Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Klausur

Höhere Mathematik I für die Fachrichtung Physik

Aufgabe 1 ((4+3+3)) Punkte

- a) Sei $(a_n)_{n\in\mathbb{N}}$ eine reelle Zahlenfolgen mit $a_n\neq 0$ für alle $n\in\mathbb{N}$. Die Reihe $\sum_{n=1}^{\infty}a_n$ sei konvergent. Welche der folgenden Aussagen sind wahr, welche nicht? Geben Sie für wahre Aussagen eine kurze Begründung, für falsche ein Gegenbeispiel.
 - i) Die Folge $(\frac{1}{a_n})_{n\in\mathbb{N}}$ ist divergent.
 - ii) Die Reihe $\sum_{n=1}^{\infty} a_n^2$ ist konvergent.
 - iii) Die Reihe $\sum_{n=1}^{\infty} \sqrt{|a_n|}$ ist konvergent.
 - iv) Die Reihe $\sum_{n=1}^{\infty} (-1)^n a_n$ ist konvergent.
- b) Sei $P(x) = \sum_{k=0}^{n} b_k x^k$ ein reelles Polynom, wobei $b_n = 1$ und n ungerade ist. Entscheiden Sie wieder, welche der folgenden Aussagen wahr und welche nicht wahr sind, und geben Sie für wahre Aussagen eine kurze Begründung, für falsche ein Gegenbeispiel.
 - i) P hat mindestens eine Nullstelle auf \mathbb{R} .
 - ii) Es gibt ein $y \in \mathbb{R}$ mit P(y) = y.
 - iii) Das Integral $\int_0^\infty e^{-P(x)} dx$ ist konvergent.
- c) Bestimmen Sie sämtliche komplexe Lösungen der Gleichung $z^6 = 4\sqrt{2}(8-8i)$.

Aufgabe 2 ((5+5) Punkte)

a) Untersuchen Sie die Reihen in i) und ii) auf Konvergenz und auf absolute Konvergenz:

$$\sum_{k=0}^{\infty} \frac{k}{(k+1)(k+2)}$$

$$\sum_{k=0}^{\infty} \left(\frac{k}{k+1}\right)^{k^2}$$

- b) i) Zeigen Sie für alle $n \in \mathbb{N}$ mit $n \ge 4$ die Ungleichung $3^n \le 4 n!$
 - ii) Für jedes $k \in \mathbb{N}$ sei $a_k \in \mathbb{R}$ mit $0 \leq a_k \leq 1$. Zeigen Sie für alle $n \in \mathbb{N}$ die Ungleichung

$$(a_1 + a_2 + \ldots + a_n) - (a_1 \cdot a_2 \cdot \ldots \cdot a_n) \le n - 1.$$

Aufgabe 3 ((5+5) Punkte)

a) Für $x \in \mathbb{R} \setminus \{k\pi : k \in \mathbb{Z}\}$ ist der *Kotangens* definiert durch $\cot x := \frac{\cos x}{\sin x}$. Sei

$$f:(0,\pi)\to\mathbb{R}, \quad f(x)=\cot x.$$

- i) Berechnen Sie die Ableitung von f. Folgern Sie, dass f bijektiv ist.
- ii) Die Umkehrfunktion von f ist der Arkuskotangens: $f^{-1} = \operatorname{arccot} : \mathbb{R} \to (0, \pi)$. Begründen Sie, dass arccot differenzierbar ist und zeigen Sie arccot' $x = -\frac{1}{1+x^2}$.
- b) i) Sei $\frac{2}{\pi} < a < b$. Berechnen Sie

$$\int_{a}^{b} \frac{\log\left(\cot\left(\frac{1}{x}\right)\right)}{x^{2}\sin^{2}\left(\frac{1}{x}\right)} dx.$$

Hinweis: Substituieren Sie $y = \cot(\frac{1}{x})$.

ii) Untersuchen Sie das uneigentliche Integral $\int_{\frac{2}{\pi}}^{\frac{4}{\pi}} \frac{\log(\cot(\frac{1}{x}))}{x^2\sin^2(\frac{1}{x})} dx$ auf Konvergenz und berechnen Sie gegebenenfalls den Wert des Integrals.

Aufgabe 4 ((3+4+3) Punkte)

a) Untersuchen Sie die Folge

$$a_n = \sqrt{n}\pi^{\frac{1}{\sqrt{n}}} - \sqrt{n}e^{-\frac{1}{\sqrt{n}}}$$

auf Konvergenz und bestimmen Sie gegebenenfalls den Grenzwert.

- b) Sei $I = (-1,1) \subset \mathbb{R}$ und $f: I \to \mathbb{R}$, f(x) = |x|. Finden Sie eine Folge von Funktionen $f_k \in C^1(I)$, so dass $(f_k)_{k \in \mathbb{N}}$ gleichmäßig gegen f konvergiert. Weisen Sie nach, dass $(f_k)_{k \in \mathbb{N}}$ tatsächlich die geforderten Eigenschaften erfüllt.
- c) Sei $J=(0,1)\subset\mathbb{R}$. Bestimmen Sie alle $a\in\mathbb{R}$, so dass die Funktion $g:J\to\mathbb{R}$, $g(x)=\sqrt{x}\,x^a$ Lipschitzstetig ist.

Viel Erfolg!

Hinweise für nach der Klausur:

Die Klausurergebnisse hängen ab Freitag, **11.10.2013**, am Schwarzen Brett neben Zimmer 3A-17 (Allianz-Gebäude 05.20) aus und liegen unter

http://www.math.kit.edu/iana1...

im Internet.

Die **Klausureinsicht** findet am Mittwoch, den **23.10.2013**, von 16.00 bis 18.00 Uhr im Hörsaal am Fasanengarten statt.