory remains invariant under gauge transformations (and it does,

if we use dimensional regularization) then proper relations between Green’s

functions keep being maintained. Hence, we expect that if we determine
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the necessary renormalization constants from some Green’s functions, other

divergent Green’s functions will also become finite.

In the previous lecture we have computed sufficient number of Green’s

functions to determine all the renormalization constants. However, there is

one aspect of this procedure that is different in comparison to the earlier

discussion of renormalization. We will discuss it taking the quark self-energy

as an example. The result of the one-loop computation is given in Eq. (??).

The counter-term contribution is

i p̂ (Z2 − 1) δi j . (12.11)

Combining the two equations, we find

i p̂δi j

[
g2s Γ(1 + ϵ)

(4π)d/2ϵ
δi jCF + (Z2 − 1)

]
. (12.12)

In our earlier discussion, we have determined the renormalization constants

from the requirement that Green’s function assume certain values for partic-

ular values of external momenta; these momenta values were motivated by

physics considerations. For example, we have required that the electron self-

energy and its first derivative vanish at electron’s mass shell. Although we can

still impose similar requirement on the quark self-energy, it would probably not

make sense physically because quarks are confined and cannot be observed as

free particles. For this reason, instead of emphasizing the physical meaning of

the renormalization, we can view it as a technical device whose aim is to give

us an opportunity to conveniently compute finite Green’s functions in QCD

and to express them through some renormalized parameters.

A scheme that takes this idea to an extreme is known as the minimal

subtraction scheme. In the original version of this scheme the counter-terms

were defined in such a way that they remove the 1/ϵ terms in the Laurant

expansion of Green’s functions in ϵ. Later, it was realized that such an

expansion always generates additional finite terms associated with the Euler

constant in the expansion of Γ(1 + ϵ) ≈ 1 − γEϵ and ln(4π) that originates
from the expansion of (4π)−ϵ terms. It was agreed to include these terms

into the counter-terms together with the 1/ϵ terms. Hence, we attempt to

make an expression in Eq. (12.12) ϵ-finite by choosing

Z2 = 1−
CFg

2
s e
−γEϵ

(4π)d/2ϵ
+ ... (12.13)
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There is an additional consideration that is actually useful. Similar to the

entire theory, the bare coupling is defined in d dimensions. In four dimensions,

the QCD coupling gs is dimensionless. For this reason we would like to choose

the renormalized coupling gs to be dimensionless at any d since in this case

the dimensionality of the renormalized coupling does not change if ϵ → 0
limit is taken.

To see why this is useful, consider an example of a renormalized quark

self-energy. It reads

iΣrenq =
ig2s Γ(1 + ϵ)

(4π)d/2(−p2)ϵ ϵδi jCF p̂ (1 +O(ϵ)) + i p̂δi j(Z2 − 1)

= −iδi j p̂CF
g2s
(4π)2

ln(−p2) + ...,
(12.14)

where in the last step we used Eq. (12.13). Since it is very annoying to work

with quantities where logarithms of dimensionful quantities appear, it is useful

to redefine the coupling constant in such a way that its dependence on the

dimension is taken care of by an additional mass paramenter that we will refer

to as µ. It is easy to see that this is accomplished if we change

gs → gsµ
ϵ, (12.15)

in the QCD and the counter-term Lagrangians. Similarly, to account for MS

renormalizaion automatically, we include e−γE/2ϵ/(4π)−ϵ/2 into the definition

of gs as well. Hence, the ultimate replacement to make everywhere in LQCD
and LctQCD is

gs →
gsµ

ϵeϵγE/2

(4π)ϵ/2
. (12.16)

Then, the un-renormalzied self-energy becomes

iΣq(p) = iδi j p̂CF
g2sµ

2ϵΓ(1 + ϵ)eγEϵ(−p2)−ϵ

(4π)2
1

ϵ
(1 +O(ϵ)) , (12.17)

the factor Z2

Z2 = 1−
CFg

2
s

(4π)2ϵ
+O(g4s ), (12.18)
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and the expansion in ϵ of the renormalized self-energy returns

iΣrenq (p) = −iδi j p̂ CF
g2s
(4π)2

ln

(
−p2

µ2

)
+ ... (12.19)

Note that nothing changes in the renormalziation constant Z2 since it is sup-

posed to contain the 1/ϵ poles only.

As the next step, we obtain the (gluon) wave-function renormalization

constant Z3 using the gluon vacuum polarization. Again, we determine these

constants in the MS renormalization scheme where we only require that 1/ϵ

poles are cancelled. Since we do not have a gauge-fixing term in the counter-

term Lagrangian (thanks to the tuned renormalization of ξ and Aµ), the

counter-term contribution is

(Z3 − 1)(−i)(p2gµν − pµpν)δab. (12.20)

The gluon vacuum polarization is given in Eq. (??); we see that that result is

indeed proportional to the transversal Lorentz structure p2gµν − pµpν which
justifies our choice for the renormalization of the gauge parameter.

We present the divergent part of the gluon propagator here one more

time, for completeness

iΠab,µν ≈
ig2s Γ(1 + ϵ)

(4π)d/2ϵ
δab
(
gµνp

2 − pµpν
) [5
3
CA −

4

3
nf TR

]
. (12.21)

Then

i(p2gµν − pµpν)δab
[
1− Z3 +

g2s Γ(1 + ϵ)

(4π)d/2ϵ

(
5

3
CA −

4

3
nf TR

)]
. (12.22)

We find

Z3 = 1 +
g2s
(4π)2ϵ

(
5

3
CA −

4

3
nf TR

)
. (12.23)

We then use the computation of the qq̄g interaction vertex in the previous

section to determine the strong coupling renormalization constant. The di-

vergent contribution to the quark gluon interaction vertex is given in Eq. (??)

and we repeat it here for convenience

V̂ µa,i j = i
gsµ

ϵeγEϵ/2

(4π)ϵ/2
taijγ

µ (CF + CA)
g2sµ

2ϵeγEϵΓ(1 + ϵ)

(4π)2ϵ
. (12.24)
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The counter-term contribution to quark gluon interaction vertex is

igst
a
ij(
(
ZgZ2Z

1/2
3 − 1

)
. (12.25)

All the renormalization constants in that expression except for Zg have been

already computed. Hence, requiring that the sum of the vertex correction

and the counter-term does not contain 1/ϵ divergences, we find

ZgZ2Z
1/2
3 − 1 + (CF + CA)

g2s
(4π)2ϵ

= O(ϵ0). (12.26)

To first order in g2s , we can linearize this formula, use Eqs. (??) and (12.23)

to compute 1− Z2 and 1− Z1/23 and determine Zg

Zg = 1 + (1− Z2) + (1− Z1/23 )− (CF + CA)
g2s e

−γEϵ

(4π)d/2ϵ
. (12.27)

We find

Zg = 1 +
g2s
(4π)2ϵ

(
−
11

6
CA +

2

3
nf TR

)
. (12.28)

We will now discuss a very important consequence of Eq. (12.28). First,

we note that it implies the following relation between the bare and the renor-

malized coupling constants

g0 = gs
eγEϵ/2

(4π)ϵ/2
µϵZg. (12.29)

It is technically more convenient to define an analog of the QED fine structure

constant, i.e.

αs =
g2s
4π
. (12.30)

Then

α(0)s = αs
eγEϵ

(4π)ϵ
µ2ϵ Zαs , (12.31)

and Zαs is Z
2
g .

One can make the following observation about the structure of Eqs. (12.29)

and 12.31). The left-hand sides of these equations contain bare coupling
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constants which are independent of µ. The right-hand sides of these equa-

tions have terms that explicitly depend on µ and terms where µ-dependencies

should appear implicitly to compensate for explicit µ-dependence. We can

uncover the rules that govern these implicit dependencies by differentiating

both sides of e.g. Eq. (12.31) with respect to µ.

We find

0 = µ
dαs
dµ

µ2ϵ Zαs + 2ϵαsµ
2ϵ Zαs + αsµ

2ϵ ∂Zαs
∂αs

µ
dαs
dµ

, (12.32)

where we made use of the fact that Zαs only depends on the strong coupling

constant and does not contain any other terms that contain µ-dependencies.

It follows that

µ
dαs
dµ
=

−2ϵ αs
1 + αs

1
Zαs

∂Zαs
∂αs

. (12.33)

To proceed further, we need to write an Ansatz for the renormalization

constants Zαs . Since this renormalization constant removes ultraviolet 1/ϵ

poles from the Green’s functions, we write

Zαs = 1 +

∞∑
n=1

An
ϵn
. (12.34)

The coefficients An are functions of the strong coupling constant αs .

We then write equation Eq. (12.33) as

µ
dαs
dµ

(
1 +

∞∑
n=1

An + αsA
′
n

ϵn

)
= −2ϵαs

(
1 +

∞∑
n=1

An
ϵn

)
, (12.35)

where A′n = ∂An/∂αs .

We can solve this equation under the assumption that the coupling con-

stant αs has now singular 1/ϵ contributions which is what we expect from

the renormalized coupling. Then we find that the following set of equations

must be fulfilled

µ
dαs
dµ
= −2ϵαs + 2α2sA′1,

A′2 = αs(A
′
1)
2 + A1A

′
1,

A′3 = αsA
′
1A
′
2 + A2A

′
1,

A′4 = αsA
′
3A
′
1 + A3A

′
1,

· · ·

(12.36)
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To understand what these formulas imply, imagine that coefficients An are

computed in perturbation theory. Then

A1 =

∞∑
n=0

a1n α
n
s . (12.37)

It follows from Eq. (12.36) that

A′2 ∼ αs , (12.38)

so that A2 contains terms O(αks ) with k ≥ 2. From the analysis of other
equations, we find that An contains terms O(αks ) with k ≥ n. It is also

important that An, n > 1, can be fully determined once A1 is known. Hence,

full information about the dependence of the coupling constant αs on µ is

contained in the single 1/ϵ pole of Zαs .

We now return to the first equation in Eq. (12.36). This equation de-

scribes the depenendence of the strong coupling constant on the renormal-

ization scale µ. We write this equation as

µ
dαs
dµ
= β(αs), (12.39)

where

β(αs) = −2ϵαs + 2α2sA′1 (12.40)

is called the (QCD) “beta”-function. Setting ϵ = 0, we find

β(αs) = 2a11α
2
s + 4a12α

3
s + 6a13α

4
s +O(α5s ). (12.41)

Assuming that the perturbative expansion is valid, we can truncate the

above equation, nelgecting all the terms beyond the leading and find

µ
dαs
dµ
= 2a11α

2
s . (12.42)

This is a differential equation whose solution reads

αs(µ) =
αs(µ0)

1− a11αs(µ0) ln µ
2

µ20

. (12.43)
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The meaning of this equation is clear. We need to provide the coupling

αs(µ0); after that the above equation allows us to compute the coupling at

other values of µ.

We can easily extract a11 and the leading order QCD β-function from the

result in Eq. (12.28). We find

a11 =
αs
2π

(
−
11

6
+
2

3
TRnF

)
(12.44)

and

β(αs) = 2α
2
sa11 = −

α2s
2π

(
11

3
CA −

4

3
TRNf

)
+O(α3s ). (12.45)

where Nf is the number of quark spiecies and TR = 1/2.

Note that β(αs) < 0 in QCD because the term with CA gives a larger con-

tribution than the term with Nf but it would have been the other way around in

QED where CA must be set to zero. The sign of the β-function is important.

Indeed, it follows from Eq. (12.39) that, for negative β(αs) the coupling

becomes smaller (larger) for larger values of µ. Theories with negative β

functions are called asymptotically-free theories. QCD is an asymptotically

free theory because the number of quarks is not too large to compensate the

effect of gluons.

It is instructive to go back to Eq. (12.46) and write it as

αs(µ) =
αs(µ0)

1 + b0
αs(µ0)
2π
ln µ

2

µ20

, (12.46)

where

b0 =
11

6
CA −

2TR
3
Nf . (12.47)

It is easy to see that this equation can be written as follows

αs(µ) =
2π

b0 ln
µ2

Λ2QCD

, (12.48)

where

ΛQCD = µ0e
− π
αs (µ0)b0 . (12.49)
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An immediate consequence of this equation is that the coupling con-

stant becomes large (infinite) at a scale µ = ΛQCD. This scale is the non-

perturbative scale of strong interactions and is a true parameter of QCD. For

energy scales that exceed ΛQCD, αs is small and perturbative computations

are valid (except that quarks and gluons do not exist so the meaning of such

non-perturbative computations has to be put into the right context). For

energy scales comparable to ΛQCD, non-abelian interactions become strong

and one cannot study them using perturbation theory.

To estimate ΛQCD we need to know the value of the strong coupling

constant αs at some point. A convenient reference place is mu = MZ ≈
90 GeV, which is the mass of the Z-boson where αs is measured to be

αs(MZ) ≈ 0.12. Taking Nf = 4 and CA = 3 gives b0 = 4.2 and we find

ΛQCD = 0.16 GeV. (12.50)

10


