Solutions to problem set 3 for “Topology in condensed matter”

Discussed in exercise class on December 5, 2023

SSH model

1. We will use Wolfram Mathematica for our numerical analysis. The plot of the eigenvalues can be produced
using following code:

SSHHamiltonian[t1l_, t2_, L_] := (-1)*Tablel
If[Abs[i - j1 == 1,
If[Mod[(i + j - 1)/2, 2] == 1, t1, t2],
ol, {i, 1, L}, {j, 1, L}];
Plot [Evaluate@Sort@Eigenvalues [SSHHamiltonian[t1, 1.0, 20]], {t1, 0, 2}]

The result is shown on the Figure [1| (left).

2. In the lecture, it was shown that the localized zero energy state have amplitudes decaying as follows:
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with n being number of unit cell, which is related to the coordinate x as n = x/2. Thus:
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3. The overlap (and thus the energy splitting) between those localized states then can be estimated as
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This scaling can be checked using following code:

Gap[H_] := 2*Abs@First@Eigenvalues[H, -1,

Method -> {"Arnoldi", "Criteria" -> "Magnitude", "Shift" -> 0}]
Block[{L = 20, t2 = 1.0},

Plot [{Log@Gap [SSHHamiltonian[t1l, t2, L1], -L/2 Log[1/t1]}, {t1, 0, 1}1]

The result is shown on the Figure [1| (right).
4. The generalization of the zero energy solution given in the lecture is straightforward:
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Figure 1: Numerical analysis of the SSH model with L = 20 sites at to = 1. Left: all energy levels as a function of
t;. Right: logarithm of splitting between almost zero energy levels (blue) as a function of ¢; vs. predicted estimate.

2

Kitaev chain

. Direct substitution of the inverse Fourier transform yields:

H = Z(_Qt Cosp — /‘)é;;ép +A Z ((A:pé_pe_ip + h.c.) (5)
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Let’s “symmetrize” this as > f(p) = %Ep (f(p) + f(—p)), and then utilize the fermionic anti-commutation
relations:

g1 N R A fa i A A i
H= 3 Z(—Qt cosp — p) (c;r,cp + cT_pc_p> + 5} Z (epepe™ P + e_pépe’ + h.c.)
p p

1
=3 > (~2tcosp— ) (e +1—epel,) + AY (@ p(—isinp) + hc)
p p

1 1 4 —2tcosp—p  2iAsinp é
= — E — - Z i {4
2 (=2t cosp =) + 2 Z Ca ( —2iAsinp  2tcosp+ p éT_p (6)

p P

which is precisely the required form with ho(p) = —2tcosp — p and A(p) = 2¢Asinp. It is evident that:
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. Consider now Bogoliubov transformation:
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These 4 conditions are indeed equivalent to the unitarity condition for Up:
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The eigenvalues of the Hamiltonian HI(,BdG) are given by £E,, with

p)l = \/13(p) + 1A =

The gap closes at Asinp = 0 and 2t cosp + u = 0, thus we have either:

A=0, |u<2lt]=cosp’= —2%
p=0, p=-2t
p=m, K= 2t
3. For t = 1, there are four topological phases:
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Figure 2: Winding number calculation for Kitaev chain for phases (a) — (d).

(dy(p),d-(p)) for p € [—m,m].

(a) p< =2, W =0.

(b) p>2,W=0.

(c) pef-2,2], A>0W=-1

(d) pel-2,2], A<0, W=+41.
4. We have:
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Since eigenvalues of ¢f,¢, = {0, 1}, thus exp (incfé,) =1 — 2¢],é,:
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Consider its hermitian conjuate: S St oo=él e, = énéT . Next we consider:
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Again, since eigenvalues of ézék = {0, 1}, thus exp(QﬂiéLék)
left with:
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=1 and exp (mé;flén) = 2¢,¢l — 1, and we are
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Finally, its hermitian conjugate completes the proof. This allows us to rewrite the Kitaev Hamiltonian as

follows:
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AKLT model

. First we note that:
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and thus matrix multiplication proves the first statement. The total S* for states (1,1) and (2,2) yields zero,
thus one only needs to check that they are orthogonal to |0); the total S= for state (1,2) is +1, thus we only
need to check that it’s orthogonal to |1); and finally the total 5% for state (2,1) is —1, thus we only need to
check that it’s orthogonal to |—1). These three checks are straightforward.

. The transfer-matrix has four eigenvectors:

1 1
110 1 1 0
Th=4+1=|v) = — , Th=—==|vg) = — 24
1 |v1) 7 |0 2 lv2) === | g (24)
1 -1
0 0
1 0
T3=—1/3:>|’U3>: ol T4——1/3=>‘”U4>= 1 (25)
0 0
and thus
T(14A") 0 0 i(1-am)
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11=x) 0 0 i1+
with A = —1/3. which gives the desired result. For normalization we thus have:
(AKLT|AKLT) = Te7N =143\ — 1 (27)
. The direct calculation yields:
(855:) = T(ZT" 121N = LAy o Ay (28)
0= N —o00 3 3
which is exponentially decaying.
. Finally, the calculation for the string order parameter yields:
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