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13 Renormalization group

We have seen that we can derive an interesting equation that describes the

dependence of the QCD coupling constant on the renormalization scale. This

equation follows from an observation that renormalization relates bare quan-

tities and renormalized quantities. Since renormalized quantities (couplings,

Green’s functions, etc.) depend on a parameter or a set of parameters that

uniquely determine the renormalization prescription, whereas bare quantities

do not depend on them, the dependence of the renormalized quantities on

these parameters cannot be arbitrary. These dependences are described by

a set of partial differential equations that are known as the renormalization

group equations.

It is particularly simple to understand and derive the renormalization group

equations if a minimal subtraction MS scheme is used. To this end, consider

a Green’s function in a particular theory (say QCD with massless quarks and

gluons, for definiteness) that has nq quark and anti-quark and ng gluon fiels,

i.e.

G0(x1, x2, ...y1, ..., yq) = ⟨0|Tψ0(x1)...ψ0(xnq) A0(y1)...A0(yng)|0⟩. (13.1)

Note that we do not distinguish between ψ and ψ̄ fields in the above formula;

furthermore, we suppressed all Lorentz indices of the gluon fields. The fields

in the above equation are considered to be unrenormalized (bare) fields.

Replacing unrenormalized with renormalized fields, we find

G0(x1, x2, ...y1, ..., ynq) = Z
nq/2
2 Z

ng/2
3 GR(x1, x2, ..yng). (13.2)

Instead of working with the position space Green’s functions, we switch to

the momentum space and write

G0({p}) = Znq/22 Z
ng/2
3 GR({p}). (13.3)

Imagine that we work in the MS-scheme. Then, similar to the renor-

malization condition for the coupling constant, this equation is peculiar in

that the left hand side does not depend on the renormalization parameter µ

whereas the various quantities on the right hand side do depend on it. Hence,

differentiating both sides of the equation with µ gives

µ
d

dµ
G0({p}) = 0 ↔ µ

d

dµ

[
Z
(nq/2)
2 Z

(ng/2)
3 GR({p})

]
= 0. (13.4)
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To proceed further, we rewrite this last equation as follows

µ
d

dµ
GR({p}) +

(nq
2
γq +

ng
2
γg

)
GR({p}) = 0, (13.5)

where

γq,g =
1

Zq,g
µ
d

dµ
Zq,g = µ

d

dµ
lnZq,g (13.6)

These quantities are called anomalous dimensions, for the reason that will

become clear shortly.

Since GR is an ϵ-finite Green’s function, anomalous dimensions γq,g should

also have finite limits as ϵ → 0. Since we work in the MS renormalization
scheme, we can compute them easily. Indeed, in this scheme renormaliza-

tion constant depend on µ only through the µ-dependence of the coupling

constant. Hence, we write (Z = Zq,g)

Z = 1 +
A1
ϵ
+
A2
ϵ2
+ ...

An
ϵn
+ ..., (13.7)

where An are series in αs(µ). Then,

γ =
1

1 + A1
ϵ
+ A2
ϵ2
+ ..

[
A′1
ϵ
+
A′2
ϵ2
+ ...

A′n
ϵn
+ ...

]
µ
dαs(µ)

dµ
, (13.8)

where A′n = ∂Ai/∂αs . The QCD coupling constant reads

µ
dαs(µ)

dµ
= −2ϵαs + β(αs). (13.9)

Using this result in Eq. (13.8), we find

γ(αs) = −2αs
∂A1(αs)

∂αs
, (13.10)

and Eq. (13.8) can be used to predict higher 1/ϵ poles that appear in the

wave function renormalization constants.

We return to Eq. (13.5). In variance with the renormalization constants

in the MS scheme , the renormalized Green’s function GR does depend on

the parameter µ explicitly in addition to its dependence on αs(µ). Hence,

µ
d

dµ
GR({p}) = µ

d

dµ
GR({p}, µ, αs(µ)) = µ

∂

∂µ
GR + β(αs)

∂

∂αs
GR. (13.11)
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Therefore, we obtain a partial homogenious differential equation(
µ
∂

∂µ
+ β(αs)

∂

∂αs
+ γq(αs)

nq
2
+ γg(αs)

ng
2

)
GR({p}, µ, αs(µ)) = 0,

(13.12)

that relates the dependencies of the Green’s function on µ and on αs(µ).

We will now explain how to find solutions to the above equation that

contain important physics information. Suppose we know the Green’s function

GR(p, µ, αs(µ)) for some {p} and µ. We would like to determine the Green’s
function GR for the same value of µ but for values of momenta re-scaled by a

parameter λ, i.e. GR({λp}, αs , µ). Each Green’s function has a well-defined
canonical mass dimension which evaluates to n = 3/2nq+ng+4−4ng−4nq.
We extract this mass dimension and write

GR({p}, µ, αs(µ)) = µnG̃R
(
{p}
µ
,αs(µ)

)
. (13.13)

Since

µ
∂

∂µ
GR({λp}, µ, αs(µ)) =

µn
[
nG̃R

(
{λp}
µ

,αs(µ)

)
+ µ

∂

∂µ
G̃R

(
{λp}
µ

,αs(µ)

)]
,

(13.14)

and (
µ
∂

∂µ
+ λ

∂

∂λ

)
G̃R

(
{λp}
µ

,αs

)
= 0, (13.15)

G̃R satisfies the following equation(
λ
∂

∂λ
− β(αs)

∂

∂αs
− γ(αs)− n

)
G̃R

(
{λp}
µ

,αs

)
= 0, (13.16)

where

γ = γq(αs)
nq
2
+ γg(αs)

ng
2
. (13.17)

Note that the µ-dependence of αs at this point is not relevant for solving

Eq. (13.16) because this equation does not involve explicit µ-derivatives. This

means that, as far as solving Eq. (13.16) is concerned, αs(µ) there should

be considered as a given constant.
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To solve Eq. (13.16), we remove terms without derivatives from there by

writing

G̃R = λ
ne
−
αs∫
0

dx
γ(x)
β(x)
F

(
{λp}
µ

,αs

)
. (13.18)

The function F satisfies the following differential equation(
λ
∂

∂λ
− β(αs)

∂

∂αs

)
F

(
{λp}
µ

,αs

)
= 0. (13.19)

To solve this equation we note that any function that depends on λ and αs
in the combination

Ψ(λ,αs) = lnλ+

αs∫
dx

βx
, (13.20)

is the solution of Eq. (13.19). To make this quantity Ψ look “nicer”, we

define an “auxiliary” quantity ᾱs(λ,αs) so that

Ψ(λ,αs) =

ᾱs(λ,αs)∫
dx

β(x)
. (13.21)

Combining the two previous equations, we find

ᾱs(λ,αs)∫
αs

dx

β(x)
= lnλ. (13.22)

The function ᾱs(λ,αs) is the running coupling constant that we have seen

before. Indeed, taking a derivative of Eq. (13.22) w.r.t. λ, we find

λ
d

dλ
ᾱs = β(ᾱs), (13.23)

and the boundary condition for this equation is ᾱs = αs at λ = 1.

Hence, we conclude that the solution of Eq. (13.19) can be written as

F

(
{λp}
µ

,αs

)
= F

(
{p}
µ
, ᾱs(λ,αs)

)
. (13.24)

Note that since ᾱs(λ,αs) = αs at λ = 1, the above equation is consistent

with the boundary condition.
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Finally, we can combine the intermediate steps and write the following

expression for the Green’s function

GR({λp}, µ, αs) = λne
ᾱs (λ,αs )∫
αs

dx γ(x)
β(x)

GR(p, µ, ᾱs(λ,αs)). (13.25)

We will now discuss the meaning of the above equation. Suppose that

{p}, µ and αs(µ) are fixed and we are interested in computing the Green’s
function on the left hand side for some (large) value of λ. This corresponds

to increasing all momenta in the Green’s function by the same amount. Also

we imagine that we deal with QCD, so that the running coupling αs be-

comes small as λ increases. Since the coupling constant becomes smaller

and smaller, the Green’s function on the right-hand side of Eq. (13.25) can

be well approximated by the free Green’s function. Then we can write

GR({λp}, µ, αs) ≈ e
ᾱs (λ,αs )∫
αs

dx γ(x)
β(x)

GtreeR ({λp}). (13.26)

Suppose that we can compute β(x) and γ(x) in perturbation theory.

Then,

β(x) = −
x2

π
b0, γ(x) = −γ0

x

π
. (13.27)

As the result,

e

ᾱs (λ,αs )∫
αs

dx γ(x)
β(x) ≈ e

γ0
b0
ln ᾱs
αs ≈ e−

γ0
b0
ln(1+αs2π b0 lnλ

2). (13.28)

Hence,

GR({λp}, αs) = e−
γ0
b0
ln(1+αs2π b0 lnλ

2) GtreeR ({λp}). (13.29)

It is useful to think about the meaning of this equation from the point of view

of ordinary perturbation theory where we compute the Green’s function order

by order in the perturbative expansion. To see the connection, we imagine

that αs is small enough so that expansion of Eq. (13.29) becomes possible.

We find

GR({λp}, αs) =
∞∑
n=0

anα
n
sL
n GtreeR ({λp}), (13.30)
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where L = lnλ2. Hence, renormalization group equations re-sum contri-

butions to the perturbative expansion of Green’s functions which contain

one power of lnλ for one power of αs , as the leading approximation. If

αs lnλ
2 ∼ αs , these terms are no different from all other terms in the pertur-

bative expansion; in this case, improvements related to the renormalization

group analysis make little sense. However, if we deal with the case λ≫ 1, so
that αs lnλ

2 ≥ 1 but αs ≪ 1, then perturbative expansion in αs is not valid
but the renormalization group equations allow us to re-sum offending terms

to all orders in αs .
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