Solutions to problem set 4 for “Topology in condensed matter”

Discussed in exercise class on December 19, 2023

1 Semiclassical description of Landau levels in graphene

1. The first equation of motion gives
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with Z being unit vector parallel to z-axis. Within angular parametrization, we obtain:
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(note that since e < 0, the cyclotron frequency w. = \e\véB /cE is positive). Integrating these equations, we
obtain for the coordinate dependence:
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with (Xo,Yp) being arbitrary integration constants denoting the center of the cyclotron orbit.
2. The semiclassical action calculated along this cyclotron orbit then reads:
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and the quantization is:
E, =\/eBvi(2n+1)/c (6)
3. The Berry phase was calculated earlier in the problem set 2, and reads:
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which yields the correct result:
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2 Weyl semimetals: Fermi arcs
1. We have d(p) = tvpp; thus 0d,/0p; = +vpds; and we have:
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As the normal vector to the sphere is n, = p/|p|, we have Q- d?S = +1/47p? and thus Q = 1. The matrix
Aij = tvpdi;, so detA = +v} and thus Q indeed coincides with the given formula.



2. The given wavefunction satisfies the boundary conditions if
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It solves the Schroedinger equation provided
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which indeed forms a ray which starts from the Dirac node.

Weyl semimetals: Landau Levels and chiral anomaly

1. The commutator reads:
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and therefore & = +/c/2|e|B - II form standard oscillator algebra.
2. Substitution of the given ansatz to the Schroedinger equation gives:
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and thus we obtain following equations for u,, and v,:
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For n = 0 we obtain:
Ey = —XVFPz (15)

It describes a mode with group velocity v, = —xvp, i.e. it is parallel to z axis for Yy = —1 and anti-parallel
for x = +1.

3. Introduce a magnetic length lp = /c/|e|B. Then the density of states reads:
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Only Landau Levels with n < n* = £%1%/2v% contribute to this sum. Separating also explicitly the zero
Landau Level, we obtain:
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By comparison, in the absence of magnetic field the density of states would read (see figure)
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Figure 1: Blue: density of states in the presence of magnetic field, dashed orange: density of states without magnetic
field

4. The total density of particles on the lowest Landau level with the Fermi-energy ep = —xvrp} is given by:
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where const denotes contribution from the filled Fermi see with zero Fermi energy. Then the rate of change
is given by:
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