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19 Quantization of gauge theories with spontaneous sym-

metry breaking

We would like to discuss quantization of theories with spontaneously broken

gauge symmetries since there are some peculiarities that one needs to be

aware of. We will start with a a very simple U(1) gauge theory coupled to

a complex scalar field which develops a non-vanishing vacuum expectation

value.

The Lagrangian of the theory reads

L = −
1

4
F µνFµν + (Dµφ)

+(Dµφ)− V (φ), (19.1)

where Dµ = ∂µ − igAµ is the covariant derivative, φ = (φ1 + iφ2)/
√
2 and

V (φ) = −
λ

4

(
|φ|2 −

v 2

2

)2
. (19.2)

We then choose the vacuum expectation value such that

⟨0|φ1|0⟩ = v , ⟨0|φ2|0⟩ = 0, (19.3)

and write

φ1 = v + h, (19.4)

to describe deviations from the vacuum expectation value. We find

L = −
1

4
F µνFµν +

1

2
(∂µh + gAµφ2)

2 +
1

2
(∂µφ2 − gAµ(v + h))2 − V (φ).

(19.5)

To identify propagators and interaction vertices we separate terms in the

Lagrangian that are quadratic in the fields from the rest that we interpret

as interactions. If we do this, we will find that in the third term in the

Lagrangian there is a contribution −gv∂µφ2Aµ that “mixes” the field φ2 and
the field Aµ. In our previous discussion of such theories we were removing

such terms by performing a gauge transformation on the field Aµ. However,

this discussion was performed at the level of a classical field theory. If we

attempt to properly quantize a gauge theory using the path integral method,

we must fix the gauge by inserting a δ-functional into the integral over all
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field configurations. We should try to do the same also for in this case as

well.

To quantize the original theory, we write the path integral as follows

Z =

∫
DφDAµ Dχ δ(G[Aχ]) det

(
dG[Aχ]

dχ

)
e iS[A,φ]. (19.6)

The gauge fixing condition that we choose reads

∂µAµ − g(x) = 0. (19.7)

Anticipating the transition to a spontaneously broken theory , we choose

g(x) = −ξgvφ2 + f (x), (19.8)

where f (x) is an arbitrary function and ξ is the parameter. Since the result

does not depend on the choice of g(x) or on the choice of f (x), we write

Z =

∫
DfDφDAµdet

(
dG[Aχ]

dχ

)
δ(∂µAµ + ξgvφ2 − f (x))e iS[A,φ]−i

∫
d4xf (x)2/2ξ

=

∫
DφDAµdet

(
dG[Aχ]

dχ

)
e iSξ[A,φ],

(19.9)

where the new action Sξ reads

Sξ =

∫
d4xLξ, (19.10)

and

Lξ = −
1

4
F µνFµν + (Dµφ)

+(Dµφ)− V (φ)−
(∂µA

µ + ξgvφ2)
2

2ξ
. (19.11)

It remains to compute the determinant. When the gauge transformation

is performed

Aµ → Aµ + ∂µχ(x), φ2 → gχ(x)φ1(x) (19.12)

we find

G → G + ∂2χ(x) + ξg2vφ1(x)χ(x)− f (x), (19.13)
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so that

det

(
dG[Aχ]

dχ

)
= det

(
∂2 + ξg2vφ1

)
= det

(
∂2 + ξg2v(v + h(x))

)
. (19.14)

This determinant does not decouple since it depends on the Higgs field.

Hence, it must be written as an integral over ghost fields and added to the

action. We find

det
(
∂2 + ξg2v(v + h(x))

)
=

∫
Dc̄Dc e i

∫
d4xc̄(−∂2−ξg2v(v+h(x)))c . (19.15)

The Lagrangian of the theory is given by Lξ and the ghost Lagrangian

that we can deduce from the above equation. We rewrite it using v , h and

φ2 fields. We find

Lfull = −
1

4
F µνFµν +

1

2
(∂µh + gAµφ2)

2

+
1

2
(∂µφ2 − gAµ(v + h))2 −

(∂µA
µ + ξgvφ2)

2

2ξ
− V (φ)

− c̄
(
∂2 + ξg2v(v + h(x))

)
c.

(19.16)

The important feature of this new Lagrangian is that the gauge fixing term

also contains the cross terms ∂µA
µφ2. When we combine the cross term from

the kinetic energy of the φ field and from the gauge fixing term, we find the

following contribution to the action

−gv
∫
d4x ((∂µφ2)Aµ + φ2∂µA

µ) = −gv
∫
d4x∂µ(φ2A

µ) = 0, (19.17)

where we assume that all fields vanish at the infinitely remote three-dimensional

sphere.

We can now investigate all the terms that are quadratic in the fields

h, φ2, Aµ and c to determine the mass spectrum of the theory and deduce

propagators that we use to describe these fields. We find

−
1

4
F µνFµν −

1

2ξ
(∂µA

µ)2 +
g2v 2

2
AµA

µ

+
1

2
(∂µh)

2 −
λv 2

4
h2 +

1

2
(∂µφ2)

2 −
ξg2v 2φ22
2

− c̄
(
∂2 + ξg2v 2

)
c.

(19.18)
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Hence, our theory has the gauge boson Aµ with the mass m2A = g
2v 2, the

Higgs boson with the mass λv 2/2 and would-be Goldstone field φ2 and the

ghost field c whose masses equal to m2φ = ξm
2
V . We note that the unphysical

nature of these particles is illuminated by the fact that their masses depend

on an arbitrary gauge parameter ξ.

It is instructive to compute the propagator of the gauge field. Focusing

on terms that are quadratic in Aµ, we write

S[A] =

∫
d4x
1

2
Aµ Tµν A

ν (19.19)

where

Tµν =
(
∂2gµν − ∂µ∂ν

)
+
1

ξ
∂µ∂ν +m

2
V g
µν. (19.20)

When discussing the quantization of gauge fields we have shown that the

propagator of the field Aµ is given by the inverse of Tµν

⟨0|TAµ(x1)Aν(x2)|0⟩ = iT−1µν (x1, x2). (19.21)

To find the inverse of the operator T µν, we switch to the momentum

space and write

iT−1µν (x1, x2) =

∫
d4k

(2π)4
Dµν(k)e

−ikα(xα1 −xα2 ). (19.22)

Then

T µν(k) Dνρ(k) = ig
µ
ρ , (19.23)

where

Tµν(k) = −k2gµν +
(
1−
1

ξ

)
kµkν +m

2
vgµnu. (19.24)

Computing the inverse, we find

Dµν =
−i

k2 −m2v + i0

(
gµν − (1− ξ)

kµkν

k2 − ξm2V

)
. (19.25)

The unitary (physical) gauge correspond to the formal limit ξ → ∞. Note,
however, that this limit is non-trivial; for example, the coupling between the

ghost fields c and the Higgs boson h becomes very large in that limit.
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We will continue with the discussion of the quantization of a non-Abelian

gauge theory with the symmetry group SU(2). The gauge symmetry is broken

by the Higgs doublet. The Lagrangian reads

L = −
1

4
W aµνW

a,µν + (Dµφ)+(Dµφ)− V (|φ|), (19.26)

where

Dµφ = ∂φ− igT aφ. (19.27)

Before we proceed, it is useful to simplify the kinetic term for the scalar field.

We write

(Dµφ)+(Dµφ) = ∂
µφ+∂µφ+ g

2AaµA
b,µφ+T aT bφ

+ igAa,µ
(
φ+T a∂µφ− ∂µφ+T aφ

)
.

(19.28)

We are interested in the mixing terms that appear in the above equation once

the electroweak symmetry breaking happens. In this case,

φ = φvac + φ̃, (19.29)

where

φvac =
1√
2

(
0

v

)
, (19.30)

and φ̃ contains four fields that parameterize excitations around φvac.

To determine mixing terms, we need to extract from Eq. (??) terms that

are quadratic in in fields, i.e. Aµ and φ̃. To simplify this, we write φ̃ as follows

φ̃ =
h(x)

v
φvac +

2i

v
χaT aφvac. (19.31)

Writing generators T a in terms of Pauli matrices, we obtain

φ̃ =
1√
2

(
χ2 + iχ1
h − iχ3

)
, (19.32)

which is indeed a complete parameterization.

We will now use the parameterization shown Eq. (19.31) to simplify the

different terms in Eq. (19.28). First, it is easy to see that

∂µφ+∂µφ =
1

2
(∂µh)

2 +
1

2

3∑
a=1

(∂µχa)
2. (19.33)
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Then, since we are only interested in terms that are quadratic in the fields,

we find

g2AaµA
b,µφ+T aT bφ = g2AaµA

b,µφ+vacT
aT bφvac =

1

2

g2v 2

4
AaµA

a,µ, (19.34)

where we have used T aT b+T bT a = δab/2 which is valid for SU(2) generators.

This is the mass term for gauge bosons and we read off

m2A =
g2v 2

4
. (19.35)

Finally, we consider the last term in Eq. (19.28). Since we are only inter-

ested in terms that are quadratic in the fields, we write

igAa,µ
(
φ+T a∂µφ− ∂µφ+T aφ

)
→ igAa,µ

(
φ+vacT

a∂µφ̃− ∂µφ̃+T aφvac
)

→ −ig(∂µAa,µ)
(
φ+vacT

aφ̃− φ̃+T aφvac
)

=
2g

v
(∂µA

a,µ)χbφ+vac(T
aT b + T bT a)φvac =

1

2
gv(∂µA

a,µ)χa.

(19.36)

The mixing will have to be removed by the gauge-fixing term; if the gauge

condition is chosen to be

Ga[A, φ] = f a(x), (19.37)

the change in the Lagrangian due to gauge fixing term becomes

Lg.f . = −
∫
d4x
(f a(x))2

2ξ
. (19.38)

Hence, if we choose Ga[A, φ] as follows

Ga[A, φ] = ∂µA
a,µ +

1

2
ξgvχa, (19.39)

we will ensure that the mixing terms cancel if the gauge fixing term is added to

the original Lagrangian. When the above equation is substituted into gauge-

fixing Lagrangian, the last term provides the mass to Higgs Goldstones. We

find

m2χ = ξ
g2v 2

4
= ξm2A. (19.40)
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It remains to derive the functional determinant det(δGa/δθb) where θb are

the parameters of the gauge transformation. This is obtained by performing

the gauge transformations of the gauge field Aaµ (which is identical to what

we discussed when talking about non-Abelian gauge theories) and deriving the

transformation of the fields χa from the representation of the field φ̃ given

in Eq. (19.31). Let us start with the χ fields. Starting with an infinitesimal

gauge transformation

φ→ Uφ, (19.41)

where U = e iαaT
a ≈ 1 + iαaT a, we obtain

δφ = iαbT
b

((
1 +
h(x)

v

)
φvac +

2i

v
χaT aφvac

)
. (19.42)

After straightforward algebra, where we use the important property of SU(2)

generators

T aT b =
1

4
δab +

1

2
i ϵabcT c , (19.43)

we find

δφ = −
1

2v
αaχ

aφvac +

(
1 +
h

v

)
iαaT

aφvac −
i

v
T aϵabcα

bχcφvac. (19.44)

It follows

δh(x) = −
1

2
αaχa, δχa =

1

2
(v + h)αa −

1

2
ϵabcαbχc . (19.45)

Since

δAaµ =
1

g
Dµαa, (19.46)

we find

g

(
δG

δα

)ab
= (∂µDµ)ab +

1

2
ξg2v

(
1

2
(v + h)δab −

1

2
ϵabcχc

)
. (19.47)

Writing the determinant of this operator as an integral of ghosts fields, we

observe that, similar to the Abelian case, the ghosts fields have the same

masses as Higgs Goldstone bosons m2c = ξg
2v 2/4, that they have standard

couplings to the gauge fields (as dictated by the covariant derivative in the

above formula) and that they interact with the Higgs field and the Higgs

Goldstone fields χa.
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