Diplom-Vorprüfung Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie

Aufgabe 1 (10 Punkte)

a) Bestimmen Sie die Menge aller $w \in \{\mathbb{C}, \text{ für welche die Reihe}$

$$\sum_{k=0}^{\infty} \left(\frac{1 + i\sqrt{3}}{w} \right)^k$$

konvergiert. Beschreiben Sie diese Menge geometrisch.

b) Für $\zeta \in \mathbb{C}$ ist die Gleichung

$$\sum_{k=0}^{\infty} \left(\frac{1 + i\sqrt{3}}{w} \right)^k = \zeta$$

gegeben, und es sei M_{ζ} die Menge aller ζ , für welche diese Gleichung Lösungen $w(\zeta) \in \mathbb{C}$ besitzt.

Berechnen Sie die $w(\zeta)$, und stellen Sie M_{ζ} als Teilmenge der komplexen Zahlenebene dar.

Aufgabe 2 (10 Punkte)

a) Bestimmen Sie den Wert von

$$\sum_{k=2}^{\infty} \frac{1}{k^2 - 1}$$

$$\sum_{k=2}^{\infty} \frac{1}{k(k+1)}$$

(Hinweis: Berechnen Sie die Partialsummen von Zähler- bzw. Nennerreihe.)

b) Berechnen Sie

$$\lim_{n\to\infty}e^{\frac{1}{1\cdot2}}\cdot e^{\frac{1}{2\cdot3}}\cdot \dots \cdot e^{\frac{1}{n(n+1)}}.$$

Aufgabe 3 (10 Punkte)

Für $\alpha \in \mathbb{R}$ sei die Funktion $f_{\alpha} : \mathbb{R} \to \mathbb{R}$ mit

$$f_{\alpha}(x) = \begin{cases} \frac{1}{e^x - 1} - \frac{1}{x} & \text{für } x \neq 0, \\ \alpha & \text{für } x = 0, \end{cases}$$

gegeben.

- a) Bestimmen Sie $\alpha = \alpha_0$ derart, dass f_{α_0} für alle $x \in \mathbb{R}$ stetig ist.
- b) Berechnen Sie $f'_{\alpha_0}(x)$ für alle $x \in \mathbb{R}$.

Aufgabe 4 (10 Punkte)

a) Begründen Sie, dass das Integral

$$I = \int_{1}^{\infty} \frac{dx}{x\sqrt{x^2 - 1}}$$

konvergiert.

b) Berechnen Sie I.

(**Hinweis:** Substituieren Sie $x \to t = \sqrt{x^2 - 1}$.)

Viel Erfolg!

Hinweise für nach der Klausur:

Die **Ergebnisse** der Vordiplomklausuren hängen ab Montag, dem 11. Oktober 2004, vor dem Sekretariat aus und liegen unter

http://www.mathematik.uni-karlsruhe.de/~mi1/Schneider/HM/vd-h.html

im Internet.

Die Klausureinsicht findet für diejenigen, die sich einer mündlichen Nachprüfung stellen müssen, am Dienstag, dem 19. Oktober 2004, von 13.15 bis 13.45 Uhr im Seminarraum S 31 (Mathematikgebäude) statt.

Die Allgemeine Klausureinsicht für alle übrigen findet, am Mittwoch, dem 03. November 2004, von 15.45 bis 17.15 im S 33 (Mathematikgebäude)statt.

Die Nachprüfungen selbst sind in der Woche vom 25. bis 29. Oktober 2004.