Solutions to problem set 2 for “Topology in condensed matter”

Discussed in exercise class on November 21, 2023

1 Semiclassical description of quantum spin

Without loss of generality, we can consider magnetic field parallel to z axis: h = (0,0, h). The action then reads:

Alp, 0] = S/dt [~ 5(1 — cos6) — hcos 0] (1)
The semiclassical equations of motion are thus:
0A oL

—_— = 1 — = = 2

500) 00 Ssinf (—p+h)=0=¢=nh (2)

ﬂz daL*ECOSQ:OéQ:const (3)

dp(t) dtdy  dt
which exactly corresponds to the following equations of motion for spin components:
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Note that in the Heisenberg picture this is just equations of motion for the spin operator:
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2 Jackiw-Rebbi model

1. Denote k; = kcos¢ and k, = ksin ¢; then the Hamiltonian reads:
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Denote also E = \/v%k? + A2, Then its normalized eigenvectors are:
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2. The given formula for the Berry curvature for both bands yields:
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and thus the Chern numbers read:
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3. In the Fourier domain, the given lattice model corresponds to the same Hamiltonian up to replacement
kg — sin(kga)/a and ky — sin(kya)/a:

H'(k) = or (64 sinkya + 6y sinkya) + A6, (12)
a
and, clearly, its Taylor expansion in k; ya < 1 reproduces the original Dirac Hamiltonian.

4. The expansion is straightforward:

K =(0,7/a) = Hi(p) = H' (K1 + p) ~ vp(62ps — 6ypy) + A6, (13)
Ky = (1/a,0) = Hy(p) = H (K3 +p) & vp(—6.ps + 6,py) + A6, (14)
K3 = (r/a,n/a) = Hs(p) = H' (K3 + p) ~ 0p(—62ps — G4py) + A6 (15)

Each Hamiltonian indeed describes own Dirac cone.

5. So far we have obtained Hamiltonians of the following form:

H = vp (510405 + S20ypy) + AG., s12==1 (16)

Then
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However, as each sign change corresponds to replacement ¢ — —¢ (for Hy), ¢ — 7w —¢ (for Hy) and ¢ — 7w+ ¢

(for Hs), while the combination of matrix elements is ¢-independent. Thus:

Qi(p) = —21m< X 8189 (17)

oW (p) = P (p) = - (p) = -2 (p), (18)

and the total Chern number of the lower band vanishes:
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Since C'y + C_ =0, it also implies vanishing of the Chern number for the upper band.

6. Now we switch back to the inhomogeneous case. Substituting the proposed ansatz to the Schroediner equation,
we obtain:
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(c1 +ica)A(x) —icgupky, = Ec
i(Cl =+ ZCQ)A('I) + iclkay = EC2

which indeed has a solution provided ¢; +ica = 0 and E = vpk,. This solution describes a chiral (because
the group velocity is OF/0k, = vp > 0, the mode propagates in a single direction) edge modes localized at
the boundary between two topologically distinct bulk phases.

Lattice models in magnetic field: Chern insulators

1. Explicit calculation gives:
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Commutation with Ty is trivial because Hamiltonian is explicitly translationally invariant in y direction:

T,'HT, = H (22)

which proves [H,T,] = [H,T,] = 0. Finally, one has:
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which proves that for ®/®y = p/q with p,q € Z, one has [Tg,Ty] =0.



2. Direct substitution of the Ansatz to the Schroedinger equation yields:

H |ky, ky) Z > etttk g omg ) (ta(Yat1 + Ya-1) + 2ty cos(ky — 2ma® /o))

a=1m,n

Careful analysis of terms with ¢ = 1 and a = ¢ show that in this expression instead of amplitude 1y one
should have wqe’“ﬂ“, while instead of amplitude 441 one should have Y e*?%=: this precisely reproduces
twisted periodic boundary conditions obtained earlier. Finally, comparing it with the RHS of the Schroedinger
equation:

E(ky, k) |ka, ky) Zzelqk mrk g 4 mg,n) E(ky, ky)Ya (24)
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we recover the Harper equation:
— (te(Yat1 + Ya—1) + 2ty cos(ky — 2ma®/Po)s) = E(ky, ky)a (25)

3. At t, = 0, the intersection happens at:

0 0
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E k) = BV (k,) = k, = {—7/3,27/3} (27)
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4. Let’s focus on intersection around k, = —7/3 + py:
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This Hamiltonian has two eigenvectors, for the lowest and middle band; denote E = , /t2 + 3t2p2
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Then the Berry curvature for the lowest band yields:
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and the Chern number gives:
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The Chern numbers of all bands are thus:
Cupper = CYlower = +17 Cvmiddle =-2 (34)
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