
Problem set 6 for “Topology in condensed matter”

To be discussed in exercise class on February 13, 2024

1 Berezinskii-Kosterlitz-Thouless transition
In this problem we will analyze the behavior of the classical XY model. Consider two-dimensional square lattice,
with each site i ∈ Z2 hosting a two-dimensional classical spin described by a unit vector Si ∈ S1 parametrized by
an angle φ ∈ [0, 2π) as Si = (cosφi, sinφj). Spins interact with the usual ferromagnetic interaction as follows:

H[S] = −
∑
⟨ij⟩

JijSiSj = −
∑
⟨ij⟩

Jij cos(φi − φj), Jij = J (1)

where the summation is performed over all links of the lattice. The system is in thermodynamic equilibrium
described by the temperature T , thus its state is random and is described by the classical Boltzmann distribution
P [S] = exp (−βH[S]) /Z, with β = 1/T and Z being the partition function. We will analyze the behavior of the
spin correlation function

⟨Sm · Sn⟩ =

(∏
k

∫ 2π

0

dφk

2π

)
cos(φm − φn)P [S] (2)

and argue that in this model there is a special phase transition, which is not associated with the appearance of
the order parameter ⟨Si⟩ (as happens in conventional second order phase transitions with spontaneous symmetry
breaking), but instead manifests itself in the behavior of such correlation functions.

1.1 High-temperature expansion
1. We will start with the high-temperature expansion βJ ≪ 1, within which the Boltzmann weight can be

expanded as

P [S] =
1

Z

∏
⟨ij⟩

exp (βJ cos(φi − φj)) ≈
1

Z

∏
⟨ij⟩

(1 + βJ cos(φi − φj)) (3)

Show that further expansion of the product can be respresented as an expansion over all possible subgraphs G
of the original lattice, with each graph having the statistical weight (βJ)|E(G)| (with E(G) being set of links
belonging to graph G and |E(G)| being number of such links):

P [S] ≈ 1

Z

∑
G

(βJ)|E(G)|
∏

⟨ij⟩∈E(G)

cos(φi − φj)

 (4)

Thus for small βJ ≪ 1, we are interested in graphs with the minimal number of links.

2. For the purposes of calculation of the spin correlation function, it will be sufficient to consider only trivial
graph with no edges at all for the partition function and approximate Z ≈ 1. Prove that only graphs that
have non-zero contribution to the spin correlation function (2) should have following property: number of
neighbors of each site (except nodes m and n) is even, whereas number of neighbors of sites m and n should
be odd.
Hint : consider integral over arbitrary φi and argue how it changes upon shift φi 7→ φi + π.

3. Therefore the minimal graph that gives non-zero contribution to the correlation function has a form of a single
path connecting sites m and n. Consider the simplest case with site m having lattice coordinates Rn = (na, 0)
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and site n having coordinates Rm = (ma, 0) with n,m ∈ Z, and a being lattice spacing. Calculate the integral
corresponding to such minimal path and show that it gives the result:

⟨Sm · Sn⟩ ≈
(
βJ

2

)|n−m|

≡ exp (−Rmn/ξ) (5)

with Rnm = a · |n−m| being distance between sites a and b, and ξ = a/ ln J
T being (small) correlation length.

Hint: with the following property, the integral can be calculated iteratively:∫ 2π

0

dy

2π
cos(x− y) cos(y − z) =

1

2
cos(x− z) (6)

This calculation illustrates that at high temperatures, the system has a finite correlation length and all the correla-
tion functions decay exponentially. This is the main property of the high-temperature phase in the BKT transition.

1.2 Low-temperature limit
At low temperatures it is natural to expect the fluctuations of the phase to be small, allowing one to describe the
state of the system with a smoothly varying in space function {φi} 7→ φ(r) and expand:

cos(φi − φj) ≈ 1− 1

2
(φi − φj)

2 ≈ 1− 1

2
(ri − rj) · ∇φ(r) (7)

arriving at a continuous XY model:

H[φ] ≈ const +
J

2

∫
d2r(∇φ(r))2, (8)

using which the correlation function of interest can be expressed via the path integral:

⟨Sm · Sn⟩ =
∫

Dφ(r) · cos(φ(Rm)− φ(Rn)) · e−βH[φ] (9)

Although the target manifold of the original spin variables S(r) is 1D sphere S1 (i.e. φ(r) = φ0 and φ(r) = φ0+2π
are exactly same point), for now we will neglect it and return to it in the next section.

1. Calculate the Greens function of this Gaussian field theory and show that

⟨φ(r)φ(r′)⟩ =
∫

d2q

(2π)2
T/J

q2
eiq(r−r′) ≈ T

2πJ
ln

L

|r − r′|
(10)

where we have introduced an infrared cutoff qmin ∼ 1/L related to the inverse system size because the integral
is logarithmically divergent at small momenta q. Furthermore, phase fluctuations at a single site are also
ultraviolet divergent and can be estimated as:〈

φ2(r)
〉
≈ T

2πJ
ln

L

a
(11)

where qmax ∼ 1/a denotes ultraviolet cutoff of the order of inverse unit lattice cell size.

2. Let’s assume there is a long-range order in the system, i.e. all spins point at some direction φ(r) = φ0.
Calculate the average magnetization taking into account the statistical fluctuations of this phase and show
that:

⟨S(r)⟩ =
(
⟨cos(φ0 + φ(r))⟩
⟨sin(φ0 + φ(r))⟩

)
=

(
cosφ0

sinφ0

)
·
( a
L

)T/4πJ

(12)

i.e. at any finite temperature T , in the thermodynamic limit L → ∞ the spontaneous magnetization is de-
stroyed by the fluctuations of phase ⟨S(r)⟩ → 0 and our initial assumption breaks down. This is manifestation
of the Mermin-Wagner theorem: a continuous symmetry (S1 in our case) cannot be spontaneously broken in
2D, and conventional second order phase transition is impossible.
Hint : calculation of averages of exponentials (and trigonometric functions) of Gaussian fields can be per-
formed utilizing the following nice property: if variable A has the Gaussian distribution, then it follows that
⟨exp (αA)⟩ = exp

(
α2
〈
A2
〉
/2
)

with arbitrary α ∈ C.
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3. Finally, show that infrared divergence cancels in (9) and the correlation function within this approximation
is given by:

⟨Sm · Sn⟩ ≈
(

a

Rmn

)T/2πJ

(13)

i.e. they fall off at large distances only as a power law (with temperature-dependent power) and the correlation
length is infinite. This is the main property of the low-temperature phase of the BKT transition, which has
to be contrasted with an exponential decay at high temperatures obtained earlier.

The only way for the behavior of the correlation function to change so drastically is via the phase transition, which
is precisely the BKT transition: there exists a transition temperature Tc, at which the correlation length appears.
Below this temperature, the correlations follow power-law behavior (13), and above it they decay exponentially as
in (5).

1.3 Vortices
In the previous low-temperature analysis we have completely neglected the fact that φ(r) is an angle defined modulo
2π, i.e. the fact that the symmetry of the problem is S1 ≃ U(1). Recall that the fundamental homotopy group
π1(S

1) = Z, and thus that apart from conventional long-wavelength fluctuations of a phase, the system can also
host point-like topological excitations — vortices, with an integer topological charge n ∈ Z — the winding number
of a phase along a loop enclosing the vortex. Vortices play crucial role in the BKT transition.

1. Find classical configuration φ(r) which corresponds to a single vortex with charge n. Show that its energy
is logarithmically divergent as En ln

L2

a2 . Show that En1+n2
> En1

+ En2
, i.e. unit charge vortices are

energetically favorable.

2. Consider two vortices of charge n1 and n2 placed at r1 and r2, and calculate their interaction energy. Show
that the energy of the “charge-neutral” configuration (e.g. vortex-antivortex pair), does not diverge at L → ∞.

3. An isolated vortex center be placed at any node in the system, thus there is also logarithmically divergent
configurational entropy associated with each vortex S = lnN = ln L2

a2 . Therefore at sufficiently high tem-
peratures T > Tc, the free energy of an isolated vortex F = E − TS becomes negative, i.e. vortices can
spontaneously appear in the system. The associated temperature is the BKT transition temperature, and
it follows that the high-temperature phase corresponds to a two-dimensional plasma of individual vortices,
which interact according to the “Coulomb” law (the system is two-dimensional, so the Coulomb interaction is
logarithmic). On the other hand, at lower temperatures isolated vortices are unlikely to exist, while bound
vortex-antivortex pair still can appear. The BKT transition can then be thought of vortex-antivortex pair
unbinding transition.

2 Double-layer FQHE — Halperin state
Consider fractional quantum hall state (FQHE) in double-layer system with N1 electrons in the first layer and N2

electrons in the second one. Such state, can be described by the following form proposed by Halperin:

Ψq1q2n({zi}, {wj}) =
∏
i<i′

(zi − zi′)
q1
∏
j<j′

(wj − wj′)
q2
∏
i,j

(zi − wj)
n exp

−
∑
i

|zi|2/4l20 −
∑
j

|wj |2/4l20

 (14)

where {zi}N1
i=1 correspond to coordinates of electrons from the first layer, and {wj}N2

j=1 are electron coordinates in
the second layer. Here q1 and q2 are odd integers, and n is an integer. Particles in two layers are considered as
distinguishable.

1. Express the highest power of arbitrary zk and wk, denoted as M1 and M2, via the number of electrons in
corresponding layers. They correspond to maximal angular momenta of single-electron states, and are related
to the radius of electron “droplet” as πR2

1,2 = 2πl20 · M1,2. At which ratio N1/N2, the disks have coinciding
radius, i.e. M1 = M2 = M? Calculate the filling factor of each layer ν1,2 = N1,2/M .
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2. Consider now a quasihole excitation in the first layer, described by the following wavefunction:

Ψh
1 (ξ1) =

∏
i

(ξ1 − zi)Ψq1q2n({zi}, {wj}), (15)

Such quasihole increases M1 by unity, thus from the plasma analogy electrons from both layers will adjust
introducing additional charges ∆N1,2 to compensate for the charge of quasihole and maintain electroneutrality.
Calculate the quasihole charge based on this argument, and generalize the result to the quasihole in the second
layer. Show that the charge coincides with the filling factors obtained earlier.

3. Within the plasma analogy, the square of the wavefunction can be expressed as:

|Ψq1q2n({zi}, {wj})|2 = exp

−1

2

∑
α,β

∫
d2zd2z′ρα(z)Kαβ ln

1

|z − z′|2
ρβ(z

′)−
∑
α

∫
d2zρα(z) ·

|z|2

2l0

 ≡ e−βV [ρ]

(16)
where ρ1(z) =

∑
i δ(z − zi), ρ2(w) =

∑
j δ(w − wj), and the interaction matrix has the following form:

Kαβ =

(
q1 n
n q2

)
(17)

(strictly speaking, the expansion has also unphysical “self-action” term where two delta-functions coincide;
such term can be made finite by introducing short-distance regularization of the logarithmic interaction, then
it simply becomes constant and thus is not important).
Now consider a plasma with additional “test charges” δρα(z) =

∑
β mαβδ(z − ξβ). Show that for matrix

m̂ = K̂−1, the corresponding “plasma potential” acquires following form:

e−βV [ρ+δρ] ≡ |ξ1 − ξ2|2p exp
(
−ν1|ξ1|2 + ν2|ξ2|2

2l20

) ∣∣Ψhh
12 (ξ1, ξ2)

∣∣2 (18)

where ν1,2 exactly correspond to quasihole charges obtained earlier, and where we have introduced the non-
normalized wavefunction with two quasihole excitations, one in the first layer and another in the second:

Ψhh
12 (ξ1, ξ2) =

∏
i

(ξ1 − zi)
∏
j

(ξ2 − wj)Ψq1q2n({zi}, {wj}) (19)

What is the value of p?

4. Based on the calculation from the lecture, show that p is related to the mutual statistics of two quasiholes:
if one adiabatically moves one quasihole around another (note: particles in different layers are considered
as distinguishable, so the complete loop should be made!), the acquired Berry phases consists of standard
Aharonov-Bohm phase (taking into account the quasiparticle charge), and θ12 = −2πp.

4


	Berezinskii-Kosterlitz-Thouless transition
	High-temperature expansion
	Low-temperature limit
	Vortices

	Double-layer FQHE — Halperin state

