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17 Basics of the Standard Model

We will discuss the current theory of subatomic world – the Standard Model

of particle physics. This theory was formulated in a series of papers by

Sh. Glashow, S. Weinberg and A. Salam. By the time the theory was pro-

posed (late 1960s), it was known that there exists an electron (discovered in

1897) and an electron neutrino (1956), a muon (1936) and a muon neutrino

(1962). The τ-lepton and the τ-neutrino were unknown.

It was also understood that there is an electromagnetic interaction, facil-

itated by massless photons, that can be described by a gauge theory known

as Quantum Electrodynamics. It was also known that there are weak in-

teractions that cause neutron decay n → p + e + ν̄e and the muon decay

µ→ e+ ν̄e + νµ. There was Fermi theory, which stipulated that weak decays

are described by the following Lagrangian

LF = −
GF√
2
[p̄γµ(1 + γ5)n] [ēγ

µ(1 + γ5)ν] + h.c., (17.1)

and a similar one for the muon decay. The Lagrangian Eq. (17.1) displays

maximal parity violation in that only left-handed fermions (ψL ∼ (1 + γ5)ψ)
participate in weak interactions. Also, weak interactions were known to be

short-range, at variance with electromagnetic interactions.

These two points imply that if weak interactions are to be described by

gauge fields, these gauge fields have to couple differently to left- and right-

handed fermions and, moreover, these gauge fields have to be massive to

make sure that weak interactions are short-range.

The first point – a different role played by left and right fields in weak in-

teractions – has important consequences. Indeed, a massive electron requires

a term Lm = mψ̄LψR +mψ̄RψL in the Lagrangian. If ψL and ψR transform

differently under gauge transformations, the mass term in the Lagrangian will

not be gauge-invariant. A possible way out is to re-use the idea of spon-

taneous symmetry breaking and apply it to fermions. Indeed, we start by

considering a theory with massless fermions that couple to a scalar field, e.g.

Lm → LY ∼ ψ̄LψRϕ + ψ̄RψLϕ†. The difference with the mass term is that
now the field ϕ can also transform under gauge transformations and it may

be possible to adjust quantum numbers of ψL,R and ϕ in such a way that LY
is invariant under gauge transformations. If, however, the field ϕ undergoes

spontaneous symmetry breaking ϕ→ v , the Yukawa Lagrangian LY produces
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a mass term for the fermion ψ, i.e. LY → ψ̄LψRm + ψ̄RψLm. So, similar

to how gauge bosons get their masses in the process of spontaneous symme-

try breaking, we can set up a gauge invariant theory with massless fermions

that, after spontaneous symmetry breaking, turns into a theory with massive

fermions. This is important since electrons and muons are, in fact, massive.

Let us now discuss how to couple fermions to gauge fields. If we put

an electron and neutrino into an SU(2) doublet and couple them to gauge

fields, there will be terms in the Lagrangian that facilitate electron-to-neutrino

transitions. If we look at the Fermi Lagrangian Eq. (17.1), we see that such

transitions are present there. The same can be done for a muon and a muon

neutrino. Since the Fermi Lagrangian only contains left-handed fields, we

combine the left-handed electron and the left-handed neutrino into an SU(2)

(gauge) doublet

ΨL =

(
ν

e

)
L

. (17.2)

Since electrons are massive, we require a right-handed field eR as well.

This field does not participate in weak interactions since it is not part of the

Fermi theory in Eq. (17.1). However, since QED is parity-conserving, photons

do couple to left- and right-handed fields with equal strength. For this reason,

we assume that both left-handed and right-handed fermions couple to an U(1)

field, but we cannot associate this field with the electromagnetic field right

away (e.g. neutrinos do not couple to photons). We will also assume that

electron neutrinos are massless and for this reason the right-handed neutrino

field νR is not needed.

Therefore, we consider a theory based on the gauge group SUL(2)×UY (1)
and only consider electron and electron neutrino. Muon and muon neutrino

can be added to the theory in a fully analogous way. Both ΨL and eR transform

under U(1) but only ΨL transforms under SU(2). We will have to break the

symmetry to give masses to (some) gauge bosons and to the electron. We

will do this with the help of a scalar complex doublet ϕ that transforms under

both SU(2) and U(1). We will continue with writing down the Lagrangian

for such a theory. We will call it LSM.

The first term in LSM, that is completely fixed once the gauge group is

specified, is the kinetic term for gauge fields. We write

Lgauge = LSU(2) + LU(1), (17.3)
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where

LSU(2) = −
1

4
W i
µνW

µν,i , LU(1) = −
1

4
BµνB

µν, (17.4)

with

W i
µν = ∂µW

i
ν − ∂νW i

µ + gϵ
ikjW k

µW
j
ν. (17.5)

and

Bµν = ∂µBν − ∂νBµ. (17.6)

To move further, we need two covariant derivatives, one for the SU(2) group

and the other one for the U(1) group. We have

DSU(2)µ = ∂µ − igT iW i
µ, (17.7)

where T i are generators of the SU(2) Lie algebra. They satisfy

[T a, T b] = i ϵabcT c . (17.8)

In case of an SU(2) doublet, these generators are represented by T i = τ i/2,

where τ i are the Pauli matrices. The U(1) covariant derivative reads

DU(1)µ = ∂µ − ig′Y Bµ, (17.9)

where Y defines a U(1) charge (a “hypercharge”) of a particular field in units

of the fundamental U(1) gauge coupling g′.

The Lagrangian Lgauge describes 3 + 1 massless gauge bosons. The the-

ory has to describe weak and electromagnetic interactions that require three

massive (weak interactions, charged and neutral currents) bosons and one

massless gauge boson (electromagnetism). As we know, this can be achieved

by breaking gauge symmetry spontaneously. To this end, we introduce the

Higgs field that is an SU(2) doublet and has a U(1) hypercharge Yh. We

write

LkinHiggs = (Dµϕ)
† (Dµϕ) , (17.10)

where

ϕ =

(
ϕ1 + iϕ2
ϕ3 + iϕ4

)
, (17.11)

and where

Dµ = ∂µ − igT iW i
µ − ig′BµYh. (17.12)
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The part of the Higgs Lagrangian that is responsible for breaking the sym-

metry is

LEWSB = −
λ

4

(
ϕ†ϕ−

v 2

2

)2
. (17.13)

The EWSB Lagrangian requires that we choose the non-vanishing vacuum

field. We write

ϕ(x) =

(
0

v+h(x)√
2

)
(17.14)

We know that this is a complete parameterization of the doublet after the

symmetry breaking since the rest can be removed by a gauge transformation.

Let us compute the mass spectrum of gauge bosons in such a theory. The

mass spectrum follows from LkinHiggs upon substituting ϕ→ ϕvac there. We find

Lkinvac → ϕTvac
[
igW i

µT
i + ig′BµYh

] [
−igW µ,jT j − ig′BµYh

]
ϕvac, (17.15)

where

ϕvac =

(
0
v√
2

)
(17.16)

We expand Eq. (17.15) and write

ϕTvac

[
g2W i

µW
j,µT iT j + Y 2h g

′2BµB
µ + 2gg′YhW

i
µB
µT i
]
ϕvac. (17.17)

Then, we compute

g2W i
µW

j,µ ϕTvacτ
iτ jϕvac =

g2

4
W i
µW

j,µϕTvacδi j 1̂ϕvac =
g2v 2

8
W i
µW

i ,µ,

Y 2h g
′2BµB

µϕTvacϕvac =
Y 2h g

′2v 2

2
BµB

µ,

2gg′YhW
i
µB
µϕTvacτ

iϕvac = −
gg′Yhv

2

2
W i
µB
µδi3,

(17.18)

so that

Lkinvac →
g2v 2

8
W i
µW

i ,µ +
Y 2h g

′2v 2

2
BµB

µ −
gg′Yhv

2

2
W 3
µB
µ

=
v 2g2

8

(
W 1
µW

1,µ +W 2
µW

2,µ
)

+
v 2(g2 + 4Y 2h g

′2)

8

 g√
g2 + 4Y 2h g

′2
W 3
µ −

2g′Yh√
g2 + 4Y 2h g

′2
Bµ

2 .
(17.19)
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It follows from Eq. (17.19) that the two fields W 1, W 2 acquire the mass

m1,2 =
gv

2
, (17.20)

whereas a combination of W 3 and B fields

Zµ = cos θ W
(3)
µ − sin θ Bµ (17.21)

acquires the mass

mZ =
vg

2 cos θ
. (17.22)

To write the above equations in a compact form, we introduced weak

mixing angle θ; the cosine and sine of this angle is fixed in terms of the gauge

coupling and the Higgs boson hypercharge

cos θ =
g√

g2 + 4Y 2h g
′2
, sin θ =

2g′Yh√
g2 + 4Y 2h g

′2
. (17.23)

A combination of fields that is orthogonal to Eq. (17.21) reads

Aµ = sin θ W
(3)
µ + cos θ Bµ. (17.24)

An important consequence of Eq. (17.19) is that the field Aµ remains mass-

less; for this reason, we would like to associate it with the photon.

For future reference, we write formulas for the inverse field transformation

W 3
µ = cos θZµ + sin θAµ,

Bµ = − sin θZµ + cos θAµ.
(17.25)

It is convenient to choose Yh = 1/2. In this case, formulas for the mixing

angles become very simple

cos θ =
g√

g2 + g′2
, sin θ =

g′√
g2 + g′2

, (17.26)

and the combination of fields that remains massless couples to the Higgs

doublet with the following strength

Dµφ→
(
−igT 3W 3

µ − ig′Y Bµ
)
φ→ −ig cos θAµ (T3 + Y )φ. (17.27)
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Since for the choice of the Higgs field as in Eq. (17.15)

T3ϕ = −
1

2
ϕ, (17.28)

and since we have chosen Y ϕ = 1/2ϕ,

(T3 + Y )ϕ = 0, (17.29)

and the Higgs field does not couple to photons. Since photons couple to

the electric charge, we conclude that the Higgs field (including the vacuum

expectation value) is neutral.

We continue with the discussion on leptons. We will only consider elec-

tron and electron neutrino since muon and muon neutrino are included into

the SM in an identical way. As we already said, the left-handed fields are

SU(2) doublets and the right-handed electrons are SU(2) singlets. We con-

sider massless neutrinos and, therefore, we do not introduce the right-handed

neutrino field. We write the Lagrangian

LF = ψ̄Li D̂LψL + ēRi D̂ReR, (17.30)

where

DµL = ∂
µ − igW i

µ

τ i

2
− ig′BµYL,

DµR = ∂
µ − ig′BµYR.

(17.31)

Since left and right fields have different quantum numbers, we cannot write

the mass term for an electron since it mixes left- and right-handed fields. We

will return to this question after we study how gauge bosons interact with

fermions.

To understand this, we neglect partial derivatives in Eq. (17.31) and con-

sider only terms of the type ψ̄Vµγ
µψ = ψ̄V̂ ψ, where Vµ is a gauge field.

Then

ψ̄Li D̂LψL →
1

2

[
ν̄L(gŴ

3 + 2g′B̂YL)νL + ēL(−gŴ 3 + 2g′B̂YL)eL

+gν̄L(Ŵ
1 − i Ŵ 2)eL + gēL(Ŵ

1 + i Ŵ 2)νL
]
,

ēRi D̂ReR → g′YRēRB̂eR.

(17.32)
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To understand how electrons and neutrinos interact with gauge fields, we

express W 3
µ and Bµ through mass eigenstates of gauge fields.

We begin by using Eq. (17.25) to determine how Zµ and Aµ interact

with electrons and neutrinos. Of particular importance to us is the coupling

of the photon field Aµ to fermions. This is so because we know how this

coupling should look like. In particular, the photon should not couple to

neutrinos since they have no electric charge and it should couple to both left-

and right-handed electrons with equal strength that is proportional to the

electron’s electric charge. These features provide important constraints for

the theory.

We begin with neutrino’s couplings to photons. This coupling arises from

the ν̄L · · · νL term in Eq. (17.32) if we replace both W 3
µ and Bµ with Aµ,

following Eq. (17.25). We find

1

2
ν̄L(gŴ

3+2g′B̂YL)νL →
1

2
(g sin θ+2g′YL cos θ)ν̄LÂνL =

gg′ (1 + 2YL)√
g2 + g′2

ν̄LÂνL.

(17.33)

Hence, to ensure that photons do not couple to neutrinos, we need to choose

the hypercharge of left-handed leptons to be YL = −1/2. We can check that
with this choice the relation between T3 and the hypercharge operator

Q = T3 + Y (17.34)

predicts that the electric charge of the left-handed electron is −1 and the
charge of neutrino is zero.

The hypercharge of the right-handed electron follows from the require-

ment that photons couple to both left- and right-handed electrons in the

same way. We write

1

2
ēL(−gŴ 3 + 2g′B̂YL)eL + g

′YRēRB̂eR → −g sin θēLÂeL + g′ cos θYRēRÂeR
(17.35)

Since g sin θ = g′ cos θ, it follows from the above equation that YR = −1.
Also since the coupling of electrons to photons is proportional to the electric

charge, we find

g sin θ = g′ cos θ = e =
√
4πα. (17.36)
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We can now easily write the remaining couplings of gauge bosons to lep-

tons. From Eq. (17.32) we have distinct contributions:

Charged current interaction :
g

2
√
2
ν̄γµ(1 + γ5)eW

µ,+ + h.c.;

Neutral current interaction :
g

4 cos θ
ν̄γµ(1 + γ5)νZ

µ;

Neutral current interaction : −
g

4 cos θ
ē
[
γµ(1− 4 sin2 θ) + γµγ5

]
eZµ;

Electromagnetic interaction : − e ēγµeAµ.

We will discuss in detail how to introduce fermion masses into the theory

in the next lecture. Here we will very briefly say a few words about how

this can be done. Since left- and right-handed fields have different quantum

numbers, the relevant term also involves the Higgs field. We write

LY =
[
f ψ̄LϕeR + h.c.

]
, (17.37)

The Yukawa Lagrangian in Eq. (17.37) is obviously invariant under SU(2)

transformations since both, the left-handed field and the Higgs field are SU(2)

doublets. We can also check that it is U(1) invariant since the following

condition is satisfied

YH + YR − YL = 0 (17.38)

It is then easy to see that the Yukawa Lagrangian Eq. (17.37) provides a mass

to electrons after the symmetry breaking. Indeed, upon replacing the Higgs

field with its vacuum expectation value we obtain

LY → fe [ϕ̄LϕvaceR + h.c.] =
fev√
2
[ēLeR + h.c.] = me [ēLeR + h.c.] , (17.39)

where me = fev/
√
2 is the electron mass. As we see, neutrino remains

massless.
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