
Solutions to problem set 2 for “Topology in condensed matter”

Discussed in exercise class on November 21, 2023

1 Semiclassical description of quantum spin
Without loss of generality, we can consider magnetic field parallel to z axis: h = (0, 0, h). The action then reads:

A[φ, θ] = S

∫
dt [−φ̇(1− cos θ)− h cos θ] (1)

The semiclassical equations of motion are thus:

δA

δθ(t)
=
∂L

∂θ
= S sin θ (−φ̇+ h) = 0 ⇒ φ̇ = h (2)

δA

δφ(t)
= − d

dt

∂L

∂φ̇
=

d

dt
cos θ = 0 ⇒ θ = const (3)

which exactly corresponds to the following equations of motion for spin components:
Ṡx = −hSy

Ṡy = hSx

Ṡz = 0

⇒ dS

dt
= [h× S(t)] (4)

Note that in the Heisenberg picture this is just equations of motion for the spin operator:

dŜα

dt
= i

[
Ĥ, Ŝα

]
= i

[
hβŜβ , Ŝα

]
= −ϵβαγhβSγ = [h× S]α (5)

2 Jackiw-Rebbi model
1. Denote kx = k cosϕ and ky = k sinϕ; then the Hamiltonian reads:

Ĥ =

(
∆ vF ke

−iϕ

vF ke
iϕ −∆

)
. (6)

Denote also E =
√
v2F k

2 +∆2. Then its normalized eigenvectors are:

E+ = E, |k,+⟩ = 1√
2E(E +∆)

(
e−iϕ (E +∆)

vF k

)
, (7)

E− = −E, |k,−⟩ = 1√
2E(E −∆)

(
e−iϕ (E −∆)

−vF k

)
. (8)

2. The given formula for the Berry curvature for both bands yields:

Ω+(k) = −2Im
⟨k,+| vF σ̂x |k,−⟩ ⟨k,−| vF σ̂y |k,+⟩

4E2
= −v

2
F∆

2E3
(9)

Ω−(k) = −2Im
⟨k,−| vF σ̂x |k,+⟩ ⟨k,+| vF σ̂y |k,−⟩

4E2
=
v2F∆

2E3
, (10)

and thus the Chern numbers read:

C+ = − 1

2π

∫ ∞

0

2πkdk
v2F∆

2(v2F k
2 +∆2)3/2

= −∆

4

∫ ∞

0

dz

(z +∆2)3/2
= − sign∆

2
, C− = −C+. (11)
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3. In the Fourier domain, the given lattice model corresponds to the same Hamiltonian up to replacement
kx 7→ sin(kxa)/a and ky 7→ sin(kya)/a:

Ĥ ′(k) =
vF
a

(σ̂x sin kxa+ σ̂y sin kya) + ∆σ̂z, (12)

and, clearly, its Taylor expansion in kx,ya≪ 1 reproduces the original Dirac Hamiltonian.

4. The expansion is straightforward:

K1 = (0, π/a) ⇒ Ĥ1(p) = Ĥ ′(K1 + p) ≈ vF (σ̂xpx − σ̂ypy) + ∆σ̂z, (13)

K2 = (π/a, 0) ⇒ Ĥ2(p) = Ĥ ′(K2 + p) ≈ vF (−σ̂xpx + σ̂ypy) + ∆σ̂z, (14)

K3 = (π/a, π/a) ⇒ Ĥ3(p) = Ĥ ′(K3 + p) ≈ vF (−σ̂xpx − σ̂ypy) + ∆σ̂z. (15)

Each Hamiltonian indeed describes own Dirac cone.

5. So far we have obtained Hamiltonians of the following form:

Ĥ = vF (s1σ̂xpx + s2σ̂ypy) + ∆σ̂z, s1,2 = ±1 (16)

Then
Ω±(p) = −2Im

⟨p,±| s1vF σ̂x |p,∓⟩ ⟨p,∓| s2vF σ̂y |p,±⟩
4E2

∝ s1s2 (17)

However, as each sign change corresponds to replacement ϕ 7→ −ϕ (for H1), ϕ 7→ π−ϕ (for H2) and ϕ 7→ π+ϕ
(for H3), while the combination of matrix elements is ϕ-independent. Thus:

Ω
(1)
− (p) = Ω

(2)
− (p) = −Ω

(3)
− (p) = −Ω

(0)
− (p), (18)

and the total Chern number of the lower band vanishes:

C− = C
(0)
− + C

(1)
− + C

(2)
− + C

(3)
− =

(
1

2
− 1

2
− 1

2
+

1

2

)
sign∆ = 0 (19)

Since C+ + C− = 0, it also implies vanishing of the Chern number for the upper band.

6. Now we switch back to the inhomogeneous case. Substituting the proposed ansatz to the Schroediner equation,
we obtain: {

(c1 + ic2)∆(x)− ic2vF ky = Ec1

i(c1 + ic2)∆(x) + ic1vF ky = Ec2
(20)

which indeed has a solution provided c1 + ic2 = 0 and E = vF ky. This solution describes a chiral (because
the group velocity is ∂E/∂ky = vF > 0, the mode propagates in a single direction) edge modes localized at
the boundary between two topologically distinct bulk phases.

3 Lattice models in magnetic field: Chern insulators
1. Explicit calculation gives:

T̂−1
x ĤT̂x = −T̂−1

x

∑
m,n

(
txe

−2πinΦ/Φ0 |m,n⟩ ⟨m+ 2, n|+ tye
−2πi(m+n)Φ/Φ0 |m,n− 1⟩ ⟨m+ 1, n|

)
+ h.c.

= −
∑
m,n

(
tx |m+ 1, n⟩ ⟨m+ 2, n|+ tye

−2πi(m+1)Φ/Φ0 |m+ 1, n− 1⟩ ⟨m+ 1, n|
)
+ h.c. = Ĥ (21)

Commutation with T̂y is trivial because Hamiltonian is explicitly translationally invariant in y direction:

T̂−1
y ĤT̂y = Ĥ (22)

which proves [Ĥ, T̂x] = [Ĥ, T̂y] = 0. Finally, one has:

T̂−1
y T̂ q

x T̂y = T̂−1
y

∑
m,n

e−2πiqnΦ/Φ0 |m− q, n⟩ ⟨m,n+ 1| = e2πiqΦ/Φ0 T̂ q
x (23)

which proves that for Φ/Φ0 = p/q with p, q ∈ Z, one has [T̂ q
x , T̂y] = 0.
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2. Direct substitution of the Ansatz to the Schroedinger equation yields:

Ĥ |kx, ky⟩ = −
q∑

a=1

∑
m,n

eiqkxm+ikyn |a+mq, n⟩ (tx(ψa+1 + ψa−1) + 2ty cos(ky − 2πaΦ/Φ0)ψa)

Careful analysis of terms with a = 1 and a = q show that in this expression instead of amplitude ψ0 one
should have ψqe

−iqkx , while instead of amplitude ψq+1 one should have ψ1e
iqkx ; this precisely reproduces

twisted periodic boundary conditions obtained earlier. Finally, comparing it with the RHS of the Schroedinger
equation:

E(kx, ky) |kx, ky⟩ =
q∑

a=1

∑
m,n

eiqkxm+ikyn |a+mq, n⟩E(kx, ky)ψa (24)

we recover the Harper equation:

− (tx(ψa+1 + ψa−1) + 2ty cos(ky − 2πaΦ/Φ0)ψa) = E(kx, ky)ψa (25)

3. At tx = 0, the intersection happens at:

E
(0)
1 (ky) = E

(0)
2 (ky) ⇒ ky = {0, π} (26)

E
(0)
1 (ky) = E

(0)
3 (ky) ⇒ ky = {−π/3, 2π/3} (27)

E
(0)
2 (ky) = E

(0)
3 (ky) ⇒ ky = {−2π/3, π/3} (28)

4. Let’s focus on intersection around ky = −π/3 + py:

Ĥ13(kx, py) = −ty −
(

−
√
3typy txe

−3ikx

txe
3ikx

√
3typy

)
(29)

This Hamiltonian has two eigenvectors, for the lowest and middle band; denote E =
√
t2x + 3t2yp

2
y

E− = −ty − E, |−⟩ = 1√
2E(E −

√
3typy)

(
e−3ikx(E −

√
3typy)

tx

)
(30)

E+ = −ty + E, |+⟩ = 1√
2E(E +

√
3typy)

(
e−3ikx(E +

√
3typy)

−tx

)
(31)

Then the Berry curvature for the lowest band yields:

Ω−(k) = −2Im
⟨−| ∂Ĥ13/∂kx |+⟩ ⟨+| ∂Ĥ13/∂py |−⟩

(E+ − E−)2
=

3
√
3t2xty
2E3

(32)

and the Chern number gives:

C− =
1

2π

∫ π/3

−π/3

dkx

∫ ∞

−∞
dpy ·

3
√
3t2xty

2(t2x + 3t2yp
2
y)

3/2
= +1 (33)

The Chern numbers of all bands are thus:

Cupper = Clower = +1, Cmiddle = −2 (34)

3


	Semiclassical description of quantum spin
	Jackiw-Rebbi model
	Lattice models in magnetic field: Chern insulators

