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20 Chiral anomalies in the Standard Model

In lecture 14 we talked about the anomaly of the axial-vector singlet current.

We derived an equation which related the divergence of the axial current with

an operator that contains field-strength tensors of the electromagnetic field

and argued that this result is exact. In this lecture we will discuss two things:

1) how to use this result to derive a decay rate of π0 to two photons (a very

important result in the history of QCD) and 2) why chiral anomalies are not

a problem in the Standard Model in spite of the fact that we gauge the left-

and the right-handed fermion fields differently.

We will start with the discussion of the decay of a neutral pion to two pho-

tons π0 → γγ. To this end, consider a two-flavor QCD. The electromagnetic

current reads

Jemµ = ψ̄Q̂γµψ, (20.1)

where

ψ =

(
u

d

)
, (20.2)

and

Q̂ =

(
2
3
0

0 −1
3

)
=
1

6
1+
1

2
τ3. (20.3)

If we consider the correlator of an axial current

Ja,µ5 = ψ̄
τa

2
γµγ5ψ (20.4)

and two photons, the result will be proportional to

Tr
[
τaQ̂Q̂

]
= Tr

[
τa
(
5

18
+
1

6
τ3
)]
=
1

3
δa3. (20.5)

We will also introduce the factor Nc = 3 which is the number of quark

colors; we have to sum over quark colors when computing diagrams similar to

those shown in Fig. 1 in two-flavor QCD. The divergence of the axial current

becomes

∂µJ
a,µ
5 =

αNcδ
a3

12π
FµνF̃

µν. (20.6)

We will now show that this formula leads to an unambiguous prediction for

the decay π0 → γγ. Indeed, consider the matrix element ⟨γ(k1)γ(k2)|Ja,µ5 |0⟩
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and write its Lorentz decomposition that is consistent with Eq.(20.6). Then

⟨γ(k1)γ(k2)|Ja,µ5 |0⟩ =
iqµ
q2
δa3
αNc
3π

ϵαβρσϵ
α
1 ϵ
β
2k
ρ
1k
σ
2 + .... (20.7)

where ellipses stand for contributions to the amplitude that are transversal

w.r.t. q. The longitudinal term in Eq.(20.7) is written in such a way that it

reproduces the anomaly equation Eq.(20.6) when it is contracted with qµ. A

very important aspect of Eq.(20.7) is that the matrix element there contains

a pole in a variable q2. Poles in kinematic variables appear in amplitudes for

a reason – typically, they correspond to physical particles that appear in the

spectrum of the theory.1

In our case, we assume that the SUL(2) × SUR(2) extended flavor sym-
metry is spontaneously broken and that the current Ja,µ5 is the current asso-

ciated with the broken symmetry. In the broken phase, this current is written

through a Goldstone boson field Ja5µ = −∂µπa. Hence, the pole that we see in
Eq.(20.7) is the contribution of a neutral pion and, given this relation between

Jµ5 and the pion, we can write for the longitudinal part of the correlator

⟨γ(k1)γ(k2)|Ja,µ5 |0⟩ =
iFπq

µ

q2
Aπ0→γγ (20.8)

By comparing Eq.(20.7) and Eq.(20.8), we obtain the amplitude for a decay

of a pion to two photons

Aπ0→γγ =
αNc
3πFπ

ϵαβρσϵ
α
1 ϵ
β
2k
ρ
1k
σ
2 . (20.9)

It is worth emphasizing, again, that we were able to obtain the decay ampli-

tude of a pion into two photon in a strongly-interacting theory. This amplitude

is exact since anomalies do not receive higher-order corrections so that the

prediction of a pole at q2 = 0 is an unambiguous consequence of this fact.

We now change topic and turn to the discussion of anomalies in the

Standard Model. This is an interesting problem because the Standard Model

is a theory where left- and right fields are gauged differently. Hence, both

vector and axial currents in the Standard Model are related to gauge fields and,

therefore, they better not be anomalous. This is indeed the case. However,

some work is needed to see how this conclusion comes about.

1Recall a similar logic in the discussion of Goldberger-Treiman relation.
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Since anomaly manifests itself through an ultraviolet behavior of the the-

ory, symmetry breaking of the Standard Model is largely irrelevant. We

can therefore discuss three-point functions for SU(2)L × U(1)Y gauge fields,
W±,W 3, B. We should also consider gluon fields since they couple to elec-

troweak fields through fermion loops. We will need the quantum numbers of

leptons and quarks. We will take the first generation to write them down.

We have

Ŷ

(
νl
eL

)
= −
1

2

(
νl
eL

)
, Ŷ

(
uL
dL

)
=
1

6

(
ul
dL

)
, (20.10)

Ŷ eR = −eR, Ŷ uR =
2

3
uR, Ŷ dR = −

1

3
dR. (20.11)

Also, quarks have three colors and left- and right-fields contribute to the

anomaly with opposite signs. The last feature arises because from three

vertices in the triangle, one gets a product of three projection operators that

turn into 1± γ5 depending on wheter the projector is left or right. Since only
γ5 contributes to the anomaly left and right fermions indeed contribute with

a different sign to anomalous correlators. In what follows, we will account for

contributions of right quarks (leptons) with an additional minus sign relative

to the contribution of left quarks (leptons).

The relevant correlators are then proportional to the following factors

• Bgg

Tr
[
T aT b

] [(1
6

)
× 2 |uL,dL + (−1)

(
2

3

)
|uR + (−1)

(
−
1

3

)
|dR
]
= 0.

(20.12)

• BBB

2×
(
−
1

2

)3
|eL,νL + (−1)(−1)3 |eR

+ Nc

[
2×

(
1

6

)3
|uL,dL + (−1)

(
2

3

)3
|uR + (−1)

(
−
1

3

)3
|dR

]
=−

1

4
+ 1 +

1

36
−
8

9
+
1

9
= 0.

(20.13)
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• BW 3W 3

2×
(
−
1

2

)(
1

2

)2
|eL,νL + Nc2×

(
1

6

)(
1

2

)2
|uL,dL = −

1

4
+
1

4
= 0.

(20.14)

• BW+W−(
1√
2

)2((
1

2

)
|eL +

(
1

2

)
|νL
)
+ Nc

(
1√
2

)2((
−
1

6

)
|uL +

(
−
1

6

)
|dL
)
= 0

(20.15)

• W 3gg

Tr
[
T aT b

](1
2
|uL −

1

2
|dL
)
= 0. (20.16)

• W 3W 3W 3(
1

2

)3
|νL −

(
1

2

)3
|eR + Nc

((
1

2

)3
|uL −

(
1

2

)3
|dL

)
= 0. (20.17)

It follows from the above equations that chiral anomalies cancel in the

Standard Model. This happens separately for each of the three generations

so anomaly cancellation does not provide any clue as to why there are three

generations in Nature.
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