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15 Spontaneous symmetry breaking, Goldstone effect

Consider a theory of a single scalar field

L =
1

2
∂µφ ∂

µφ−
1

2
m2φ2 −

λ

4
φ4. (15.1)

As we know, the parameter m is the mass of particle-like excitations of the

filed φ and λ is the self-coupling. The equation of motion reads(
∂µ∂

µ +m2
)
φ = −λφ3. (15.2)

For small values of λ, we can neglect the right hand side in Eq.(15.2) and

describe excitations of the field φ as plane waves

φ ∼ e−iωk t+i k⃗ x⃗ , with ωk⃗ =
√
k⃗2 +m2. (15.3)

Plane-wave solution describe particles that propagate in space-time and, if we

put the r.h.s. in Eq.(15.2) back into the equation of motion, interact with

each other. It assumes, of course, that m2 > 0. The minimal energy that

can be stored in the field in this case can be found from the Hamiltonian

H =

∫
d3x⃗

[
1

2
(∂tφ)

2 +
1

2

(
∇⃗φ

)2
+
m2φ2

2
+
λ

4
φ4

]
. (15.4)

Since each term in the above euqation is positive, the minimal value of H

corresponds to φ = 0.

What happens if we change the sign of m2, i.e. we take

m2 = −µ2, (15.5)

with µ2 > 0? If we do that, the Lagrangian becomes

L =
1

2
∂µφ ∂

µφ− V (φ), (15.6)

with

V (φ) = −
µ2

2
φ2 +

λ

4
φ4. (15.7)

Energy stored in the field is described by the Hamiltonian

H =

∫
d3x⃗

[
1

2
(∂tφ)

2 +
1

2

(
∇⃗φ

)2 − µ2φ2
2
+
λ

4
φ4

]
. (15.8)
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It is clear that also in this case time- and space-independent fields φ still

minimize the energy, but the value of φ that does this is different from zero.

In fact, it corresponds to the minimum of the potential V (φ). We find it by

computing

∂V (φ)

∂φ
= 0 → φmin = ±φvac, φvac =

√
µ2

λ
. (15.9)

The energy of the vacuum is then

Evac = Ω

[
−
µ2

2

µ2

λ
+
λ

4

µ4

λ2

]
= −
Ωµ4

2λ
, (15.10)

where Ω =
∫
d3x⃗ is the space volume.

The important point is that if we want to describe small excitations of

the field φ, we cannot construct such an expansion around φ = 0. This is

because, even for small λ, the equations of motion of the field φ around φ = 0

is (
∂µ∂

µ − µ2
)
φ = 0. (15.11)

The solutions to this equation are φ ∼ e±µt , so that there is an exponentially
growing field that “moves away” from φ = 0 rather than oscillates around this

value. To have “small oscillations around the vacuum”, we need to consider

values of the field that are close to φ = ±φvac.
It follows from Eq. (15.10) that there are two values of the field that

minimize the field’s energy, so an important question is which of the two min-

ima should be considered? If this were quantum mechanics, the answer to

this question is “neither” of the two because the ground state of a quantum-

mechanical system with two minima is a symmetric wave function with max-

ima both at the left and at the right minima. The reason for this is the

tunneling through a potential barrier; it connects the two minima and forces

us to choose a symmetric wave function as a true ground state.

It is very important to understand that in quantum field theory we can

choose one of the two ground states and we do not need to care about the

tunneling phenomenon. To see why this is so, let us map the quantum field

theory problem on a quantum-mechanical problem by considering fields that

are x⃗-independent. Then, the action reads

S =

∫
dt

[
Ω

2
(∂tφ)

2 −ΩV (φ)
]
, (15.12)
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where Ω =
∫
d3x⃗ is the space volume where the field φ has a non-vanishing

support. If we identify φ(t) with x(t), we can view Eq.(15.12) as an action

of a particle with the mass Ω and and the potential energy ΩV (φ).

We can now compute the tunneling amplitude from one vacuum to the

other vacuum using the quantum mechanical formulas

Atunnel ∼ e−
∫
pdx , (15.13)

where the integration is performed through a region that is classically forbid-

den. In Eq. (15.13), p ∼
√
m|U| → Ω

√
|V (φ)| and dx → dφ. Hence, in the

quantum field theory, the tunneling amplitude reads

Atunnel ∼ e
−Ω

φvac∫
−φvac

√
|V (φ)| dφ

. (15.14)

Therefore, if we consider quantum field theory in an infinitely large volume

Ω → ∞ the tunneling amplitude vanishes. For this reason, at variance with
quantum mechanics, we must choose one and only one vacuum in a quantum

field theory. However, which one it is – the “left” one φ = −φvac or the
“right” one φ = +φvac, we cannot decide; this happens by “accident” and

should not have observable consequences.

Since the original Lagrangian Eq. (15.1) is invairant under φ→ −φ sym-
metry, once one of the two vacua is chosen, the symmetry is broken. We

refer to this mechanism of breaking the symmetry as spontaneous symmetry

breaking. It is important to stress that the spontaneous symmetry breaking

implies that the Lagrangian of a theory is symmetric but the ground state is

not.

Let us imagine that the system has chosen the “right” vacuum where

⟨0|φ|0⟩ = φvac. (15.15)

We then re-write the Lagrangian Eq.(15.6) using a new field χ that is defined

as φ(x) = φvac + χ(x). Since ∂µφvac = 0, we obtain the new Lagrangian

L =
1

2
∂µχ∂

µχ− V (φvac) +
1

2

(
µ2 − 3λφ2vac

)
χ2 − λφvacχ3 −

λ

4
χ4. (15.16)

We use explicit expression for φvac to simplify Eq.(15.16) and find

L =
1

2
∂µχ∂

µχ−
1

2
m2χχ

2 − λφvacχ3 −
λ

4
χ4 − V (φvac), (15.17)
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where m2χ = 2µ
2. Note that Eq.(15.17) describes a theory of a scalar self-

interacting field with the mass m2χ. At variance to the original theory, there

is nothing strange about the theory described by Eq.(15.17) anymore. In

particular, the mass of the field χ is positive.

As the next step, we extend the original theory by considering larger num-

ber of fields that appear in the Lagrangian in a symmetric way. We consider

two real fields φ1, φ2 and write them as a two-component vector

φ⃗ =

(
φ1
φ2

)
. (15.18)

The Lagrangian reads

L =
1

2
∂µφ⃗ · ∂µφ⃗− V (φ⃗ · φ⃗), (15.19)

where

V (φ⃗ · φ⃗) = −
µ2

2
φ⃗ · φ⃗+

λ

4

(
φ⃗ · φ⃗

)2
. (15.20)

The Lagrangian has the O(2) symmetry; if we rotate φ⃗ with a 2 × 2
orthogonal matrices

φ⃗ = R̂φ⃗′, R̂TR = 1, (15.21)

we find

L(φ⃗) = L(φ⃗′). (15.22)

Since the potential energy V (φ) depends on the “length” of the vector φ⃗

only, we can read off the value of the field that minimizes V (φ⃗ · φ⃗) from the
calculation at the beginning of this lecture. We find

φ⃗vac · φ⃗vac = φ21,vac + φ22,vac =
µ2

λ
. (15.23)

It follows from Eq.(15.23) that the “vacuum manifold” is a circle with the

radius |φ⃗vac| = φvac =
√
µ2/λ. In contrast to the single-field case, we param-

eterize the vacuum field by writing

φ⃗vac = φvace⃗vac, (15.24)

where

e⃗vac =

(
cos θ

sin θ

)
. (15.25)
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Eqs.(15.24,15.25) describe a particular choice of the vacuum. To construct

an expansion around the vacuum field, we write

φ⃗ = φ⃗vac + χ⃗. (15.26)

Since φ⃗vac is a constant field, it follows

∂µφ⃗ = ∂µχ⃗. (15.27)

We would like to express the Lagrangian Eq.(15.17) through the field χ⃗.

To do that, we note that it is convenient to write φ⃗ as a sum of two vectors

χ⃗ = he⃗vac + χ⊥e⃗⊥, (15.28)

where e⃗vac · e⃗⊥ = 0. Then

V (φ⃗ · φ⃗) = V ((φvac + h)2 + χ2⊥). (15.29)

Using explicit form of the potential Eq.(15.20), we find

V (φ⃗ · φ⃗) = −
µ2

2

[
(φvac + h)

2 + χ2⊥
]
+
λ

4

(
(φvac + h)

2 + χ2⊥
)2
. (15.30)

It is easy to analyze this potential energy to arrive at the following conclusions:

• there are two fields h and χ⊥ in the Lagrangian after the symmetry
breaking;

• the mass of the field h is 2µ2, similar to the single-field case;

• the mass of the field χ⊥ is zero;

• there are interactions between h and χ⊥.

• nothing depends on the chosen vacuum state that is characterized by
the vector e⃗vac. The dependence on that vector disappeared completely.

Massless excitations of fields that appeared in the theory after the spon-

taneous symmetry breaking are known as Nambu-Goldstone bosons; in our

case these massless appear once we quantize the field χ⊥. We see that in

the theory described by the Lagrangian Eq. (15.19) there is one Goldstone

boson after the symmetry breaking.
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We will now do the same calculation using a different parameterization

of the field φ⃗. This is important since choosing a different parameterization

offers a different perspective on the Nambu-Goldstone mechanism. We write

the field as

φ⃗(x) = ρ(x)

(
cosα(x)

sinα(x)

)
, (15.31)

which means that we have chosen “spherical” coordinates in field space. The

potential energy is then

V (φ⃗ · φ⃗) = V (ρ2). (15.32)

To compute the kinetic energy stored in the field φ we calculate the derivative

∂µφ⃗ = (∂µρ)

(
cosα

sinα

)
+ ρ(∂µα)

(
− sinα
cosα

)
, (15.33)

and find
1

2
∂µφ⃗ · ∂µφ⃗ =

1

2
∂µρ∂

µρ+
ρ2

2
∂µα∂

µα. (15.34)

Again, to account for the spontaneous symmetry breaking, we write

ρ = φvac + r. (15.35)

The Lagrangian becomes

L =
1

2
∂µr∂

µr +
φ2vac
2
∂µα∂

µα−
(2µ2)

2
r 2 + φvacr∂µα∂

µα+ · · · (15.36)

Ellipses in Eq.(15.36) refer to terms that describe interactions between dif-

ferent fields. We observe from Eq.(15.36) that the “angular” variable α

describes massless field whose excitations are Goldstone bosons and the “ra-

dial variable” r describes a massive field with the mass 2µ2. We note that

all terms in the Lagrangian that involve the field α are proportional to ∂µα.

Since in the momentum space ∂µα ∼
∑
pµα, this means that the interactions

of Goldstone fields are energy-dependent and become weak at low energies.

This feature is not apparent if the Goldstone field is described by the field

χ⊥, as in the previous example.

We generalize the construction to three fields and a Lagrangian that is

symmetric under SO(3) transformations. We again use Eq.(15.19) but this
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time the field φ⃗ is a triplet

φ⃗ =

 φ1φ2
φ3

 . (15.37)

Similar to the discussion of the two-component vector, I write

φ⃗ = (φvac + h)e⃗vac + χ⃗⊥, (15.38)

where

e⃗vac =

 sin θ0 cosφ0sin θ0 sinφ0
cos θ0

 , (15.39)

and χ⃗⊥ · e⃗vac = 0, so that χ⃗⊥ is a two-component field. If we use this
representation in the formula for the potential energy, we obtain

V (φ⃗ · φ⃗) = −
µ2

2

[
(φvac + h)

2 + χ⃗2⊥
]
+
λ

4

(
(φvac + h)

2 + χ⃗2⊥
)2
. (15.40)

As we already remarked after Eq.(15.30), this form of the potential energy

implies that χ⃗⊥ describes two massless fields (Goldstone bosons), whereas h

is a massive field with the mass squared being equal to 2µ2. It should be now

obvious that if we consider a theory of N fields that is invariant under SO(N)

transformations, and potential energy in this theory only depends on the radial

component of the vector field, we will get N−1 (massless) Goldstone bosons
after the symmetry breaking.

To understand how many Goldstone bosons arise in the theory after the

symmetry breaking, consider the field φ⃗ that describes N fields. After the

symmetry breaking, we write it as

φ⃗ = (φvac + h)e⃗vac + χ⃗⊥, (15.41)

where the field χ⃗⊥ describes N − 1 fields that span the (N − 1)-dimensional
space Dvac that is orthogonal to e⃗vec. Since the potential energy only depends

on χ⃗2⊥, the theory is still invariant under (N−1)-rotations inDvac. We then say
that the symmetry is broken from SO(N) to SO(N−1). We note that group
SO(N) allows GN = N(N − 1)/2 “independent rotations”, that correspond
to Lie algebra generators. After the symmetry breaking, the symmetry group
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becomes SO(N−1), so some of the original symmetry transformations are not
symmetry transformations anymore. The number of such “broken” symmetry

transformations reads

GN − GN−1 = N − 1. (15.42)

This is exactly the number of massless particles that we have been finding in

our examples.

We will now explain why this isn’t a coincidence and that, indeed, the

number of Goldstone bosons equals to the number of broken symmetries in

any theory. To this end, consider a theory with the interaction potential V (φ⃗).

The theory is invariant under a symmetry that is described by generators T a,

a = 1..Na. Hence, if we consider an infinitesimal transformation

φ⃗′ = φ⃗+ ϵaT
aφ⃗, (15.43)

the potential energy computed for φ⃗′ and φ⃗ should be the same

V (φ⃗+ ϵaT
aφ⃗) = V (φ⃗). (15.44)

Expanding the left hand side to first order in ϵ, we find

0 = ϵa
∂V

∂φi
T aikφk . (15.45)

Since different ϵa’s parameterize independent symmetry transformations, Eq.(15.45),

in fact, splits into Na independent equations

0 =
∂V

∂φi
T aikφk , (15.46)

one for every symmetry generator.

We now take a derivative of Eq.(15.46) with respect to φm. We obtain

0 =
∂V

∂φi∂φm
T aikφk +

∂V

∂φi
T aim. (15.47)

Eq.(15.47) holds for any φ⃗. However, it is instructive to apply it at φ⃗ = φ⃗vac.

Since φ⃗vac minimizes the potential, the last term in Eq.(15.47) vanishes and

we obtain

0 =
∂V

∂φi∂φm
|φ⃗=φ⃗vac T

a
ik φvac,k . (15.48)
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To understand the meaning of this equation, consider a generic Lagrange

function

L =
1

2
∂µφ⃗∂

µφ⃗− V (φ⃗), (15.49)

and assume that spontaneous symmetry breaking occurs. We then write

φ⃗ = φ⃗vac + χ⃗ and expand around χ⃗ = 0. We find

L =
1

2
∂µχ⃗∂

µχ⃗−V (φ⃗vac)−
∂V

∂φi
|φ⃗=φ⃗vac χi −

1

2

∂V

∂φi∂φj
|φ⃗=φ⃗vac χiχj + ... (15.50)

Since the potential V (φ⃗) has a minimum at φ⃗ = φ⃗vac, the right hand side of

Eq.(15.50) simplifies. We write

L =
1

2
∂µχ⃗∂

µχ⃗− V (φ⃗vac)−
1

2
m2i j χiχj + ..., (15.51)

where

m2i j =
∂V

∂φi∂φj
|φ⃗=φ⃗vac (15.52)

is the mass matrix. The name comes from the fact that, upon diagonalising

it, we get the information about masses of particles that our theory describes.

We note that this matrix also appears in Eq.(15.48) that we write in the

following way

0 = mi jξ
(a)
j , (15.53)

where ξ⃗(a) = T aφ⃗vac. Clearly, ξ⃗
(a) is what you get if you act on a vacuum field

by a generator of a symmetry transformation T (a).

According to Eq.(15.53) when the mass matrix multiplies any ξ⃗(a), the

result should be zero, however, this can be realized in two ways. If, for a

particular generator T a, ξ⃗(a) = 0, Eq.(15.53) does not provide any useful

information. However, if ξ⃗(a) ̸= 0, Eq.(15.53) implies that the mass matrix
has a non-trivial eigenvector with zero eigenvalue, i.e. zero mass squared.

The number of such eigenvectors is equivalent to the number of symmetries

(number of generators) that do not leave the vacuum φ⃗vac unchanged, since

T aφ⃗vac ̸= 0. Hence, for each broken symmetry, there is a massless mode that
is a Nambu-Goldstone boson.

Finally, we note that in the above discussion we dealt with classical La-

grangians. We now show that one can reformulate the above discussion in
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a quantum language. To this end, consider a quantum field theory with a

continuous global symmetry. This symmetry implies that there is a number

of conserved currents; we will consider one of them and call it Jµ(x). Since

the current is conserved, it satisfies

∂µJ
µ = 0. (15.54)

Given the current, we can construct a conserved charge

Q(t) =

∫
d3x⃗ J0(t, x⃗),

dQ

dt
= 0. (15.55)

Suppose, we consider a commutator of one of the fields in the theory and

the charge Q. Since Q is a generator of symmetry transformations, we will

get

φa(x) = [Q,φb(x)]. (15.56)

We then take the vacumm expectation values of the two sides and assume

that the field φa(x) develops a non-vanishing vacuum expectation value

va = ⟨0|φa(x)|0⟩ = ⟨0|Qφb(x)− φb(x)Q|0⟩. (15.57)

It we now assume that the current is Hermitian, the above equation implies

that

Q|0⟩ ≠ 0, (15.58)

which means that the vacuum state is not invariant under a symmetry trans-

formation that is described by the charge Q.

Next, consider a correlator

Πµ(q) = −i
∫
d4xe iqx⟨0|TJµ(x)φb(0)|0⟩, (15.59)

and compute

qµΠ
µ(q) = −i

∫
d4x qµe

iqx⟨0|TJµ(x)φb(0)|0⟩

= −
∫
d4x(∂µe

iqx)⟨0|TJµ(x)φ(0)|0⟩

=

∫
d4xe iqx∂µ⟨0|TJµ(x)φb(0)|0⟩

=

∫
d3xe−i q⃗·x⃗⟨0|[J0(0, x⃗), φb(0)]|0⟩.

(15.60)
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The above expression is simplified if we consider the limit q⃗ → 0. We then use
the fact that the integral of J0 over volume is the charge operator Q and the

vacuum expectation value of the commutator of Q with φb is non-vanishing.

Hence,

lim
q→0
qµΠ

µ(q) = ⟨0|[Q,φb(0)]|0⟩ = ⟨0|φa(0)|0⟩ = va. (15.61)

The solution of this equation is

Πµ(q) =
qµva
q2
. (15.62)

The pole at q2 = 0 implies that there is a massless particle in the spectrum.

Hence, for each symmetry generator of a continuous global symmetry which

is broken spontaneously (which mathematically implies that Q|0⟩ ≠ 0), there
is a massless Goldstone boson in the spectrum of the theory.

To see how Goldstone theorem is used in practice, we consider a QCD

Lagrangian with two quark types (flavors): up and down. We assum these

quarks to be massless; this actually does not mean that these quarks must

be massless but, rather, that their masses should be small as compared to

ΛQCD. The Lagrangian reads

L =

2∑
i=1

q̄i i D̂qi + · · · , (15.63)

where ellipses describe contributions to the Lagrangian which depend on gauge

fields and ghost fields. We will write the two fields as a spinor (of spinors)

Ψ =

(
q1
q2

)
, (15.64)

where q1 describe an up-quark and q2 – the down-quark fields. The Lagrangian

L becomes

L = Ψ̄i D̂Ψ+ · · · , (15.65)

We can now introduce lef and right projections to write

ΨL =
(1− γ5)
2

ΨL, ΨR =
(1− γ5)
2

ΨR, (15.66)
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to rewrite the QCD Lagagian as

L = Ψ̄Li D̂ΨL + Ψ̄Ri D̂ΨR + · · · . (15.67)

This Lagrangian is invariant under independent rotations of left- and right-

fields with unitary matrices, so that the full symmetry group of the classical

Lagrangian is

SU(2)L ⊗ SU(2)R ⊗ U(1)L ⊗ U(1)R. (15.68)

Using two U(1) symmetries, we can form vector and axial transformations.

The “vector” symmetry is the conservation of the so-called baryon (total

quark number) number (which means that if we assign a baryon charge 1 u

and d quarks and −1 to ū and d̄ quarks, then this “charge” is conserved).
The axial symmetry, as we know, is anomalous and, therefore, not a symmetry

at all. Finally, it is known experimentally, the SU(2)L ⊗ SU(2)R symmetry is
spontanesouly broken to the diagonal subgroup of SU(2)L+R. Since there are

six generators of the original group and three of the diagonal subgroup, three

symmetry generators are “broken”. Hence, one expects to find three massless

Goldsone bosons in the spectrum of hadrons. One indeed finds them; they

are called “pions” and they are not massless (but light). The assumption

then is that their masses are due to the fact that quark masses do not really

vanish but are rather small (numerically, a pion has a mass of about 140 MeV

whereas up and down quarks have masses of just a few MeV.
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