
Solutions to problem set 4 for “Topology in condensed matter”

Discussed in exercise class on December 19, 2023

1 Semiclassical description of Landau levels in graphene
1. The first equation of motion gives

dR

dt
=
∂E

∂P
= v2G

P

E
⇒ dP

dt
=
ev2GB

cE
[P × ẑ] (1)

with ẑ being unit vector parallel to z-axis. Within angular parametrization, we obtain:{
dPx

dt =
ev2

GB
cE Py

dPy

dt = − ev2
GB
cE Px

⇔ dϕ

dt
= ωc = −ev

2
GB

cE
⇒ ϕ(t) = ϕ0 + ωct (2)

(note that since e < 0, the cyclotron frequency ωc = |e|v2GB/cE is positive). Integrating these equations, we
obtain for the coordinate dependence:{

X(t) = X0 +R sin(ϕ0 + ωct)

Y (t) = Y0 −R cos(ϕ0 + ωct)
, R ≡ v2GP

ωcE
=

cE

|e|vGB
(3)

with (X0, Y0) being arbitrary integration constants denoting the center of the cyclotron orbit.

2. The semiclassical action calculated along this cyclotron orbit then reads:

S1 =

∮
P dR =

∫ 2π/ωc

0

P
dR

dt
dt =

2πE

ωc
=

2πcE2

|e|v2GB
(4)

S2 =
e

c

∮
AdR =

e

c
B · πR2 = − πcE2

|e|v2GB
(5)

and the quantization is:

En =
√
eBv2G(2n+ 1)/c (6)

3. The Berry phase was calculated earlier in the problem set 2, and reads:

S3 ≡
∮

Ã(P )dP ≈ lim
∆→0

∫∫
R2

Ωz(P )d2P = −v
2
F∆

2

∫ ∞

0

2πPdP

(v2GP
2 +∆2)3/2

= −π (7)

which yields the correct result:
En ≈ vG

√
2|e|B(n+ 1)/c (8)

2 Weyl semimetals: Fermi arcs
1. We have d(p) = ±vFp; thus ∂dα/∂pi = ±vF δαj and we have:

Ωi(p) =
ϵijkϵ

αβγ

8π|d|3
dα
∂dβ

∂pj

∂dγ

∂pk
=

di(p)

4πvF |p|3
= ± pi

4π|p|3
(9)

As the normal vector to the sphere is np = p/|p|, we have Ω · d2S = ±1/4πp2 and thus Q = ±1. The matrix
Aij = ±vF δij , so detA = ±v3F and thus Q indeed coincides with the given formula.
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2. The given wavefunction satisfies the boundary conditions if

(σ̂x cosα+ σ̂y sinα) |ψ(z = 0)⟩ =
(

0 e−iα

eiα 0

)(
c1
c2

)
= 0 ⇒ c1e

iα + c2e
−iα = 0 ⇒

{
c1 = e−iα/

√
2

c2 = eiα/
√
2

It solves the Schroedinger equation provided(
iκ pe−iϕ

peiϕ −iκ

)(
c1
c2

)
= 0 ⇒ κ = p, ic1 + e−iϕc2 = 0 ⇒ ϕ =

π

2
+ 2α (10)

which indeed forms a ray which starts from the Dirac node.

3 Weyl semimetals: Landau Levels and chiral anomaly
1. The commutator reads:

[P̂x, P̂y] =
[
p̂x − e

c
Ax(r), p̂y −

e

c
Ay(r)

]
= −e

c
[p̂x, Ay] +

e

c
[p̂y, Ax] =

ie

c
[∂xAy − ∂yAx] =

ieB

c
(11)

thus:
[Π̂, Π̂†] = 2i

[
P̂x, P̂y

]
=

2|e|B
c

(12)

and therefore â =
√
c/2|e|B · Π̂ form standard oscillator algebra.

2. Substitution of the given ansatz to the Schroedinger equation gives:

Ĥ |Ψn⟩ = χvF

(
pz

√
2|e|B/câ√

2|e|B/câ† −pz

)(
un |n− 1⟩
vn |n⟩

)
= χvF

(
pzun +

√
2|e|Bn/cvn

)
|n− 1⟩(√

2|e|Bn/cun − pzvn

)
|n⟩

 (13)

and thus we obtain following equations for un and vn:

χvF

(
pz

√
2|e|Bn/c√

2|e|Bn/c −pz

)(
un
vn

)
= En

(
un
vn

)
⇒ E±

n = ±χvF
√
p2z + 2|e|Bn/c, n > 0 (14)

For n = 0 we obtain:
E0 = −χvF pz (15)

It describes a mode with group velocity vz = −χvF , i.e. it is parallel to z axis for χ = −1 and anti-parallel
for χ = +1.

3. Introduce a magnetic length lB =
√
c/|e|B. Then the density of states reads:

ν(ε) =
∑
n

1

2πl2B

∫ ∞

−∞

dpz
2π

δ

(
ε− vF

√
p2z + 2/l2B

)
(16)

Only Landau Levels with n < n∗ = ε2l2B/2v
2
F contribute to this sum. Separating also explicitly the zero

Landau Level, we obtain:

ν(ε) =
1

4π2l2B

∫ ∞

−∞
dpzδ (ε+ vF pz) +

1

4π2l2B

[n∗]∑
n=1

∫ ∞

−∞
dpzδ

(
ε− vF

√
p2z + 2/l2B

)

=
1

4π2l2BvF

1 + 2ε

[n∗]∑
n=1

1√
ε2 − 2v2Fn/l

2
B

 =
1

4π2l2BvF

1 + 2

[n∗(ε)]∑
n=1

√
n∗(ε)

n∗(ε)− n

 (17)

By comparison, in the absence of magnetic field the density of states would read (see figure)

ν(0)(ε) =

∫
d3p

(2π)3
δ (ε− vF |p|) =

ε2

2π2v3F
(18)
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Figure 1: Blue: density of states in the presence of magnetic field, dashed orange: density of states without magnetic
field

4. The total density of particles on the lowest Landau level with the Fermi-energy εF = −χvF p∗z is given by:

ρ(εF ) = const +

∫ εF

0

ν(ε)dε = const +
εF

4π2l2BvF
= const− χp∗z

4π2l2B
(19)

where const denotes contribution from the filled Fermi see with zero Fermi energy. Then the rate of change
is given by:

dρ

dt
= − χ

4π2l2B

dp∗z
dt

= χ
e2

4π2c
BE (20)
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