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14 Chiral anomalies

When we say “anomaly” when talking about quantum field theory, we usually

mean a symmetry of a theory that exists at the level of a classical field theory

but disappears at a quantum level. Since gauge symmetries are essential for

the consistency of any gauge quantum field theory (e.g. they ensure that a

limited number of renormalization constants suffice to make a large number

of Green’s functions finite), it is important to understand how symmetries

become anomalous and make sure this does not happen to gauge symmetries.

It is also interesting that it is possible to make statements about anoma-

lies that are exact; as such, they can be used to make (some) first-principles

statements in strongly interacting theories which will not be possible other-

wise. A classical example of an anomaly is the anomaly of the singlet axial

vector current that we now consider.

Consider a theory of a massless fermion ψ interacting with an abelian

gauge field

L = ψ̄iD̂ψ −
1

4
FµνF

µν, Dµ = ∂µ + ieAµ. (14.1)

The field ψ is split into left- and right components

ψL,R =
1± γ5
2

ψ, (14.2)

and the Lagrangian becomes

L = ψ̄Li D̂ψL + ψ̄Ri D̂ψR −
1

4
FµνF

µν. (14.3)

We can separately change phases of left and right components of the fermion

field ψ without changing the Lagrangian; by Noether’s theorem this means

that both left and right currents

jµL = ψ̄Lγ
µψL, and jµR = ψ̄Rγ

µψR, (14.4)

are conserved

∂µj
µ
L,R = 0. (14.5)

We can take the linear combinations of these currents and form vector and

axial currents

Jµ = jµL + j
µ
R = ψ̄γµψ, Jµ5 = j

µ
L − j

µ
R = ψ̄γ

µγ5ψ. (14.6)
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As the consequence of Eq.(14.5) these currents are also conserved

∂µJ
µ = 0, ∂µJ

µ
5 = 0. (14.7)

Note that the current Jµ couples to the gauge field Aµ whereas the axial

current Jµ5 does not couple to the gauge field.

We will now show that it is only possible to satisfy one (out of two) equa-

tions in Eq.(14.7) once quantum effects are taken into account. Interestingly,

we can choose which equation remains valid and which one is violated. One

of the two symmetries that led to Eq. (14.7) and which we choose to give up

at the quantum level is called “an anomalous symmetry”.

Since it is inconvenient to work with operators (currents are operators),

we will consider a matrix element of the axial current between the vacuum

state and the two photons and write it as

⟨γ(k1)γ(k2)|J5,µ|0⟩ = −e2ϵα,∗1 ϵβ,∗2 Tµ;αβ(k1, k2), (14.8)

factoring out the coupling constant e and the polarization vectors of the two

photons. Tensor Tµ;αβ(k1, k2) is obtained from the vacuum expectation value

of the time-ordered product

Tµ;αβ(k1, k2) =

∫
d4xd4y e ik1xe ik2y ⟨0|TJα(x)Jβ(y)J5µ(0)|0⟩. (14.9)

The current conservation Eq.(14.7) implies the transversality of Tµ;αβ
w.r.t. all of its three indices

Tµ;αβk
α
1 = 0, Tµ;αβk

β
2 = 0 qµTµ;αβ = 0. (14.10)

Here q = k1 + k2.

To compute Tµ;αβ, we need to calculate two diagrams shown in Fig. 1.

We write

Tµ;αβ = i

∫
d4l

(2π)4
Tr

[
γµγ5

1

l̂ − q̂
γα

1

l̂ − k̂2
γβ
1

l̂
+ γµγ5

1

l̂ − q̂
γβ

1

l̂ − k̂1
γα
1

l̂

]
.

(14.11)

An important feature of this expression is that it is ill-defined because of

a linear divergence of the two contributions at large values of l . This is not a
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Figure 1: Two graphs that contribute to the correlator of an axial current

and two vector currents.

problem of this particular Green’s function since many quantities in QFT are

ill-defined. What we need to do therefore is to introduce a regularization in

Eq. (14.11), perform the computation to the end and then see if the depen-

dence on the regulator can be removed. In what follows, we will first discuss

a slightly different approach to this problem which will allow us to illustrate

some interesting features.

A peculiar feature of linearly-divergent unregularized integrals that will

play a crucial role in our discussion is that a choice of a different momentum

flow in such an integral may lead to different result. To see this, imagine that

we compute a difference of two identical integrals where the only difference

is that the loop momentum is shifted by a constant vector in one of them.

Hence, we write

I =

∫
d4l

(2π)4
[F (l)− F (l − p)] . (14.12)

Normally, we would treat the two integrals separately, shift the loop momen-

tum l → l + p in the second one and conclude that the result is zero. How-

ever, mathematically, such manipulations are only valid if
∫
d4l/(2π)4 F (l)

converges ( at least, it should not diverge faster than a logarithm.). If shifts

are not allowed, we can compute a derivative of I with respect to pµ. We

write
∂ I

∂pµ
=

∫
d4l

(2π)4
∂F (l − p)

∂lµ
(14.13)

In this integral, the linear divergence is not present anymore, so we can shift
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the momentum and find

∂ I

∂pµ
=

∫
d4l

(2π)4
∂F (l)

∂lµ
. (14.14)

We now have an integral of the total derivative and it can be computed using

the Stokes theorem. To apply the Stokes theorem to these integrals, we

peform the Wick rotation and write l0 = i l0E, l⃗ → l⃗E. Then

∂F

∂lµ
=
1

i δµ0
∂F

∂lµE
, (14.15)

and d4l = id4lE. Hence,

∂ I

∂pµ
= i

∫
d4lE
(2π)4

1

i δµ0
∂F

∂lµE
= lim
|lE |→∞

i

(2π)4
1

i δµ0

∫
|lE |

dS3,µ F (lE) (14.16)

The surface of a three-dimensional sphere in four-dimensional space with the

radius lE scales as |lE|3; hence, if F (l) scales as 1/l3E, the integral I does not
vanish and gives a finite contribution. Going back to the original definition

of the integral I Eq. (14.12), F (l) ∼ l−3 implies that individual integrals in

Eq.(14.12) diverge linearly.

It follows from Eq. (14.16) that to determine I we need to know the

function F (l) at large values of the loop momentum; we will assume that this

dependence read

lim
l→∞

F (l) ≈
aµl
µ

(l2)2
. (14.17)

We now perform the Wick rotation and write

lim
l→∞

F (lE) ≈ −
aE,µl

µ
E

(l2E)
2
= −

aνEn
ν
E

l3E
, (14.18)

where nµE is a unit radial vector in the Eucledian four-dimensional space. Next,

using dSµ3 = dΩ
(4)nµE l

3
E and Ω

(4) = 2π2, we find∫
|lE |

dS3,µ F (lE) = −
∫
dΩ(4)nµE a

ν
En
ν
E = −aνE

δµν

4
Ω(4) = −aµE

Ω(4)

4
. (14.19)
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Since aµE = i
δµ0aµ, we find

∂ I

∂pµ
=

i

(2π)4
1

i δµ0
(−1)i δµ0aµ

Ω(4)

4
= −

iaµ
32π2

. (14.20)

We can now integrate this expression using the fact that the integral I

vanishes at p = 0. We therefore find

I =

∫
dl4

(2π)4
[F (l)− F (l − p)] = −

iaµp
µ

32π2
. (14.21)

We now return to to the computation of the correlator of three currents

and check the behavior of the integrand at large values of the loop momentum.

Consider the first diagram in Fig. 1. The integrand reads

Tr

[
γµγ5

1

l̂ − q̂
γα

1

l̂ − k̂2
γβ
1

l̂

]
≈
1

(l2)3
Tr

[
γµγ5 l̂γα l̂γβ l̂

]
. (14.22)

To simplify this trace, we write

l̂γα l̂ = 2lα l̂ − γαl2. (14.23)

Since

Tr [γ5γµγαγβγρ] = 4i ϵµαβρ, (14.24)

we find that

Tr
[
γµγ5 l̂γβ l̂

]
= 0, (14.25)

so that the first term on the right hand side in Eq. (14.23) vanishes. We find

Tr

[
γµγ5

1

l̂ − q̂
γα

1

l̂ − k̂2
γβ
1

l̂

]
≈
4i ϵµαβσl

σ

(l2)2
. (14.26)

Hence, the “vector” aµ that appears in the asymptotic formula of the function

F (c.f. Eq. (14.17)) reads in this case

aσ = 4i ϵµαβσ (14.27)

Suppose that we would like to compute the difference in the contribution

of the first diagram to Tµ;αβ due to different choices of the loop momentum.

We find

T
(1)
µ;αβ[l ]− T

(1)
µ;αβ[l − r1] = −i

ϵµαβσr
σ
1

8π2
. (14.28)
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Performing a similar computation for the second diagram that contributes

to Tµ;αβ, we find

T
(2)
µ;αβ[l ]− T

(2)
µ;αβ[l − r2] = i

ϵµαβσr
σ
2

8π2
, (14.29)

where the sign change is related to the fact that matrices γα and γβ appear

in a different order in the expression for trace of the second diagram.

This implies that the result for the correlator Tµ;αβ is ambiguous up to

Tµ;αβ|shift = Tµ;αβ +
i

8π2
ϵµαβδ

(
r δ1 − r δ2

)
, (14.30)

where r1,2 reflect the freedom of momenta choices in the two diagrams.

Since we can shift the loop momenta in each of the two diagrams inde-

pendently, we can ask if it is possible to choose these shifts in such a way that

the transversality conditions Eq. (14.10) for both vector and axial currents

are satisfied. The answer to this question is that it is in fact not possible.

To see how this conclusion is reached, we restrict the class of shifts that

we apply. One of the symmetries that we would like to keep intact is the

symmetry between the two photons, i.e. the Bose-symmetry. Hence, we

require that we only consider correlators that satisfy the following property

Tµ;αβ(k1, k2) = Tµ;βα(k2, k1). (14.31)

Therefore, if we parameterize the shifts as r1 = a1k1 + a2k2 and r2 = b1k1 +

b2k2, and require that shifts do not violate the Bose symmetry, we obtain the

following condition.

a1 − b1 = b2 − a2. (14.32)

The non-trivial solution occurs if we satisfy Eq.(14.32) by choosing b2 = a1
and b1 = a2. Then, the allowed shifts are

r1 = a1k1 + a2k2, r2 = a2k1 + a1k2, (14.33)

and Eq.(14.30) becomes

Tµ;αβ|shift = Tµ;αβ + i
(a1 − a2)
8π2

ϵµαβδ(k
δ
1 − kδ2). (14.34)
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The transversality conditions now read1

kα1 Tµ,αβ|shift = kα1 Tµ;αβ + i
(a1 − a2)
8π2

ϵµβασk
α
1 k
σ
2 ,

qµTµ,αβ|shift = qµTµ;αβ − i
(a1 − a2)
4π2

ϵαβµσk
µ
1 k
σ
2 .

(14.35)

We will discuss the computation of the vector current Ward identity and

will quote the result for the axial one. Computing kα1 Tµ,αβ we find

kα1 Tµ,αβ = −i
∫
d4l

(2π)4
(FV (l)− FV (l − k1)) , (14.36)

where

FV =
Tr

[
γµγ5(l̂ − k̂2)γβ l̂

]
(l − k2)2l2

. (14.37)

The integral in Eq. (14.36) can be unambigously computed using earlier

discussion. We find

FV (l) ≈
4i ϵµαβσk

α
2 l
σ

(l2)2
. (14.38)

Extracting the relevant vector aµ and using Eq. (14.21), we find

kα1 Tµ;αβ = −
i

8π2
ϵµβσρk

σ
1 k
ρ
2 . (14.39)

A similr computation for the axial current gives

qµTµ;αβ = −
i

4π2
ϵαβσρk

σ
1 k
ρ
2 . (14.40)

Hence, we find

kα1 Tµ;αβ|shift = −
i

8π2
ϵµβασk

α
1 k
σ
2 (1− (a1 − a2)),

qµTµ;αβ|shift =
i

4π2
ϵαβρσk

ρ
1k
σ
2 (1 + (a1 − a2)).

(14.41)

Eq.(14.41) contains a very important result: it shows that there is no

choice of momentum flow in two triangle diagrams that enforces simultaneous

1We display one equation for the vector current; the second equation that is obtained by

contracting Tµ;αβ with k
β
2 contains no new information.
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conservation of both the axial and the vector currents; the choice which of

the two currents is conserved is up to us to make. We make this choice based

on the observation that the vector current may couple to a gauge field (this

is a typical situation in QED and QCD) and so its conservation is essential for

the well-being of the theory. The conservation of the axial current was a nice

feature of the theory to have, but if we cannot maintain this feature at the

quantum level, so be it. Hence, we fix the momentum routing by choosing

a1 − a2 = 1 and, from Eq.(14.41), obtain two results

kα1 Tµ;αβ = 0,

qµTµ;αβ =
i

2π2
ϵαβρσk

ρ
1k
σ
2 .

(14.42)

We now use this result in Eq.(14.8) and find

qµ⟨γ(k1)γ(k2)|J5µ|0⟩ = −
ie2

2π2
ϵαβρσϵ

α
1 ϵ
β
2k
ρ
1k
σ
2 . (14.43)

We can rewrite the r.h.s of this equation by introducing momentum represen-

tation of the field-strength tensor

fµν = ϵ
µ
1k
ν
1 − ϵν1k

µ
1 . (14.44)

We also introduce the dual tensor

f̃µν =
1

2
ϵµναβf

αβ. (14.45)

Putting everything together, we obtain

⟨γ(k1)γ(k2)|qµ J5µ|0⟩ =
ie2

4π2
f1,µν f̃

µν
2 . (14.46)

The above equation implies that the divergence of the axial current can be

written as

∂µJ
µ
5 =

α

2π
FµνF̃

µν, (14.47)

where F̃µν is the dual field-strength tensor.

Comments:
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• It should be clear from this discussion that understanding anomalies
requires us to deal with divergent, poorly defined quantities. We have

described one way to resolve this ambiguity. However, other approaches

are possible. Two most popular ones are the Pauli-Villars and dimen-

sional regularizations. Pauli-Villars automatically conserves vector cur-

rent and violates conservation of the axial current. Dimensional regu-

larization requires us to define matrix γ5 in d-dimensions; one can do

this in such a way that the vector current is conserved and the axial

current is not.

• Eq.(14.47) is the exact operator equation; there are no higher order
corrections to it (Adler-Bardeen-Jackiw theorem).

• In our discussion anomaly arises as the consequence of different ul-
traviolet behavior of correlators that involve vector and axial currents.

However, anomaly can also be viewed as an infrared effect. To this end,

imagine that we attempt to compute the imaginary part of the matrix

element of the axial current through the dispersion relations. Then,

the intermediate massless quarks are on the mass shell and no integra-

tion over the loop momentum is involved. Hence, computing qµImTµ;αβ
gives zero which would imply that the imaginary part vanishes. In reality,

the imaginary part is actually proportional to a delta function δ(q2).

• We have made the choice to conserve the vector current and let the
axial current to become anomalous because vector currents couple to

gauge fields so that their conservation is essential. In more complex

theories, such as the Standard Model of particle physics axial currents

are gauged as well. It then becomes important to check if gauged axial

currents are anomalous or not.
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