
Solutions to problem set 3 for “Topology in condensed matter”

Discussed in exercise class on December 5, 2023

1 SSH model
1. We will use Wolfram Mathematica for our numerical analysis. The plot of the eigenvalues can be produced

using following code:

SSHHamiltonian[t1_, t2_, L_] := (-1)*Table[
If[Abs[i - j] == 1,

If[Mod[(i + j - 1)/2, 2] == 1, t1, t2],
0], {i, 1, L}, {j, 1, L}];

Plot[Evaluate@Sort@Eigenvalues[SSHHamiltonian[t1, 1.0, 20]], {t1, 0, 2}]

The result is shown on the Figure 1 (left).

2. In the lecture, it was shown that the localized zero energy state have amplitudes decaying as follows:

an =

(
− t

∗
1

t2

)n

a0 (1)

with n being number of unit cell, which is related to the coordinate x as n = x/2. Thus:

|ψ(x)| ∝ e−x/ξ, ξ =
2

ln(|t2/t1|)
(2)

3. The overlap (and thus the energy splitting) between those localized states then can be estimated as

∆E ∼ exp (−L/ξ) = exp

(
−L
2
ln

∣∣∣∣ t2t1
∣∣∣∣) (3)

This scaling can be checked using following code:

Gap[H_] := 2*Abs@First@Eigenvalues[H, -1,
Method -> {"Arnoldi", "Criteria" -> "Magnitude", "Shift" -> 0}]

Block[{L = 20, t2 = 1.0},
Plot[{Log@Gap[SSHHamiltonian[t1, t2, L]], -L/2 Log[1/t1]}, {t1, 0, 1}]]

The result is shown on the Figure 1 (right).

4. The generalization of the zero energy solution given in the lecture is straightforward:

an = a0

n∏
k=1

(
− t

(k)∗
1

t
(k)
2

)
⇒ ln(|an|2/|a0|2) = −2n× ln |t2/t1| (4)
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Figure 1: Numerical analysis of the SSH model with L = 20 sites at t2 = 1. Left: all energy levels as a function of
t1. Right: logarithm of splitting between almost zero energy levels (blue) as a function of t1 vs. predicted estimate.

2 Kitaev chain
1. Direct substitution of the inverse Fourier transform yields:

Ĥ =
∑
p

(−2t cos p− µ)ĉ†pĉp +∆
∑
p

(
ĉpĉ−pe

−ip + h.c.
)

(5)

Let’s “symmetrize” this as
∑

p f(p) =
1
2

∑
p (f(p) + f(−p)), and then utilize the fermionic anti-commutation

relations:

Ĥ =
1

2

∑
p

(−2t cos p− µ)
(
ĉ†pĉp + ĉ†−pĉ−p

)
+

∆

2

∑
p

(
ĉpĉ−pe

−ip + ĉ−pĉpe
ip + h.c.

)
=

1

2

∑
p

(−2t cos p− µ)
(
ĉ†pĉp + 1− ĉ−pĉ

†
−p

)
+∆

∑
p

(ĉpĉ−p(−i sin p) + h.c.)

=
1

2

∑
p

(−2t cos p− µ) +
1

2

∑
p

(
ĉ†p ĉ−p

)(−2t cos p− µ 2i∆sin p
−2i∆sin p 2t cos p+ µ

)(
ĉp
ĉ†−p

)
(6)

which is precisely the required form with h0(p) = −2t cos p− µ and ∆(p) = 2i∆sin p. It is evident that:

Ĥ(BdG)
p = (−2t cos p− µ)τ̂z − 2∆ sin pτ̂y ⇒ d =

 0
−2∆ sin p

−2t cos p− µ

 (7)

2. Consider now Bogoliubov transformation:{
ψ̂p = upĉp + vpĉ

†
−p

ψ̂†
−p = v′pĉp + u′pĉ

†
−p

(8)

We have:
{ψ̂p, ψ̂−p} = {upĉp + vpĉ

†
−p, v

′∗
p ĉ

†
p + u′∗p ĉ−p} = upv

′∗
p + vpu

′∗
p = 0 (9)

{ψ̂p, ψ̂
†
p} = {upĉp + vpĉ

†
−p, u

∗
pĉp + v∗p ĉ−p} = |up|2 + |vp|2 = 1 (10)

and similarly
{ψ̂†

p, ψ̂
†
−p} = u∗pv

′
p + v∗pu

′
p = 0 (11)

{ψ̂−p, ψ̂
†
−p] = |u′p|2 + |v′p|2 = 1 (12)

These 4 conditions are indeed equivalent to the unitarity condition for Ûp:

ÛpÛ
†
p =

(
|up|2 + |vp|2 u′∗p vp + v′∗p up
u∗pv

′
p + v∗pu

′
p |u′p|2 + |v′p|2

)
=

(
1 0
0 1

)
(13)
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The eigenvalues of the Hamiltonian Ĥ(BdG)
p are given by ±Ep, with

Ep = |d(p)| =
√
h20(p) + |∆(p)|2 =

√
(2t cos p+ µ)2 +∆2 sin2 p (14)

The gap closes at ∆sin p = 0 and 2t cos p+ µ = 0, thus we have either:

∆ = 0, |µ| < 2|t| ⇒ cos p∗ = − µ

2t
(15)

p = 0, µ = −2t (16)

p = π, µ = 2t (17)

3. For t = 1, there are four topological phases:

Figure 2: Winding number calculation for Kitaev chain for phases (a) − (d). Plotted: trajectory of vector
(dy(p), dz(p)) for p ∈ [−π, π].

(a) µ < −2, W = 0.
(b) µ > 2, W = 0.
(c) µ ∈ [−2, 2], ∆ > 0, W = −1.
(d) µ ∈ [−2, 2], ∆ < 0, W = +1.

4. We have:

Ŝ+
n Ŝ

−
n+1 = ĉ†n exp

(
−iπ

n−1∑
k=0

ĉ†k ĉk

)
exp

(
iπ

n∑
k=0

ĉ†k ĉk

)
ĉn+1 = ĉ†ne

iπĉ†nĉn ĉn+1 (18)

Since eigenvalues of ĉ†nĉn = {0, 1}, thus exp
(
iπĉ†nĉn

)
≡ 1− 2ĉ†nĉn:

Ŝ+
n Ŝ

−
n+1 = ĉ†n(1− 2ĉ†nĉn)ĉn+1 = ĉ†nĉn+1 (19)

Consider its hermitian conjuate: Ŝ−
n Ŝ

+
n+1 = ĉ†n+1ĉn = −ĉnĉ†n+1. Next we consider:

Ŝ−
n Ŝ

−
n+1 = exp

(
iπ

n−1∑
k=0

ĉ†k ĉk

)
ĉn exp

(
iπ

n∑
k=0

ĉ†k ĉk

)
ĉn+1 = ĉn exp

(
2πi

n−1∑
k=0

ĉ†k ĉk

)
exp

(
iπĉ†nĉn

)
ĉn+1 (20)

Again, since eigenvalues of ĉ†k ĉk = {0, 1}, thus exp(2πiĉ†k ĉk) ≡ 1 and exp
(
iπĉ†nĉn

)
= 2ĉnĉ

†
n − 1, and we are

left with:
Ŝ−
n Ŝ

−
n+1 = ĉn(2ĉnĉ

†
n − 1)ĉn+1 = −ĉnĉn+1 (21)

Finally, its hermitian conjugate completes the proof. This allows us to rewrite the Kitaev Hamiltonian as
follows:

Ĥ = −
∑
n

[
t(Ŝ+

n Ŝ
−
n+1 + h.c.) + µ

(
Ŝz
n +

1

2

)
+∆(Ŝ−

n Ŝ
−
n+1 + h.c.)

]
= −

∑
n

[
2(t+∆)Ŝx

nŜ
x
n+1 + 2(t−∆)Ŝy

nŜ
y
n+1 + µ

(
Ŝz
n +

1

2

)]
(22)
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3 AKLT model
1. First we note that: ∑

M

Â(M) |M⟩ = 1√
3

(
− |0⟩

√
2 |+1⟩

−
√
2 |−1⟩ |0⟩

)
(23)

and thus matrix multiplication proves the first statement. The total Ŝz for states (1,1) and (2,2) yields zero,
thus one only needs to check that they are orthogonal to |0⟩; the total Ŝz for state (1,2) is +1, thus we only
need to check that it’s orthogonal to |1⟩; and finally the total Ŝz for state (2,1) is −1, thus we only need to
check that it’s orthogonal to |−1⟩. These three checks are straightforward.

2. The transfer-matrix has four eigenvectors:

T1 = +1 ⇒ |v1⟩ =
1√
2


1
0
0
1

 , T2 = −1

3
⇒ |v2⟩ =

1√
2


1
0
0
−1

 (24)

T3 = −1/3 ⇒ |v3⟩ =


0
1
0
0

 , T4 = −1/3 ⇒ |v4⟩ =


0
0
1
0

 (25)

and thus

T̂n = Tn
1 |v1⟩ ⟨v1|+ Tn

2 |v2⟩ ⟨v2|+ Tn
3 |v3⟩ ⟨v3|+ Tn

4 |v4⟩ ⟨v4| =


1
2 (1 + λn) 0 0 1

2 (1− λn)
0 λn 0 0
0 0 λn 0

1
2 (1− λn) 0 0 1

2 (1 + λn)

 (26)

with λ = −1/3. which gives the desired result. For normalization we thus have:

⟨AKLT|AKLT⟩ = TrT̂N = 1 + 3λN → 1 (27)

3. The direct calculation yields:〈
Ŝz
0 Ŝ

z
r

〉
=

N→∞
Tr(ẐT̂ r−1ẐT̂N−r−1) =

4

3
·
(
λr + λN−r

)
→ 4

3
λr (28)

which is exponentially decaying.

4. Finally, the calculation for the string order parameter yields:〈
Ŝz
0 exp

(
iπ

r−1∑
k=1

Ŝz
k

)
Ŝz
r

〉
= Tr(ẐT̂ r−1

S ẐT̂N−r−1) = −4

9
− 4λN → −4

9
(29)
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