
Problem set 1 for “Topology in condensed matter”

To be discussed in exercise class on November 7, 2023

1 Fundamental homotopy group π1

This set of exercises will familiarize you with the basic terms. We will study the simplest homotopy group π1(S1),
which defines topological properties of mappings S1 7→ S1. One of the ways to realize such mappings is to consider
specific angular parametrization of a one-dimensional sphere both for the target space and for the source space,
denoted as φ(θ). For the source space we can require θ ∈ [0, 2π]; but since 0 and 2π define the same point on a
circle, naively one would impose periodic boundary conditions φ(0) = φ(2π). However, the correct requirement is
that φ(0) and φ(2π) define the same point on the circle; and thus generally one should also allow mappings with
φ(2π)− φ(0) = 2πW with W ∈ Z.

1. Consider two mappings:
φ1(θ) = π sin θ, φ2(θ) = 4π cos θ (1)

Show that they are topologically equivalent (homotopic, φ1 ∼ φ2): i.e. provide explicitly a continuous map
H(θ, t) (homotopy) such that H(θ, t = 0) = φ1(θ) and H(θ, t = 1) = φ2(θ). Show that both mappings are
topologically equivalent to a trivial map φ0(θ) = 0.

2. A trivial map belongs to a wider family of linear maps:

φW (θ) =Wθ (2)

Show that they define a valid map only if W ∈ Z. Prove that any pair of maps from this family are not
topologically equivalent to each other; thus they can serve as the representatives of different equivalence
classes. We define that any map that is homotopic to φW (θ) belongs to a class [W ]; we’ve thus proven that
mappings φ1,2(θ) belong to a class [0]. In fact, it’s not hard to prove that this classifies all the mappings.

3. Using the definition of a group operation from the lecture, show that map φW1
∗ φW2

is homotopic to map
φW1+W2

. Show that it proves that (any map homotopic to φW1
) ∗ (any map homotopic to φW2

) is homotopic
to φW1+W2

. This statement can be shortly written as [W1] ∗ [W2] = [W1 + W2]. We have just built an
isomorphism between homotopy group π1(S1) and group of integer numbers Z, i.e. proven that π1(S1) = Z.

2 Skyrmions
In this exercise you will study mappings S2 7→ S2, which define the homotopy group π2(S2). Such mappings can be
realized as vector functions with a constraint:

n(r) = (nx(r), ny(r), nz(r)), n2(r) = n2x(r) + n2y(r) + n2z(r) = 1 ⇒ n(r) ∈ S2 (3)

while for the source space it will be convenient to require:

r = (x, y) ∈ R2, lim
|r|→∞

n(r) = n0, (4)

because a two-dimensional plane where infinity is identified with a single point is topologically a two-dimensional
sphere.
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1. Prove that the following quantity is a topological invariant (called “topological charge”):

Q[n] =
1

4π

∫
d2r n(r) · [∂xn(r)× ∂yn(r)] (5)

To do that, consider a continuous infinitesimal variation ñ(r) = n(r) + ϵδn(r) (with ϵ → 0) and prove that
Q[ñ] = Q[n] in the leading order in ϵ. Don’t forget that variation should be consistent with ñ2(r) = 1!

2. Consider this quantity in the spherical coordinates for the target space n = (sin θ cosφ, sin θ sinφ, cos θ) and
in polar coordinates for the source space r = (r cosα, r sinα):

Q[n] =
1

4π

∫ ∞

0

dr

∫ 2π

0

dα sin θ (∂αθ∂rϕ− ∂rθ∂αϕ) (6)

Consider now for simplicity configurations with separable coordinates ϕ(r, α) = ϕ(α) and θ(r, α) = θ(r). Note
that such dependence is only possible if sin θ(r → 0) = sin θ(r → ∞) = 0. Show that topological charge is
quantized, i.e. Q[n] ∈ Z.

3. Provide an an explicit formula for the configuration n(r) with an arbitrary given topological charge Q.

3 Berry curvature for spin s

This exercise will generalize result for the Berry curvature for spin-1/2 in a magnetic field derived in the lecture to
an arbitrary spin s. The system is described by the following Hamiltonian:

Ĥ(h) = h · Ŝ (7)

It has 2s+ 1 eigenvalues ϵm = m|h| corresponding to eigenstates denoted as |m(h)⟩, with m = −s, . . . , s.
On the lecture it was demonstrated that the Berry connection for a state with a given quantum number m can

be obtained using the following formula:

Ωµν
m (h) = i

∑
m′ ̸=m


〈
m(h)

∣∣∣∂Ĥ(h)
∂hµ

∣∣∣m′(h)
〉〈

m′(h)
∣∣∣ ∂Ĥ∂hν

∣∣∣m(h)
〉

(ϵm(h)− ϵm′(h))2
− c.c.

 , (8)

which doesn’t require calculation of derivatives of the instantaneous eigenfunctions |m(h)⟩. Using this formula,
show that the corresponding “Berry magnetic field” bµm(h) = 1

2ϵ
µνλΩνλ

m (h) corresponds to a magnetic field created
by a “magnetic monopole” sitting at the origin h = 0:

bµm(h) = −m hµ

|h|3
(9)

Hint: One can greatly simplify the calculation by noting that Ωµν
m transforms under 3D rotations as a second-

rank tensor, thus making it possible to perform a rotation to coordinate system where h aligned parallel to z-axis,
h = (0, 0, |h|). Show that only non-zero components of Ω are Ωxy and Ωyx, and calculate them using the known
matrix elements of the ladder operators Ŝ± ≡ Ŝx ± iŜy for the quantum spin algebra:

Ŝ+ |m⟩ =
√
s(s+ 1)−m(m+ 1) |m+ 1⟩ , Ŝ− |m⟩ =

√
s(s+ 1)−m(m− 1) |m− 1⟩ (10)

What is the corresponding “Berry magnetic field”? Use symmetry considerations to generalize obtained result for
an arbitrary direction of h.

4 Berry connection in the degenerate case
The adiabatic theorem states that if the evolution is sufficiently slow, the transitions between states with different
energies are negligible. If, however, the instantaneous Hamiltonian contains degenerate subspaces, the transitions
between them are allowed, and the corresponding adiabatic evolution might be non-trivial. In this exercise you will
explore the implications of this.
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1. Consider arbitrary degenerate subspace with degeneracy d, spanned by eigenvectors {|a(R)⟩}da=1. At any time
moment of the adiabatic evolution, the wavefunction can be expanded as the linear superposition of those
vectors:

|ψ(t)⟩ =
∑
a

ca(t) |a(R(t))⟩ (11)

Show that the expansion coefficients obey system of linear equations of motion:

dca(t)

dt
= i

∑
α,b

dRα

dt
Aα

ab(R(t))cb(t) (12)

and derive the generic expression for the non-Abelian Berry connection Aα
ab(R), which in this case becomes a

d× d matrix.
Note: unlike the non-degenerate case where this equation can be solved explicitly and gives rise to the Berry
phase

ca(t) = exp(iγa(t)), γa(t) =

∫ R(t)

R(0)

A(R)dR, (13)

for the degenerate case the adiabatic evolution can be highly non-trivial. This is because the generic matrix
Aα

ab(R) might not commute with itself for different values of R, justifying the name “non-Abelian”.

2. Now consider a specific example. A free particle in a two-dimensional infinite deep potential well of size L×L:

Ĥ =
p̂2x + p̂2y
2m

+ U0(x, y), U0(x, y) =

{
0, |x| < L

2 & |y| < L
2

∞, otherwise
(14)

All the eigenstates of such system can be found in a separable form and expressed via eigenfunctions of the
one-dimensional infinite deep potential well ψn(x) =

√
2/L · sin (πn [x/L− 1/2]) as follows:

ψnm(x, y) = ψn(x)ψm(y), (n,m = 1, 2, 3, . . . ) (15)

What are the corresponding eigenvalues ϵnm? Show that |ψ12⟩ and |ψ21⟩ form a twofold degenerate subspace.

3. The well is adiabatically rotated along z-axis, so that the Hamiltonian acquires explicit dependence on the
rotation angle φ:

Ĥ(φ) =
p̂2x + p̂2y
2m

+ U0(x̃, ỹ),

{
x̃ = x cosφ+ y sinφ

ỹ = −x sinφ+ y cosφ
(16)

Calculate explicitly the corresponding Berry connection Aab(φ).

4. The system was initially prepared in the state |ψ12⟩. Find the state of the system after the box is rotated by
φ = 2π. What is the probability to remain in the same state after the full evolution?
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