Höhere Mathematik I für die Fachrichtungen Elektroningenieurwesen, Physik und Gedoäsie WS 2010/2011

Andreas Müller-Rettkowski e-mail: andreas.mueller-rettkowski@kit.edu

Dies ist eine Vorlesungs*zusammenfassung*, gedacht zur Vorlesungsbegleitung und als Gedächtnisstütze. Der Besuch der Vorlesung ist hierdurch nicht zu ersetzen: In der Vorlesung wird erklärt, begründet, veranschaulicht und eingeordnet.

Den Vorlesungsstoff und viele konkrete Anwendungen finden Sie in den Büchern von Dirschmid, Burg/ Haf/ Wille, Meyberg/ Vachenauer, die auf der Homepage zur Vorlesung angegeben sind.

Inhaltsverzeichnis

1	Gru	ndtatsachen der Aussagenlogik	9
	1.1	Aussagen	9
	1.2	Verknüpfungen von Aussagen durch $Junktoren \neg, \lor, \land, \Rightarrow, \Leftrightarrow \ldots$	9
	1.3	Direkter / Indirekter Beweis des Satzes: $A \Rightarrow B$ (A ist die Voraussetzung,	
		B die Behauptung)	10
		1.3.1 Indirekter Beweis (Satz 1 (*), (**), letzte Zeile der Wahrheitstafel)	10
	1.4	Die Quantoren \forall , \exists	11
2	Gru	ndbegriffe der Mengenlehre	13
	2.1	Mengen	13
	2.2	Wichtige Mengen	13
	2.3	Inklusion $(A, B \text{ sind beliebige Mengen}) \dots \dots \dots \dots \dots$	14
	2.4	Die Mengenoperationen: \cap, \cup, \setminus	14
	2.5	Ergänzungen	15
3	Fun	ktionen (Abbildungen)	17
	3.1	Bezeichnungen, Definitionen	17
	3.2	surjektiv, injektiv, bijektiv	18
	3.3	Hintereinanderausführen / Komposition von Abbildungen	18
	3.4	Die inverse Funktion	19
4	Die	reellen Zahlen	21
	4.1	Addition und Multiplikation	21
	4.2	Anordnungsaxiome $(<,>,\leq,\geq)$, Ungleichungen	21
	4.3	Der Betrag einer reellen Zahl	22
	4.4	Das Vollständigkeitsaxiom	23
		4.4.1 Beschränkte Mengen. Supremum. Infimum	23
		4.4.2 Das Vollständigkeitsaxiom	25
	4.5	Eigenschaften von reellwertigen Funktionen	25
	4.6	Einige Folgerungen aus dem Vollständigkeitsaxiom (\underline{V}), ($4.4,4.4.2$ (S. 25))	26
5	ℕ, \	/ollständige Induktion (VI), Permutationen, Kombinationen	27
	5.1	Induktive Mengen	27
	5.2	Induktionssatz	27
	5.3	Definition durch Induktion	28
	5.4	Beweismethode: Vollständige Induktion (VI)	28

6	Die	komplexen Zahlen $\mathbb C$ 3
	6.1	Grundlegende Definitionen
	6.2	Veranschaulichung von z in der komplexen Ebene
	6.3	Rechnen mit $ \cdot $ und mit der Polardarstellung
	6.4	Die n -te Wurzel aus $a \in \mathbb{C}, a \neq 0 \ldots 3$
7	Folg	e, Grenzwert 3
	7.1	Definition (Folge)
	7.2	Konvergenz, Divergenz, Häufungspunkte
	7.3	Die Beispiele aus 7.1
	7.4	Rechnen mit konvergenten Folgen
	7.5	Monotonie und Konvergenz
	7.6	Zwei wichtige Grenzwerte
	7.7	Intervallschachtelung
8	Reih	en 4
U	8.1	Grundlegende Definitionen
	8.2	Umordnung. Absolute Konvergenz
	8.3	Konvergenzkriterien
	8.4	Das Cauchy-Produkt
•	5.	·
9		Exponentialfunktion 4
	9.1	Definition und grundlegende Eigenschaften
	9.2	Die reelle exp-Funktion
	9.3	Die trigonometrischen Funktionen sin, cos
10		igkeit 4
	10.1	Definition
	10.2	Beispiele
	10.3	Zum Rechnen mit stetigen Funktionen
	10.4	Grundlegende Sätze zu Stetigkeit
	10.5	Stetige Fortsetzung
11	Pote	enzreihen 5
	11.1	Grundlegende Definitionen
		Der Konvergenzradius. Der Konvergenzbereich einer Potenzreihe 5
		Der Identitätssatz
12	Die	elementaren Funktionen 5
_	12.1	
	12.2	Die Zahl π
12	Cri	ndlagen der Differential- (DR) und Integralrechnung (IR) 59
13		Das bestimmte Integral $\int_a^b f(x) dx$ für eine auf dem abgeschlossenen und
	10.1	Das bestimmte integral $\int_a f(x) dx$ für eine auf dem abgeschiossenen und beschränkten Intervall [a, b] definierte beschränkte Funktion f

In halts verzeichn is

	13.2	Eigenschaften von $\int_a^b f(x) dx$	61
		Der Mittelwertsatz der Integralrechnung (MWSIR)	
	13.4	Die Ableitung	63
		Ableitungsregeln	
	13.6	Extremwerte. MWSDR (Mittelwertsatz der Differentialrechnung)	65
	13.7	Der Hauptsatz der Differential-Integralrechnung	67
		Integrationsregeln (Partielle Integration. Substitutionsregel)	
14	Tayl	orsatz. Hinreichende Bedingungen für Extremwerte. Taylorreihen.	69
	14.1	Satz von Taylor	69
	14.2	Hinreichende Bedingungen für Extremwerte	69
		Taylorreihe	
	14.4	Entwicklung einer Funktion in eine Potenzreihe	71
15	Unb	estimmte Ausdrücke. Die Regeln von de L'Hospital	73
	15.1	Die Ausdrücke $\left(\frac{0}{0}\right)$, $\left(\frac{\infty}{\infty}\right)$	73
16	Unei	igentliche Integrale	75
		Definitionen	75
		Beispiele	
		Majoranten- Minorantenkriterium. Absolute Konvergenz. Integralkriterium.	

1 Grundtatsachen der Aussagenlogik

1.1 Aussagen

Eine Aussage ist ein Satz, der entweder wahr (W) oder falsch (F) ist

1.2 Verknüpfungen von Aussagen durch Junktoren $\neg, \lor, \land, \Rightarrow, \Leftrightarrow$

Sind A, B Aussagen, so werden die Aussagen

$$\neg A, A \lor B, A \land B, A \Rightarrow B, A \Leftrightarrow B$$

durch ihre Wahrheitswerte in Abhängigkeit von den Wahrheitswerten von A und B durch die folgende Wahrheitstafel definiert:

A	$\neg A$	$\mid B \mid$	$A \wedge B$	$A \lor B$	$A \Rightarrow B$	$A \Leftrightarrow B$
\overline{W}	F	W	W	W	W	\overline{W}
W	F	F	F	W	F	F
F	W	W	F	W	W	F
F	W	F	F	F	W	W

- $\cdot \neg A$ (nicht A) ist nur F, wenn A W ist
- $\cdot A \wedge B$ (A und B) ist nur W, wenn A und B beide W sind
- $A \vee B$ (A oder B) ist nur F, wenn A und B beide F sind
- · $A \Rightarrow B$ (aus A folgt B, wenn A dann B, B ist notwendig für A) ist nur dann F, falls $\neg A$ und B beide F sind
- · $A \Leftrightarrow B$ (A ist äquivalent zu B, A ist notwendig und hinreichend für B) ist nur dann W, wenn A und B dieselben Wahrheitswerte haben

Bemerkungen 1. $A \wedge (\neg A)$ ist stets F

2. $A \vee (\neg A)$ ist stets W

1 Grundtatsachen der Aussagenlogik

3. $A \Rightarrow B$ ist W, wenn A F ist, unabhängig vom Wahrheitswert von B.

Satz 1 A, B, C seien Aussagen. Es gelten:

1.

$$\neg (A \land B) \Leftrightarrow (\neg A) \lor (\neg B)$$
$$\neg (A \lor B) \Leftrightarrow (\neg A) \land (\neg B)$$

2.

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A) \tag{*}$$

$$\Leftrightarrow (\neg A) \lor B$$

$$\Leftrightarrow (A \land \neg B \Rightarrow C \land \neg C) \tag{**}$$

3.

$$((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)$$

4.

$$(A \Leftrightarrow B) \Leftrightarrow ((A \Rightarrow B) \land (B \Rightarrow A))$$

1.3 Direkter / Indirekter Beweis des Satzes: $A \Rightarrow B$ (A ist die Voraussetzung, B die Behauptung)

Direkter Beweis (1. Zeile der Wahrheitstafel)

A ist als Voraussetzung a priori W. Folgere (richtig!) B. Dann ist B W. Beispiel p sei eine natürliche Zahl. Es gilt: Ist p gerade, so ist p^2 gerade.

1.3.1 Indirekter Beweis (Satz 1 (*), (**), letzte Zeile der Wahrheitstafel)

Nimm an, B ist F: Gehe von $\neg B$ aus. Folgere auf richtige Weise etwas Falsches: etwa $\neg A$ (*) oder $C \land \neg C$ (**). Dann muss der Ausgangspunkt $\neg B$ F, also B W sein.

Beispiel p sei eine natürliche Zahl. Es gilt: Ist p^2 gerade, so ist p gerade.

Satz 2 (Zusammenfassen der beiden Beispiele) Es sei p eine natürliche Zahl. Es gilt:

$$p$$
 ist gerade $\iff p^2$ ist gerade.

Satz 3 $\sqrt{2}$ ist keine rationale Zahl

1.4 Die Quantoren \forall , \exists .

Trifft die Aussage A(x) für alle x mit einer bestimmten Eigenschaft zu, so schreiben wir

$$\bigvee_{x} A(x)$$
.

Gibt es (mindestens) ein x mit dieser Eigenschaft, für das A(x) zutrifft, so wird das in der Form

$$\exists_x A(x)$$

ausgedrückt.

Verneinung:

$$\neg \left(\bigvee_{x} A(x) \right) \Longleftrightarrow \exists_{x} \left(\neg A(x) \right),$$
$$\neg \left(\exists_{x} A(x) \right) \Longleftrightarrow \bigvee_{x} \left(\neg A(x) \right)$$

Beispiel x sei eine reelle Zahl.

1. $\exists_x \ x^2 = 1$ ist W. Also ist $\neg (\exists_x \ x^2 = 1)$ F, das ist äquivalent zu $\forall_x \ x^2 \neq 1$.

2. $\exists_x \ x^2 + x + 1 \ ist \ F$, die Negation $\forall_x \ x^2 + x + 1 \neq 0 \ ist \ W$.

¹Aus Gründen der Lesbarkeit wird in nicht-abgesetzten Formeln stets die Schreibweise $\forall_x A(x)$ anstatt $\forall_x A(x)$ verwendet

2 Grundbegriffe der Mengenlehre

2.1 Mengen

Eine $Menge\ M$ ist die Zusammenfassung wohlbestimmter, wohlunterschiedener Objekte der Anschauung oder des Denkens zu einem neuen Ganzen.

" $x \in M$ " bedeutet: Das Objekt (Element) x gehört zur Menge M.

$$(x \notin M) : \iff \neg(x \in M) (x \text{ liegt nicht in } M)^1$$

Für jede Menge M und jedes Objekt x muss unzweideutig gelten: entweder $x \in M$ oder $x \notin M$.

Schreibweise

$$M = \underbrace{\{x \mid x \text{ besitzt die Eigenschaft } E\}}_{\text{alle Elemente, die die Eigenschaft } E}$$

2.2 Wichtige Mengen

 \emptyset bezeichnet die *leere Menge*, die Menge, die keine Elemente enthält: Die Aussage $x \in \emptyset$ ist stets F.

 $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ bezeichnen die Mengen der natürlichen, der ganzen, der rationalen, der reellen und der komplexen Zahlen.

¹":⇔" bedeutet, dass das, was links von ":⇔" steht, durch die Aussage rechts davon definiert wird.

2.3 Inklusion (A, B sind beliebige Mengen)

$$(A \subset B) \; (\text{,,} A \text{ ist Teilmenge von } B\text{``}) : \iff \bigvee_{x \in A} x \in B$$

$$(A \not\subset B) \; (\text{,,} A \text{ liegt nicht in } B\text{``}) : \iff \neg (A \subset B)$$

$$\iff \underset{x \in A}{\exists} x \not\in B$$

Gleichheit

$$(A = B) : \iff (A \subset B) \land (B \subset A)$$

Bemerkung Bei " \subset " ist die Gleichhheit nicht ausgeschlossen. Es gilt z.B. $A \subset A$ für jede Menge A.

Beispiel 1. Mit den Bezeichnungen aus 2.2 gilt

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{O} \subset \mathbb{R} \subset \mathbb{C}$$
.

Hier gilt nirgends die Gleichheit. \mathbb{Q} etwa ist echte Teilmenge von \mathbb{R} .

- 2. $\emptyset \subset A$ für jede Menge A
- 3. $((A \subset B) \land (B \subset C)) \Rightarrow (A \subset C)$ für Mengen A, B, C.

2.4 Die Mengenoperationen: \cap , \cup , \setminus

A, B sind beliebige Mengen. $A \cap B, A \cup B, A \setminus B$ sind die wie folgt definierten Mengen:

$$A \cap B := \{x \mid (x \in A) \land (x \in B)\}^2$$
 (Durchschnitt von A und B)

$$A \cup B := \{x \mid (x \in A) \lor (x \in B)\}$$
 (Vereinigung von A und B)

$$A \setminus B := \{x \mid (x \in A) \land (x \notin B)\}$$
 (Differenz von A und B)

Falls $B \subset A$:

$$C_A B := A \setminus B$$
 (Komplement von B bzgl. A)

Satz 1 ("Rechnen mit Mengen") A, B, C seien beliebige Mengen. Es gelten:

²Ähnlich wie bei ":⇔" wird das, was links von ":=" steht, durch das, was rechts davon steht, definiert.

1.
$$A \cap B = B \cap A$$
, $A \cup B = B \cup A$

2.
$$(A \cap B) \cap C = A \cap (B \cap C)$$
,
 $(A \cup B) \cup C = A \cup (B \cup C)$

6.
$$(B \subset A) \Longrightarrow \underbrace{A \setminus (A \setminus B)}_{=C_A(C_A B)} = B$$

3.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
,
 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

$$7. \ A \setminus (A \setminus B) = A \cap B$$

4.
$$(A \subset B) \Longrightarrow (A \cap C) \subset (B \cap C)$$
, $(A \subset B) \Longrightarrow (A \cup C) \subset (B \cup C)$

$$9. \ (A \subset B) \iff (A \cup B = B) \iff$$

8. $A \cup \emptyset = A, A \setminus \emptyset = A, A \cap \emptyset = \emptyset$

Versuchen Sie die Beweise, oder machen Sie sich diese Aussagen wenigstens anschaulich

2.5 Ergänzungen

1. Es sei I eine Menge. Jedem $j \in I$ wird eine Menge A_j zugeordnet. $\{A_j \mid j \in I\}$ heißt Mengenfamilie.

$$\bigcup_{j \in I} A_j := \left\{ x \mid \underset{j \in I}{\exists} x \in A_j \right\},$$
$$\bigcap_{j \in I} A_j := \left\{ x \mid \bigvee_{j \in I} x \in A_j \right\}$$

Satz 2 (de Morgansche Regeln) Es sei $\{A_j \mid j \in I\}$ eine Mengenfamilie und M eine Menge mit $A_j \subset M$ für jeden Index $j \in I$. Es gelten:

$$C_M \left(\bigcup_{j \in I} A_j \right) = \bigcap_{j \in I} C_M A_j,$$

$$C_M \left(\bigcap_{j \in I} A_j \right) = \bigcup_{j \in I} C_M A_j$$

- 2. Zwei Mengen M, N mit $M \cap N = \emptyset$ heißen disjunkt.
- 3. Sind A_1, A_2, \ldots, A_n Mengen, so wird die Menge der geordneten n-Tupel (a_1, a_2, \ldots, a_n) , $(a_j \in A_j, j = 1, ..., n)$ durch $A_1 \times A_2 \times ... \times A_n$ bezeichnet und das kartesische $Produkt der Mengen A_1, A_2, \ldots, A_n$ genannt.

2 Grundbegriffe der Mengenlehre

Im Fall $A_1 = A_2 = \ldots = A_n = A$ schreibt man für $A \times \ldots \times A$ einfach A^n . Beispiel $A = \mathbb{R}$: \mathbb{R}^2 Ebene, \mathbb{R}^3 Raum.

3 Funktionen (Abbildungen)

3.1 Bezeichnungen, Definitionen

1. X,Y seien zwei nichtleere Mengen. Eine Vorschrift f, durch die jedem $x\in X$ genau ein $y\in Y$ zugeordnet wird, heißt Funktion (Abbildung) von X nach Y. Geschrieben:

$$f: X \longrightarrow Y, \ y = f(x)^{1}$$

x heißt unabhängige, y abhängige Variable. X ist der Definitionsbereich von f (wir werden hierfür D(f) schreiben), Y heißt Wertebereich von f.

2. Für $A \subset X$ heißt

$$f(A) := \{ f(x) \mid x \in A \}$$

das $Bild\ von\ A\ unter\ f,\ f(X)$ heißt $Bildbereich\ von\ f$ (das ist die Menge der Funktionswerte).

3. Der Graph einer Funktion $f: X \longrightarrow Y$ ist die Menge

$$graph(f) := \{(x, f(x)) \mid x \in X\} \subset X \times Y.$$

Es gilt

$$\bigvee_{(x,y)\in\operatorname{graph}(f)}(x,y')\in\operatorname{graph}(f)\Longrightarrow y=y'.$$

- 4. Die durch $\mathrm{id}_X(x) := x$ für alle $x \in X$ definierte Funktion $\mathrm{id}_X : X \longrightarrow X$ heißt die *Identität von X*.
- 5. Es sei $A \subset X$. Die Funktion

$$\chi_A(x) := \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}, \ \chi_A : X \longrightarrow \{0, 1\}$$

heißt die charakteristische Funktion von A.

¹Oft wird auch die Notation $f: X \longrightarrow Y, x \longmapsto y$ verwendet.

3.2 surjektiv, injektiv, bijektiv

Die Funktion $f: X \longrightarrow Y$ heißt

- · surjektiv, wenn jedes $y \in Y$ mindestens ein Urbild hat. (Wenn also f(X) = Y gilt.)
- · injektiv (eineindeutig), wenn jedes Bild f(x) nur ein Urbild besitzt. (Wenn also aus $x_1 \neq x_2$ folgt: $f(x_1) \neq f(x_2)$.)
- · bijektiv, wenn f surjektiv und injektiv ist, wenn es also zu jedem $y \in Y$ genau ein Urbild $x \in X$ gibt.

Ist f bijektiv, so ist die Vorschrift, die jedem $y \in Y$ die Lösung x der Gleichung y = f(x) zuordnet, eine Funktion, die zu f inverse Funktion $f^{-1}: Y \longrightarrow X$:

$$f^{-1}(y) = x : \iff y = f(x) \quad (x \in X, y \in Y)$$

3.3 Hintereinanderausführen / Komposition von Abbildungen

X, Y, Z seien Mengen und $f: X \longrightarrow Y, g: Y \longrightarrow Z$ Funktionen. Dann wird durch

$$(g \circ f)(x) := g(f(x)), \ x \in X$$

die Kompositionsabbildung $g \circ f : X \longrightarrow Z$ definiert.

· Es gelten mit $f: X \longrightarrow Y$:

$$f \circ id_X = f$$
, $id_Y \circ f = f^2$.

· Für zwei Funktionen f, g, für die $f \circ g$ und $g \circ f$ bildbar sind, gilt i.A. $f \circ g \neq g \circ f$.

Satz 1 X, Y, Z, U seien Mengen und $f: X \longrightarrow Y, g: Y \longrightarrow Z, h: Z \longrightarrow U$ Funktionen. Dann sind die Funktionen $(h \circ g) \circ f$ und $h \circ (g \circ f)$ Funktionen von X nach U. Es gilt:

$$(h \circ q) \circ f = h \circ (q \circ f)$$

²Zwei Funktionen $f:X\longrightarrow Y,\,g:X'\longrightarrow Y'$ sind gleich (f=g), wenn X=X' und für alle $x\in X$ f(x)=g(x) gilt.

³Man schreibt $f \neq g$, wenn $\neg (f = g)$ gilt, also wenn entweder $X \neq X'$ oder ein $x \in X$ existiert mit $f(x) \neq g(x)$.

3.4 Die inverse Funktion

(siehe oben 3.2)

Satz 2 a) Ist $f: X \longrightarrow Y$ bijektiv, so ist f^{-1} die durch $g \circ f = \mathrm{id}_X$ und $f \circ g = \mathrm{id}_Y$ eindeutig festgelegte Abbildung $g: Y \longrightarrow X$.

b) Gelten für die Funktionen $f: X \longrightarrow Y, g: Y \longrightarrow X$

$$g \circ f = \mathrm{id}_X \ und \ f \circ g = \mathrm{id}_Y,$$

so sind f und g bijektiv.

Bemerkung (Übung) Ist f bijektiv, so gilt

$$(f^{-1})^{-1} = f.$$

 $\textbf{Satz 3} \ \textit{Sind } f: X \longrightarrow Y \ \textit{und } h: Y \longrightarrow Z \ \textit{bijektiv, so ist } h \circ f: X \longrightarrow Z \ \textit{bijektiv. Es gilt}$

$$(h \circ f)^{-1} = f^{-1} \circ h^{-1}.$$

Beispiel Definiere $\sigma : \mathbb{N} \longrightarrow \mathbb{Z}$ durch

$$\sigma(2k) := k, \ k = 1, 2, \dots, \ und \ \sigma(2k+1) = -k, \ k = 0, 1, 2, \dots$$

Übung: Zeige, dass σ bijektiv ist. Finde eine Darstellung für $\sigma^{-1}: \mathbb{Z} \longrightarrow \mathbb{N}$. Prüfe damit nach: $\sigma \circ \sigma^{-1} = \mathrm{id}_{\mathbb{Z}}$ und $\sigma^{-1} \circ \sigma = \mathrm{id}_{\mathbb{N}}$ und auch $(\sigma^{-1})^{-1} = \sigma$.

4 Die reellen Zahlen

4.1 Addition und Multiplikation

Die Addition:

$$+: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}, \ (x, y) \longmapsto x + y,$$

hat die folgenden Eigenschaften:

· Für $x, y, z \in \mathbb{R}$ gelten

$$x + y = y + x$$
; $(x + y) + z = x + (y + z)$;

- · es gibt (genau) eine Zahl $0 \in \mathbb{R}$ mit x + 0 = x für jedes $x \in \mathbb{R}$;
- · zu jedem $x \in \mathbb{R}$ gibt es (genau) ein $-x \in \mathbb{R}$ mit x + (-x) = 0.

Die Multiplikation

$$: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}, \ (x, y) \longmapsto x \cdot y =: xy,$$

wird durch die folgenden Regeln festgelegt:

· Für $x, y, z \in \mathbb{R}$ gelten

$$xy = yx; (xy)z = x(yz);$$

- · es gibt (genau) eine Zahl $1 \in \mathbb{R}$, $1 \neq 0$ mit x1 = x für jedes $x \in \mathbb{R}$;
- · zu jedem $x \neq 0$ gibt es (genau) ein $\frac{1}{x} \in \mathbb{R}$ mit x = 1.

Es gilt das Distributivgesetz:

$$x(y+z) = xy + xz$$

Bemerkung Aus diesen Regeln können alle Regeln über das Rechnen mit $+, \cdot, -$ und Brüchen hergeleitet werden

4.2 Anordnungsaxiome (<, >, \le , \ge), Ungleichungen

Es gibt eine Teilmenge $P \subseteq \mathbb{R}$ mit den Eigenschaften:

O1) Für jedes $x \in \mathbb{R}$ trifft genau eine der drei Möglichkeiten zu:

$$x \in P, -x \in P, x = 0$$

O2)
$$x, y \in P \Longrightarrow x + y \in P$$

O3)
$$x, y \in P \Longrightarrow xy \in P$$

Die Elemente aus P heißen positiv: Für $x \in P$ wird x > 0 geschrieben (oder 0 < x) (> größer als, < kleiner als)

$$x < 0 : \iff -x > 0 \ (x \text{ negativ})$$

 $x > y : \iff x - y > 0$

$$x \ge y : \iff x > y \text{ oder } x = y$$

Aus 01), 02), 03) mit den Bezeichnungen >, <, \ge , \le können alle Regeln, die das Rechnen mit Ungleichungen betreffen, hergeleitet werden. Einige sind in Satz 1 zusammengestellt

Satz 1 (1) Aus $a, b \in \mathbb{R}$, $(a > b) \land (b > c)$ folgt a > c

- (2) Aus a > b und $c \in \mathbb{R}$ folgt a + c > b + c
- (3) Aus a > b und $c \left\{ > \right\} 0$ folgt $ac \left\{ > \right\} bc$
- (4) Aus $a \le b$ und $c \le d$ folgt $a + c \le b + d$
- (5) Gilt für zwei Zahlen a,b und jede positive Zahl $\varepsilon > 0$ $a \le b + \varepsilon$, so folgt $a \le b$.

Beispiele 1) $\{x \mid x + \frac{1}{x} \ge 2\} = \{x \mid x > 0\}$

2)
$$\forall_{x>0,y>0} (x < y) \Leftrightarrow (x^2 < y^2)$$

3)
$$\forall_{x,y \in \mathbb{R}} (x < y) \Rightarrow (x < \frac{x+y}{2} < y)$$

4.3 Der Betrag einer reellen Zahl

Für $x \in \mathbb{R}$ wird definiert:

$$|x| := \left\{ \begin{array}{ll} x, & x \ge 0 \\ -x, & x \le 0 \end{array} \right\} = \max(x, -x)$$

Satz 2 x, y sind beliebige reelle Zahlen. Es gelten:

(1)
$$x \neq 0 \iff |x| > 0$$

$$(2) -|x| \le x \le |x|$$

(3)
$$|-x| = |x|$$

(4)
$$|x - y| = |y - x|$$

(5) Es sei
$$a > 0$$
:

$$\{x \mid -a \le x \le a\} = \{x \mid |x| \le a\}$$

Bemerkung (zu 5) Es seien $x_0 \in \mathbb{R}$ und a > 0 fest. Die Menge

$$\{x \mid |x - x_0| < a\} = \{x \mid x_0 - a < x < x_0 + a\}$$

 $hei\beta t$ a-Umgebung von x_0 . Wir schreiben hierfür $U_a(x_0)$.

Satz 3 Für $x, y \in \mathbb{R}$ gelten:

(1)
$$|xy| = |x||y|, \ \left|\frac{x}{y}\right| = \frac{|x|}{|y|} \ (y \neq 0), \ also \ insbesondere \ |x|^2 = x^2, \ |x| = \sqrt{x^2}$$

(2)
$$||x| - |y|| \le |x \pm y| \le |x| + |y|$$
 (Dreiecksungleichung)

(3)
$$(|x| \le |y|) \iff (x^2 \le y^2)$$

Beispiel
$$\{x \mid \left| \frac{x+4}{x+1} \right| \le 2\} = \{x \mid |x| \ge 2\}$$

Satz 4 (GAM-Ungleichung)

(1) Für
$$x \ge 0$$
, $y \ge 0$ gilt $\sqrt{xy} \le \frac{1}{2}(x+y)$

(2)
$$F\ddot{u}r \ x, y \in \mathbb{R} \ gilt \ |xy| \le \frac{1}{2}(x^2 + y^2)$$

4.4 Das Vollständigkeitsaxiom

4.4.1 Beschränkte Mengen. Supremum. Infimum.

1) Es sei $M \subseteq \mathbb{R}$.

Gilt $\exists_{S \in \mathbb{R}} \forall_{x \in M} \ x \leq S$, so heißt M nach oben beschränkt, S ist eine obere Schranke von M.

Gilt $\exists_{s \in \mathbb{R}} \forall_{x \in M} \ s \leq x$, so heißt M nach unten beschränkt, s ist eine untere Schranke von M.

Ist M nach unten und nach oben beschränkt, so heißt M beschränkt.

Beispiel $M = \{x \mid x < 0\}$ ist nach oben aber nicht nach unten beschränkt.

Maximum / Minimum einer Menge $M \subset \mathbb{R}$:

$$x = \max(M) :\iff (x \in M) \land \left(\bigvee_{y \in M} y \le x \right)$$
$$\tilde{x} = \min(M) :\iff (\tilde{x} \in M) \land \left(\bigvee_{y \in M} \tilde{x} \le y \right)$$

Beispiel $M = \{x \mid x < 0\}$ besitzt kein Maximum.

Satz 5 $M, N \subset \mathbb{R}$ seien Mengen, die ein Maximum und ein Minimum besitzen. Es gelten:

- a) $M \subset N \Longrightarrow \max(M) \le \max(N) \ und \ \min(N) \le \min(M)$
- b) $\max(M \cup N) = \max\{\max(M), \max(N)\}\ und \min(M \cup N) = \min\{\min(M), \min(N)\}$
- c) $\min(M) = -\max(-M) \ mit M := \{x \mid -x \in M\}$
- 2) Es sei $M \subset \mathbb{R}$.

 $\Gamma \in \mathbb{R}$ heißt Supremum von $M: \Gamma = \sup(M)$, wenn Γ eine kleinste obere Schranke von M ist, also:

$$\Gamma = \sup(M) : \iff 1.) \ x \le \Gamma \text{ für alle } x \in M \text{ und}$$

$$2.) \text{ aus } x \le S \text{ für alle } x \in M \text{ folgt } \Gamma \le S.$$

 $\gamma \in \mathbb{R}$ heißt Infimum von $M: \gamma = \inf(M)$, wenn γ eine größte untere Schranke von M ist, also:

$$\gamma = \inf(M) : \iff 1.$$
) $\gamma \le x$ für alle $x \in M$ und
2.) aus $s \le x$ für alle $x \in M$ folgt $s \le \gamma$.

Satz 6
$$\inf(M) = -\sup(-M)$$

Satz 7 Es gilt:

$$\Gamma = \sup(M) \iff 1.$$
) $x \leq \Gamma$ für alle $x \in M$ und
2.) zu jedem $\varepsilon > 0$ gibt es ein $x \in M$ mit $\Gamma - \varepsilon < x$.

Übung: Formuliere den zu Satz 7 analogen Satz für $\inf(M)$.

Bemerkungen a) Eine Menge $M \subset \mathbb{R}$ besitzt höchstens ein Supremum

- b) Existiert max(M), so gilt max(M) = sup(M).
- c) Ist M nach oben (unten) unbeschränkt, so schreibt man auch $\sup(M) = \infty$ ($\inf(M) = -\infty$), was das Folgende bedeutet:

$$\sup(M) = \infty \iff \bigvee_{k \in \mathbb{R}} \exists_{x \in M} k < x$$
$$\inf(M) = -\infty \iff \bigvee_{k \in \mathbb{R}} \exists_{x \in M} x < k$$

Beispiel $M = \{\frac{1}{x} \mid x > 0\}$ ist nach oben nicht beschränkt.

4.4.2 Das Vollständigkeitsaxiom

 $(\underline{\mathbf{V}})$ Jede nichtleere nach oben beschränkte Teilmenge $M \subset \mathbb{R}$ besitzt ein Supremum: Es gibt $\Gamma \in \mathbb{R}$ mit $\Gamma = \sup(M)$

Satz 8 In \mathbb{Q} gilt (\underline{V}) nicht: Die Menge $M = \{x \in \mathbb{Q} \mid x > 0 \text{ und } x^2 < 2\}$ ist nichtleer und beschränkt. Es ist $\sup(M) = \sqrt{2} \notin \mathbb{Q}$.

4.5 Eigenschaften von reellwertigen Funktionen

Es sei $f: I \subset \mathbb{R} \longrightarrow \mathbb{R}: x \longmapsto f(x)$ gegeben.

1) f heißt streng monoton wachsend bzw. <math>fallend (wir schreiben $f \uparrow bzw. f \downarrow (streng)$), falls aus $x_1, x_2 \in I, x_1 < x_2$ folgt $f(x_1) < f(x_2)$ bzw. $f(x_1) > f(x_2)$

Folgt aus $x_1 < x_2$ lediglich $f(x_1) \le f(x_2)$ bzw. $f(x_1) \ge f(x_2)$, so heißt f monoton wachsend bzw. fallend.

Überlegen Sie sich selbst:

A1)
$$f \uparrow (\text{streng}) \iff -f \downarrow (\text{streng})^1$$

A2)
$$f \uparrow (\text{streng}) \iff \forall_{x_1, x_2 \in I, x_1 \neq x_2} (f(x_1) - f(x_2))(x_1 - x_2) > 0$$

 $\iff \forall_{x_1, x_2 \in I, x_1 \neq x_2} \frac{f(x_1) - f(x_2)}{x_1 - x_2} > 0$

A3)
$$f \uparrow (\text{streng}) \Longrightarrow f \text{ ist injektiv}$$

 $¹⁻f: I \longrightarrow \mathbb{R}, (-f)(x) := -f(x)$

4 Die reellen Zahlen

A4) Es sei f bijektiv. Dann gilt:

$$f \uparrow (\text{streng}) \iff f^{-1} \uparrow (\text{streng})$$

2) Eine Funktion $f: I \longrightarrow \mathbb{R}$ heißt beschränkt, wenn die Bildmenge f(I) beschränkt ist, wenn es also Zahlen s_1, s_2 gibt, für die

$$s_1 \le f(x) \le s_2$$
 für alle $x \in I$

erfüllt ist.

4.6 Einige Folgerungen aus dem Vollständigkeitsaxiom (<u>V</u>), (4.4, 4.4.2 (S. 25))

Satz 9 N ist nicht nach oben beschränkt.

Satz 10 (Satz von Archimedes (\iff Satz 9)) Zu jeder positiven Zahl $x \in \mathbb{R}$ gibt es eine Zahl $n_0 \in \mathbb{N}$ mit

$$\bigvee_{\substack{n \geq n_0 \\ n \in \mathbb{N}}} n > x.$$

Satz 11 (\iff **Satz 10**) Zu jeder positiven Zahl $\varepsilon > 0$ gibt es eine Zahl $n_0 \in \mathbb{N}$ mit

$$\bigvee_{\substack{n \ge n_0 \\ n \in \mathbb{N}}} \frac{1}{n} < \varepsilon.$$

Satz 12 Gilt für reelle Zahlen x, y: 1 < y - x, so gibt es eine Zahl $k \in \mathbb{Z}$ mit x < k < y.

Satz 13 ("Die rationalen Zahlen liegen in \mathbb{R} dicht") Zu zwei reellen Zahlen x, y mit x < y gibt es eine rationale Zahl r mit x < r < y.

5 N, Vollständige Induktion (VI), Permutationen, Kombinationen

5.1 Induktive Mengen

 $M \subset \mathbb{R}$ heißt induktive Menge, falls

- (A) $1 \in M$ und
- (B) Aus $x \in M$ folgt $x + 1 \in M$

erfüllt sind.

Bemerkungen 1) \mathbb{R} , \mathbb{Q} , \mathbb{Z} sind induktive Mengen.

2) Der Durchschnitt induktiver Mengen ist eine induktive Menge.

Definition (von \mathbb{N}) \mathbb{N} ist der Durchschnitt aller induktiver Teilmengen von \mathbb{R} . (Als solcher ist \mathbb{N} die kleinste induktive Teilmenge von \mathbb{R} : Es gilt $\mathbb{N} \subset M$ für jede induktive Menge $M \subset \mathbb{R}$.)

5.2 Induktionssatz

Satz 1 (Induktionssatz) Für $M \subseteq \mathbb{N}$ seien erfüllt:

- (A): $1 \in M$ und
- (B): Aus $n \in M$ folgt $n + 1 \in M$

Dann gilt $M = \mathbb{N}$.

Bemerkung Verschiebt man den Anfang 1, so erhält man:

Satz (Variante des Induktionssatzes) Für $M \subset \mathbb{Z}$ seien erfüllt:

(A): $n_0 \in M$ und

5 N, Vollständige Induktion (VI), Permutationen, Kombinationen

(B): Aus $n \in M$ und $n \ge n_0$ folgt $n + 1 \in M$

Dann gilt $\{n \in \mathbb{Z} \mid n \geq n_0\} \subset M$.

5.3 Definition durch Induktion

Die Größe G(n) soll für alle $n \in \mathbb{N}$ definiert werden: Definiere (A) G(1) und definiere (B) G(n+1) unter der Maßgabe, dass G(n) für ein $n \in \mathbb{N}$ schon definiert ist. Dann ist gemäß Satz 1 G(n) für alle $n \in \mathbb{N}$ definiert.

Beispiele Es seien $a_1, a_2, \ldots \in \mathbb{R}$.

1)
$$\sum_{k=1}^{n} a_k$$
, $n \in \mathbb{N}$. (A) $\sum_{k=1}^{1} a_k := a_1$
(B) $\sum_{k=1}^{n} a_k := \sum_{k=1}^{n} a_k + a_{n+1}$

2)
$$\prod_{k=1}^{n} a_k$$
, $n \in \mathbb{N}$. (A) $\prod_{k=1}^{1} a_k := a_1$
(B) $\prod_{k=1}^{n} a_k := \left(\prod_{k=1}^{n} a_k\right) a_{n+1}$

Beispiel $a_k = k$: $\prod_{k=1}^n k =: n!$ ("n Fakultät") (Zusatz: 0! := 1)

5.4 Beweismethode: Vollständige Induktion (VI)

A(n) soll für alle $n \in \mathbb{Z}$, $n \ge n_0$ bewiesen werden:

- (A) Induktions an fang: Beweise $A(n_0)$.
- (B) Induktionsschluss: Ind.voraussetzung: A(n) sei für ein $n \in \mathbb{Z}$, $n \ge n_0$, bewiesen Ind.behauptung: Zeige A(n+1).

Dann ist nach der Bemerkung zu Satz 1 A(n) für alle $n \in \mathbb{Z}, n \ge n_0$, bewiesen.

Beispiele 1.
$$\sum_{k=1}^{n} k = \frac{n}{2}(n+1), n \in \mathbb{N}$$

2. Für jedes $n \in \mathbb{N}$ sind Zahlen x_1, \ldots, x_n gegeben mit: $\forall_{j \in \{1, 2, \ldots, n\}} \ x_j \geq -1$ und alle x_j haben das selbe Vorzeichen. Es gilt dann:

$$\prod_{j=1}^{n} (1 + x_j) \ge 1 + \sum_{j=1}^{n} x_j$$

3. Setzt man in 2. $x_1 = x_2 = \ldots = x_n = x \ge -1$, so erhält man die Bernoullische Ungleichung:

$$(1+x)^n \ge 1 + nx \quad (n \in \mathbb{N})$$

- 4. Satz 2 (Die Anzahl der Permutationen aus n Elementen) Aus n verschiedenen Elementen a_1, a_2, \ldots, a_n lassen sich n! n-Tupel so bilden, dass in jedem n-Tupel jedes der gegebenen Elemente vorkommt. (Es gibt n! bijektive Abbildungen $von \{1, 2, \ldots, n\}$ $nach \{1, 2, \ldots, n\}$.)
- 5. Binomialkoeffizienten $\binom{\alpha}{k}$ (" α über k"): $\alpha \in \mathbb{R}, k \in \mathbb{N}$:

$$\binom{\alpha}{k} := \frac{1}{k!} \prod_{l=0}^{k-1} (\alpha - l) = \frac{\alpha(\alpha - 1) \dots (\alpha - k + 1)}{k!}$$

Beachte: $\binom{\alpha}{0} := 1$.

Es gilt:

$$\binom{\alpha}{k} + \binom{\alpha}{k+1} = \binom{\alpha+1}{k+1}.$$

Speziell für $\alpha = n \in \mathbb{N}$ hat man:

$$\binom{n}{k} = 0, \ k > n, \ n, k \in \mathbb{N} \ und$$

$$\binom{n}{k} = \binom{n}{n-k} = \frac{n!}{k!(n-k)!}, \ n \ge k, \ n, k \in \mathbb{N}$$

insbesondere auch $\binom{n}{n} = \binom{n}{0} = 1$.

Satz 3 Es seien $k, n \in \mathbb{N}$, $k \leq n$. Die Anzahl der k-elementigen Teilmengen einer n-elementigen Menge ist $\binom{n}{k}$.

6. Satz 4 (Binomischer Lehrsatz)

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k, \quad x, y \in \mathbb{R}, \ n \in \mathbb{N} \cup \{0\}$$

mit den Spezialfällen:

$$x = -y = 1, \ n \in \mathbb{N} :$$
 $0 = \sum_{k=0}^{n} {n \choose k} (-1)^k$ $x = y = 1, \ n \in \mathbb{N} \cup \{0\} :$ $2^n = \sum_{k=0}^{n} {n \choose k}$

6 Die komplexen Zahlen C

6.1 Grundlegende Definitionen

Eine komplexe Zahl wird in der Form z = x + iy dargestellt. Hierbei sind $x, y \in \mathbb{R}$ der Zahl z eindeutig zugeordnet. x heißt Realteil, y Imaginärteil von z:

$$Re(z) := x$$
, $Im(z) := y$.

i ist die imaginäre Einheit, für die $i^2 = -1$ gilt.

Komplexe Zahlen z = x + iy, w = u + iv werden addiert und multipliziert gemäß:

(A)
$$z + w = (x + u) + i(y + v)$$

(M)
$$zw = xu - yv + i(yu + xv)$$

Es gelten alle Regeln aus 4.1.

Das neutrale Element für (A) ist z = 0 = 0 + i0 und für (M) z = 1 = 1 + i0.

Die Menge der komplexen Zahlen wird durch $\mathbb C$ bezeichnet. Es gilt $\mathbb R\subset\mathbb C$:

$$\mathbb{R} = \{ z \in \mathbb{C} \mid \text{Im}(z) = 0 \}.$$

Sind $z, w \in \mathbb{R}$, so liefern (A), (M) oben die Addition und Multiplikation in \mathbb{R} . (A), (M) sind eine Fortsetzung der Operationen $+, \cdot$ von \mathbb{R} auf \mathbb{C} .

 $\bar{z} := x - iy$ heißt die zu z konjugierte komplexe Zahl.

Es gelten:

$$Re(z) = \frac{1}{2}(z + \bar{z}),$$

$$Im(z) = \frac{1}{2i}(z - \bar{z})$$

$$z\bar{z} = x^2 + y^2 = (Re(z))^2 + (Im(z))^2.$$

Satz 1 a) Mit komplexen Zahlen z = x + iy wird, was (A) und (M) anbelangt, wie mit reellen Zahlen gerechnet, nur wird $i^2 = -1$ berücksichtigt

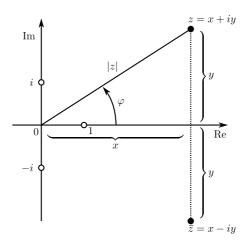
6 Die komplexen Zahlen $\mathbb C$

b) $z \longmapsto \bar{z}$ ist eine bijektive Abbildung von \mathbb{C} nach \mathbb{C} . Es gelten

$$\overline{z+w} = \overline{z} + \overline{w},$$
$$\overline{zw} = \overline{z}\overline{w},$$
$$z \in \mathbb{R} \Leftrightarrow z = \overline{z}$$

Bemerkung In \mathbb{C} gibt es keine Relation, die den Axiomen O1), O2), O3) aus 4.2 genügt. Es müssten nämlich gleichzeitig $1 = 1^2 > 0$ und $-1 = i^2 > 0$ gelten

6.2 Veranschaulichung von z in der komplexen Ebene



Mit |z| wird der Abstand von z zu 0 bezeichnet.

$$|z|=\sqrt{x^2+y^2}=\sqrt{z\bar{z}}$$
heißt $Betrag\ von\ z.$

Der Winkel $\varphi \in [0, 2\pi)$ mit $y = |z| \sin \varphi$, $x = |z| \cos \varphi$ heißt das Argument von z und die hiermit aus z = x + iy resultierende Darstellung für $z \neq 0$:

$$z = |z|(\cos \varphi + i \sin \varphi)$$

heißt die Polardarstellung von z. Das Argument von z wird durch arg(z) bezeichnet.

Beispiele

$$\arg(i) = \frac{\pi}{2}, \qquad \arg(x) = \begin{cases} 0, & x > 0, \\ \pi, & x < 0 \end{cases}, \qquad \arg(1+i) = \frac{\pi}{4}$$

$$\arg(-i) = \frac{3\pi}{2}, \qquad \arg(0) \text{ ist nicht def.}$$

Satz 2 Jede komplexe Zahl $z \neq 0$ kann in der Form $z = r(\cos \psi + i \sin \psi)$ dargestellt werden. Hierbei gelten: r = |z| und $\psi = \arg(z) + 2k\pi$ für ein $k \in \mathbb{Z}$

6.3 Rechnen mit | · | und mit der Polardarstellung

Bemerkung |z-w| gibt die Länge der Verbindungsstrecke zwischen z und w an.

Es sei $z_0 \in \mathbb{C}$ und $\varepsilon > 0$:

$$U_{\varepsilon}(z_0) = \{ z \in \mathbb{C} \mid |z - z_0| < \varepsilon \}$$

heißt ε -Umgebung von z_0 . In $U_{\varepsilon}(z_0)$ liegen alle Punkte des Kreises um z_0 mit Radius ε . (siehe auch 4.3, S. 22)

Satz 3 Es seien $z, w \in \mathbb{C}$. Es gelten:

1)
$$|z| = |\bar{z}|$$

4) $|z \pm w| \le |z| + |w|$ (Dreiecksungleichung)

2)
$$|z| \ge 0$$
 und $(|z| = 0 \Leftrightarrow z = 0)$

5)
$$|z \pm w|^2 = |z|^2 \pm 2\operatorname{Re}(\bar{z}w) + |w|^2$$

3)
$$|zw| = |z||w|$$

Satz 4 $z = r(\cos \varphi + i \sin \varphi)$, $w = \varrho(\cos \psi + i \sin \psi)$ seien komplexe Zahlen, $z \neq 0$, $w \neq 0$. Es gelten:

1)
$$z = w \iff r = \varrho \land \varphi = \psi + 2k\pi \ (k \in \mathbb{Z})$$

2)
$$\bar{z} = \overline{r(\cos\varphi + i\sin\varphi)} = r(\cos(-\varphi) + i\sin(-\varphi))$$

3)
$$\frac{1}{z} = \frac{1}{r} \frac{\bar{z}}{r} = \frac{1}{r} (\cos \varphi - i \sin \varphi)$$

4)
$$zw = r\varrho(\cos(\varphi + \psi) + i\sin(\varphi + \psi))$$

5)
$$z^n = r^n(\cos(n\varphi) + i\sin(n\varphi)), n \in \mathbb{Z}$$
 (Formel von Moivre)

6.4 Die n-te Wurzel aus $a\in\mathbb{C}$, $a\neq 0$

Satz 5 Es seien $a \in \mathbb{C} \setminus \{0\}$ und $n \in \mathbb{N}$ gegeben. Die Gleichung $z^n = a$ hat genau die n verschiedenen Lösungen

$$z_k = \sqrt[n]{|a|} \left(\cos \left(\frac{\alpha}{n} + \frac{2k\pi}{n} \right) + i \sin \left(\frac{\alpha}{n} + \frac{2k\pi}{n} \right) \right), \quad k = 0, 1, 2, \dots, n - 1.$$

Hierbei ist $\alpha = \arg(a)$.

 $\ddot{U}bunq$: Gib alle Lösungen z an:

$$z^5 = 1$$
, $z^3 = -i$, $z^4 = 1 + i$, $z^2 + 2az + b = 0$

(wobei $a, b \in \mathbb{C}$ gegeben sind)

Bemerkung (Fundamentalsatz der Algebra) $F\ddot{u}r$ jedes Polynom

$$p(z) = z^n + a_{n-1}z^{n-1} + a_{n-2}z^{n-2} + \dots + a_1z + a_0$$

gibt es Zahlen $z_1, z_2, \ldots, z_n \in \mathbb{C}$, so dass

$$p(z) = (z - z_1)(z - z_2) \dots (z - z_n)$$

gilt. $(n \in \mathbb{N})$

7 Folge, Grenzwert

7.1 Definition (Folge)

Eine Folge komplexer Zahlen ist eine Abbildung $\mathbb{N} \longrightarrow \mathbb{C}$, $n \longmapsto a_n$. Sie wird durch $(a_n)_{n \in \mathbb{N}}$, durch (a_n) , oder durch die Aufzählung der Folgenglieder a_1, a_2, a_3, \ldots bezeichnet.

Die Folge heißt beschränkt, falls es eine Zahl $M \in \mathbb{R}$ mit $|a_n| < M$ für alle $n \in \mathbb{N}$ gibt.

Eine reelle Folge heißt monoton (streng monoton) wachsend, falls $a_n \leq a_{n+1}$ ($a_n < a_{n+1}$) für alle $n \in \mathbb{N}$ gilt. Wir schreiben hierfür $(a_n) \uparrow ((a_n) \uparrow (streng))$

Eine reelle Folge heißt monoton (streng monoton) fallend : $(a_n) \downarrow ((a_n) \downarrow (\text{streng})) : \iff (-a_n) \uparrow ((-a_n) \uparrow (\text{streng}))$

Beispiele (a_n) mit

1)
$$a_n = \frac{1}{n}$$

4) $a_n = x^n \ (x \in \mathbb{R} \ oder \ auch \ x \in \mathbb{C})$

2)
$$a_n = i^n$$

$$5) \ a_n = \frac{n}{2^n}$$

3)
$$a_n = \frac{n}{n+1}$$

6)
$$a_n$$
 ist durch $a_1 = 0$, $a_2 = 1$, $a_{n+1} := a_n + a_{n-1}$ $(n = 2, 3, ...)$ definiert

Definition (Teilfolge einer Folge) Es seien (a_n) eine Folge und $v : \mathbb{N} \longrightarrow \mathbb{N}$ eine streng monoton wachsende Funktion (Es wird v_j anstelle von v(j) für $j \in \mathbb{N}$ geschrieben). Die Folge (b_j) mit $b_j := a_{v_j}$ heißt Teilfolge der Folge (a_n)

Beispiele $b_j = a_{2j}, b_j = a_{j^2}$ oder oben Beispiel 2): $b_k = a_{4k-1} = -i \ (k \in \mathbb{N})$

Bemerkung (Übung) Für eine Funktion v wie in vorstehender Definition gilt $v(j) \ge j$ für alle $j \in \mathbb{N}$.

7.2 Konvergenz, Divergenz, Häufungspunkte

Definition (Konvergenz) Die Folge (a_n) heißt konvergent, falls eine Zahl $g \in \mathbb{C}$ existiert mit folgender Eigenschaft:

Zu jeder Zahl $\varepsilon > 0$ gibt es eine Zahl $N \in \mathbb{N}$ derart, dass

$$|a_n - g| < \varepsilon$$
 gilt für alle $n \in \mathbb{N}$ mit $n > N$.

g heißt Grenzwert (Limes) der Folge (a_n) . Hierfür schreiben wir: $\lim_{n\to\infty} a_n = g$ oder $a_n \to g$ $(n \to \infty)$.

Verwenden wir den Umgebungsbegriff aus Abschnitt 6.3 und 4.3 und die Sprechweise

", alle bis auf endlich viele" = ", fast alle",

so können wir auch so formulieren:

Es gilt $\lim_{n\to\infty} a_n = g$ genau dann, wenn für jedes $\varepsilon > 0$ für fast alle n (nämlich für alle bis auf allenfalls n = 1, 2, ..., N) $a_n \in U_{\varepsilon}(g)$ gilt.

Definition (Divergenz) Eine Folge, die nicht konvergent ist, heißt divergent. Die Negation der vorherigen Definition gibt:

Die Folge (a_n) ist divergent, wenn jedes $g \in \mathbb{C}$ eine ε -Umgebung besitzt, außerhalb der unendlich viele Folgenglieder liegen.

Beispiel Die Folge (a_n) mit $a_n = i^n$, Beispiel 2)/ 7.1 ist divergent.

Definition (Häufungspunkt) $H \in \mathbb{C}$ heißt Häufungspunkt (HP) der Folge (a_n) , falls für jedes $\varepsilon > 0$ für unendlich viele $n \in \mathbb{N}$ $a_n \in U_{\varepsilon}(H)$ gilt.

In 7.1, Beispiel 2) sind i, 1, -1, -i Häufungspunkte der Folge

- A1) Ist g Grenzwert der Folge (a_n) , so ist g auch HP der Folge (a_n) .
- A2) $(\lim_{n\to\infty} a_n = g) \iff (g \text{ ist der einzige HP der Folge } (a_n))$

Folgerung 1) Die Folge (a_n) , $a_n = i^n$ ist divergent.

- 2) Eine Folge mit mehr als einem HP ist divergent.
- 3) Eine konvergente Folge besitzt genau einen Grenzwert.

Satz 1 (Bolzano-Weierstrass) Jede beschränkte Folge besitzt einen HP

Satz 2 Es sei (a_n) eine Folge. Dann gilt:

H ist HP von $(a_n) \iff$ es gibt eine Teilfolge $(a_{n_k})_k$, die gegen H konvergiert.

Folgerung Jede beschränkte Folge enthält eine konvergente Teilfolge.

Die Folge aus 7.1, Beispiel 2) $a_n = i^n$ enthält die konvergenten Teilfolgen:

$$(a_{4k-3})_k$$
, $(a_{4k-2})_k$, $(a_{4k-1})_k$, $(a_{4k})_k$.

7.3 Die Beispiele aus 7.1

- 1) $\lim_{n\to\infty} \frac{1}{n} = 0$. Das ist Satz 11, Kap. 4.
- 2) (a_n) mit $a_n = i^n$. Die Folge hat die vier HP i, 1, -i, -1, ist somit divergent.
- 3) (a_n) , $a_n = \frac{n}{n+1}$. Wähle $N \in \mathbb{N}, N > \frac{1}{\varepsilon} 1$. Dann gilt $|a_n 1| < \varepsilon$ für alle $n \in \mathbb{N}, n > N$. Also: $\lim_{n \to \infty} a_n = 1$.
- 4) $(a_n), a_n = x^n$:
 - x = 1: $\lim_{n \to \infty} a_n = 1$
 - x = 0: $\lim_{n \to \infty} a_n = 0$
 - · x = -1: (a_n) hat die zwei HP +1, -1, ist also divergent.
 - · |x|>1: Es sei R>0. Wähle $N\in\mathbb{N}, N>\frac{R}{|x|-1}$. Dann gilt für alle n>N: $|x|^n>R$.

Fazit Für |x| > 1 ist (x^n) divergent, $da(x^n)$ nicht beschränkt ist.

Satz 3 Eine konvergente Folge ist beschränkt

· Es gilt aber für x > 1, dass (x^n) in folgendem Sinn "konvergiert":

Gilt für die reelle Folge (a_n) , dass für jedes R für fast alle n $a_n > R$ erfüllt ist, so schreiben wir: $\lim_{n\to\infty} a_n = \infty$.

Die Folge (a_n) heißt dann bestimmt divergent oder uneigentlich konvergent gegen ∞ (Analog: $\lim_{n\to\infty} a_n = -\infty$: $\iff \lim_{n\to\infty} (-a_n) = \infty$)

Also: Für x > 1 gilt $\lim_{n \to \infty} x^n = \infty$.

- · Für x < -1 liegt Divergenz vor.
- · Für |x| < 1 gilt $\lim_{n \to \infty} x^n = 0$.
- 5) (a_n) , $a_1 = 0$, $a_2 = 1$, $a_{n+2} = a_n + a_{n+1}$, (n = 2, 3, ...)

Für $n \ge 2$ gilt $a_n \ge 1$ und für $n \ge 3$ hat man $a_{n+1} - a_n \ge 1$. Hieraus folgt, dass (a_n) unbeschränkt ist und nicht im eigentlichen Sinne konvergiert.

7.4 Rechnen mit konvergenten Folgen

Satz 4 (a_n) , (b_n) seien konvergente reelle Folgen. Für fast alle n sei $a_n \leq b_n$ erfüllt. Dann gilt

$$\lim_{n\to\infty} a_n \le \lim_{n\to\infty} b_n.$$

Satz 5 (Einschnürungsprinzip) Für die reellen Folgen (a_n) , (b_n) , (c_n) sei $a_n \leq b_n \leq c_n$ für fast alle n erfüllt. Aus $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = g$ folgt, dass die Folge (b_n) konvergent ist mit $\lim_{n\to\infty} b_n = g$.

Folgerung Für die Folge (a_n) gelte $|a_n| \leq b_n$ für fast alle n, wobei (b_n) eine reelle Nullfolge ist. Dann folgt: $\lim_{n\to\infty} a_n = 0$.

Satz 6 Es seien (a_n) , (b_n) konvergente Folgen: $a_n \to a$, $b_n \to b$. Es sei $\lambda \in \mathbb{C}$. Dann sind die Folgen

$$(\lambda a_n), (a_n \pm b_n), (a_n b_n), \left(\frac{a_n}{b_n}\right) (b \neq 0), (|a_n|), (a_n^k)_n (k \in \mathbb{N} \text{ fest}), (\sqrt{a_n}) (a_n > 0)$$

konvergent mit

$$\lambda a_n \to \lambda a, \ a_n \pm b_n \to a \pm b, \ a_n b_n \to ab, \ \frac{a_n}{b_n} \to \frac{a}{b}, \ |a_n| \to |a|, \ a_n^k \to a^k, \ \sqrt{a_n} \to \sqrt{a}$$

 $f\ddot{u}r \ n \to \infty$.

Zu Beispiel 5 aus 7.1:

$$(a_n), \ a_n = \frac{n}{2^n}$$
. Es gilt $\lim_{n \to \infty} \frac{n}{2^n} = 0$.

Das sieht man etwa so:

$$2^{n} = (1+1)^{n} = \sum_{k=0}^{n} \binom{n}{k}$$
 (binomischer Lehrsatzsatz, S. 29)

$$\geq \binom{n}{0} + \binom{n}{1} + \binom{n}{2}$$

$$= 1 + \frac{n}{2} + \frac{n^{2}}{2} > \frac{n^{2}}{2}$$

 $\implies \frac{n}{2^n} < \frac{2}{n}$. Mit $\lim_{n\to\infty} \frac{2}{n} = 0$ und Satz 5 (Einschnürungsprinzip) folgt wegen $0 < \frac{n}{2^n}$ die obige Behauptung.

Noch 2 Beispiele

1) Die geometrische Reihe:

Es sei $q \in \mathbb{C}$, |q| < 1. dann konvergiert (s_n) mit

$$s_n := \sum_{k=0}^{n} q^k = \frac{1 - q^{n-1}}{1 - q}$$

gegen $\frac{1}{1-q}$.

Man schreibt: $\lim_{n\to\infty} s_n =: \sum_{k=0}^\infty q^k = \frac{1}{1-q}$ für |q| < 1.

2) Die harmonische Reihe:

 $\sum_{k=1}^{\infty} \frac{1}{k} := \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k} \text{ existiert nicht. } \sum_{k=1}^{\infty} \frac{1}{k} \text{ ist divergent, da die Teilfolge } (a'_n), \ a'_n = \sum_{k=1}^{2^n-1} \frac{1}{k} \text{ von } (a_n) = \left(\sum_{k=1}^{n} \frac{1}{k}\right) \text{ unbeschränkt ist, also divergent } (...; siehe auch Satz 3 oben).}$

7.5 Monotonie und Konvergenz

Satz 7 (Monotoniekriterium) Die (reelle) Folge (a_n) sei monoton wachsend und nach oben beschränkt ($(a_n) \downarrow und$ nach unten beschränkt). Dann ist die Folge (a_n) konvergent, es gilt $\lim_{n\to\infty} a_n = \sup\{a_n \mid n \in \mathbb{N}\}$ ($\lim_{n\to\infty} a_n = \inf\{a_n \mid n \in \mathbb{N}\}$).

Beispiele 1) (a_n) , $a_1 = 3$, $a_{n+1} = \sqrt{12 + a_n}$ (n = 1, 2, ...). $(a_n) \uparrow und \ a_n \le 4$. $\lim_{n \to \infty} a_n = 4$.

2) $a_n = \sum_{k=0}^n \frac{1}{k!}$. Es gilt $(a_n) \uparrow und \ a_n < 3$. Der Grenzwert $\sum_{k=0}^\infty \frac{1}{k!}$ $(= \lim_{n \to \infty} a_n)$ ist die Eulersche Zahl e.

$$e := \lim_{n \to \infty} \sum_{k=0}^{\infty} \frac{1}{k!}$$

7.6 Zwei wichtige Grenzwerte

$$\lim_{n \to \infty} \sqrt[n]{n} = 1, \quad \lim_{n \to \infty} \sqrt[n]{c} = 1 \ (c > 0 \text{ fest})$$

7.7 Intervallschachtelung

Satz 8 (Intervallschachtelung) $(\alpha_n) \uparrow$, $(\beta_n) \downarrow$ seien monotone Zahlenfolgen, die den Bedingungen

- 1) $\alpha_n \leq \beta_n$ für alle n und
- 2) $\lim_{n\to\infty} (\beta_n \alpha_n) = 0$ genügen.

Dann gibt es genau ein $x \in \mathbb{R}$ mit $\alpha_n \le x \le \beta_n$ für alle n. Es gelten

$$\lim_{n \to \infty} \alpha_n = \lim_{n \to \infty} \beta_n = x.$$

Bemerkung I_n bezeichne das Intervall $[\alpha_n, \beta_n]$, $|I_n|$ die Länge von I_n .

Der Satz 8 sagt aus: Gelten $I_{n+1} \subset I_n \ (n \in \mathbb{N})$ und $\lim_{n \to \infty} |I_n| = 0$, so hat man

$$\bigcap_{j=1}^{\infty} I_j = \{x\} \ und \ \lim_{n \to \infty} \alpha_n = \lim_{n \to \infty} \beta_n = x$$

Satz 9 (Leibnizkriterium) (Anwendung von Satz 8) Es sei (a_n) eine Folge mit den Eigenschaften

$$a_n > 0, (a_n) \downarrow, a_n \to 0 (n \to \infty).$$

Dann gilt: Die Folge (s_m) , $s_m := \sum_{n=0}^m (-1)^n a_n$ ist konvergent: $\lim_{m\to\infty} s_m = s = \sum_{n=0}^\infty (-1)^n a_n$. Weiter hat man:

- a) $s_{2k+1} \le s \le s_{2k}, k = 0, 1, 2, \dots$
- b) $|s s_m| \le a_{m+1}, m = 0, 1, 2, \dots$

Zur Begründung: Setze $\alpha_k := s_{2k+1}$, $\beta_k := s_{2k}$. Die Folgen (α_k) , (β_k) genügen den Voraussetzung von Satz 8: $\{ [\alpha_k, \beta_k] \mid k \in \mathbb{N} \}$ bilden eine Intervallschachtelung, die s festlegt.

Beispiel 1) Die alternierende harmonische Reihe

$$\sum_{k=0}^{\infty} (-1)^k \frac{1}{k+1} = \lim_{n \to \infty} \sum_{k=0}^{n} (-1)^k \frac{1}{k+1}$$

ist konvergent.

2) Durch $\alpha_n := \left(1 + \frac{1}{n}\right)^n$, $\beta_n = \left(1 + \frac{1}{n}\right)^{n+1}$ wird eine Intervallschachtelung $\{[\alpha_n, \beta_n] \mid n \in \mathbb{N}\}$ definiert. Sie bestimmt die Zahl e.

8 Reihen

8.1 Grundlegende Definitionen

Es sei (a_k) eine Zahlenfolge. Wir nennen einen Ausdruck der Form $\sum_{k=1}^{\infty} a_k$ eine Reihe und verstehen darunter zweierlei:

- 1) die Folge (s_n) der Partialsummen: $s_n = \sum_{k=1}^n a_k$ und
- 2) den Grenzwert $\lim_{n\to\infty} s_n$, falls er existiert.

Dieser Grenzwert heißt dann Wert (Summe) der Reihe. Existiert $\lim_{n\to\infty} s_n$, so sagen wir: Die Reihe $\sum_{k=1}^{\infty} a_k$ ist konvergent. Die Reihe $\sum_{k=1}^{\infty} a_k$ ist divergent, falls die Folge (s_n) divergent ist.

$$\sum_{k=1}^{\infty} a_k = \infty(-\infty) \text{ bedeutet, dass } s_n \to \infty(-\infty)(n \to \infty).$$

$$\sum_{k=1}^{\infty} a_k = A \text{ bedeutet: } \lim_{n \to \infty} \sum_{k=1}^{n} a_k = A.$$

Satz 1 Es gelte $a_k \ge 0$ für alle k. Es gilt dann:

$$\sum_{k=1}^{\infty} a_k \text{ ist konvergent } \iff (s_n) \text{ ist eine beschränkte Folge.} \quad (s_n \leq M \text{ für alle } n)$$

Satz 2 Aus der Konvergenz von $\sum_{k=1}^{\infty} a_k$ folgt:

$$\lim_{k \to \infty} a_k = 0$$

Bemerkung 1) Das Konvergenzverhalten einer Reihe ändert sich nicht, wenn man endlich viele Summanden der Reihe ändert.

- 2) (Ergebnisse aus dem 7. Kapitel)
 - · geometrische Reihe: Für |z|<1 gilt $\sum_{k=0}^{\infty}=\frac{1}{1-z}$
 - · harmonische Reihe: $\sum_{k=1}^{\infty} \frac{1}{k}$ ist bestimmt divergent gegen ∞
 - · die Zahl e ist $e = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{k!} = \sum_{k=0}^{\infty} \frac{1}{k!}$

· das Leibnizkriterium: Satz 9, 7.7: die alternierende harmonische Reihe $\sum_{k=0}^{\infty} (-1)^k \frac{1}{k+1}$ ist konvergent.

8.2 Umordnung. Absolute Konvergenz.

Satz 3 $\sum_{k=1}^{\infty} a_k = A$, $\sum_{j=1}^{\infty} b_j = B$ seien konvergente Reihen. Dann ist die Reihe $\sum_{l=1}^{\infty} (\lambda a_l + \mu b_l)$ $(\lambda, \mu \in \mathbb{C})$ konvergent mit dem Wert $\lambda A + \mu B$

Satz 4 In einer konvergenten Reihe $\sum_{k=0}^{\infty}$ dürfen beliebig Klammern gesetzt werden. Setzt man mit $0 = k_0 < k_1 < k_2 < \dots$

$$A_j = a_{k_{j-1}+1} + \ldots + a_{k_j} \ (j = 1, 2, \ldots),$$

so gilt $\sum_{k=1}^{\infty} A_k = \sum_{k=0}^{\infty} a_k$.

Schon vorhandene Beklammerungen in einer konvergenten Reihe dürfen nur dann weggelassen werden, wenn die entstehende Reihe wieder konvergent ist.

Definition Es sei $\sigma: \mathbb{N} \longrightarrow \mathbb{N}$ eine bijektive Abbildung. Die Reihe $\sum_{k=1}^{\infty} a_{\sigma(k)}$ heißt eine Umordnung der Reihe $\sum_{k=1}^{\infty} a_k$.

Beispiel $1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + + - \dots$ ist eine Umordnung von $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + - \dots$

Definition Die Reihe $\sum_{k=1}^{\infty} a_k$ heißt absolut konverget, wenn die Reihe $\sum_{k=1}^{\infty} |a_k|$ konvergiert.

Beispiele 1) $\sum_{k=1}^{\infty} (-1)^k \frac{1}{k^2}$ ist absolut konvergent.

2) $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k}$ und $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{\sqrt{k}}$ sind konvergente, aber nicht absolut konvergente Reihen

Satz 5

$$\sum_{k=1}^{\infty} a_k \text{ ist absolut konvergent } \iff \text{jede Umordnung konvergiert und}$$
 alle Umordnungen haben den Wert
$$\sum_{k=1}^{\infty} a_k$$

8.3 Konvergenzkriterien

Satz 6 (Majorantenkriterium) Gegeben sind zwei Zahlenfolgen (c_n) , (a_n) mit

- 1) $0 \le c_n \le a_n$ für fast alle $n \in \mathbb{N} \cup \{0\}$,
- 2) $\sum_{n=0}^{\infty} a_n$ ist konvergent

Dann ist die Reihe $\sum_{n=0}^{\infty} c_n$ konvergent. ($\sum_{n=0}^{\infty} a_n$ ist eine (konvergente) Majorante für $\sum_{n=0}^{\infty} c_n$.)

Satz 7 (folgt für reelle Reihen aus Satz 6) Eine absolut konvergente Reihe ist konvergent. (Die Umkehrung ist falsch: oben Beispiel 2)) Es gilt

$$\left| \sum_{k=1}^{\infty} a_k \right| \le \sum_{k=1}^{\infty} |a_k|.$$

Satz 8 (Quotientenkriterium) (c_n) sei eine Zahlenfolge mit $c_n \geq 0$. Es existiere eine Zahl $\vartheta < 1$ derart, dass

$$c_{n+1} \le \vartheta c_n$$

für fast alle n erfüllt ist. Dann konvergiert $\sum_{n=0}^{\infty} c_n$.

Beispiel Für jedes $z \in \mathbb{C}$ ist $\sum_{k=0}^{\infty} \frac{1}{k!} z^k$ absolut konvergent

Satz 9 (Wurzelkriterium) Es sei $c_n \ge 0$, und es existiere eine Zahl $\vartheta < 1$ so, dass für fast alle $n \sqrt[n]{c_n} \le \vartheta$ erfüllt ist. Dann ist $\sum_{n=0}^{\infty} c_n$ konvergent.

Aus $\sqrt[n]{c_n} \ge 1$ für unendlich viele n folgt die Divergenz von $\sum_{n=0}^{\infty} c_n$.

Beispiel 1) $\sum_{k=1}^{\infty} a_k = \frac{1}{2} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{3^3} + \dots$ Satz $9 \Rightarrow$ Konvergenz (Wähle ϑ zwischen $\frac{1}{\sqrt{2}}$ und 1). Mit Satz 8 ist keine Entscheidung möglich bzgl. Konvergenz/Divergenz.

- 2) $\sum_{k=1}^{\infty} a_k = \frac{1}{2} + 1 + \frac{1}{8} + \frac{1}{4} + \frac{1}{32} + \dots$ Satz $9 \Rightarrow$ Konvergenz (man kann $\vartheta = \frac{2}{3}$ wählen) Mit Satz 8 erhält man dieses Ergebnis nicht.
- 3) Die Konvergenz von $\sum_{k=1}^{\infty} \frac{1}{k^2}$ erhält man weder mit Satz 8, noch mit Satz 9. (aber etwa mit Satz 6)

8.4 Das Cauchy-Produkt

Das Cauchy-Produkt der Reihen $\sum_{k=0}^\infty a_k$ und $\sum_{k=0}^\infty b_k$ ist die Reihe

$$\sum_{n=0}^{\infty} c_n \text{ mit } c_n = \sum_{k=0}^{n} a_{n-k} b_k.$$

Satz 10 (Konvergenz des Cauchy-Produkts) $\sum_{k=0}^{\infty} a_k$ sei absolut und $\sum_{k=0}^{\infty} b_k$ sei konvergent. Dann konvergiert das Cauchy-Produkt und es gilt

$$\sum_{n=0}^{\infty} \underbrace{\left(\sum_{k=0}^{n} a_{n-k} b_{k}\right)}_{=c_{n}} = \left(\sum_{k=0}^{\infty} a_{k}\right) \left(\sum_{k=0}^{\infty} b_{k}\right).$$

Beispiele 1) Das Cauchy-Produkt der konvergenten Reihe $\sum_{k=0}^{\infty} (-1)^k \frac{1}{\sqrt{k+1}}$ mit sich selbst ist divergent (!?).

2)
$$\left(\sum_{k=0}^{\infty} \frac{1}{2^k}\right)^2 = 4 = \sum_{n=0}^{\infty} (n+1) \frac{1}{2^n}$$

3)
$$\left(\sum_{k=0}^{\infty} \frac{z^k}{k!}\right) \left(\sum_{k=0}^{\infty} \frac{w^k}{k!}\right) = \sum_{k=0}^{\infty} \frac{1}{k!} (z+w)^k, \ z, w \in \mathbb{C}$$

9 Die Exponentialfunktion

9.1 Definition und grundlegende Eigenschaften

Satz 1 (vgl. Beispiel zu Satz 8 im Kap. 8)

a) Für jedes $z \in \mathbb{C}$ ist die Reihe $\sum_{k=0}^{\infty} \frac{1}{k!} z^k$ absolut konvergent. Die hierdurch definierte Funktion $\mathbb{C} \longrightarrow \mathbb{C}$, $z \longmapsto \sum_{k=0}^{\infty} \frac{z^k}{k!}$ heißt Exponentialfunktion, sie wird durch exp bezeichnet:

$$\exp(z) := \sum_{k=0}^{\infty} \frac{z^k}{k!} = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{z^k}{k!}, \ z \in \mathbb{C}$$
 (1)

b) Es gelten:

$$|\exp(z) - 1| \le |z| \exp(|z|), \ z \in \mathbb{C}$$
 (2)

$$|\exp(z) - 1| \le 2|z|, |z| \le 1$$
 (3)

Bemerkung $\exp(1) = e = e^1$, $\exp(0) = 1 = e^0$ (mit (1) oder (3))

Satz 2 (Die Funktionalgleichung der exp-Funktion) (vgl. 8.4 Beispiel 3)

$$\exp(z+w) = \exp(z)\exp(w), \quad z, w \in \mathbb{C}$$
(4)

Folgerung 1) Für $z \in \mathbb{C}$ gelten

$$\exp(z) \neq 0,$$

$$(\exp(z))^{-1} = \exp(-z),$$
(5)

2) $\exp(nz) = (\exp(z))^n, z \in \mathbb{C}, n \in \mathbb{Z} \ (mit \ (4), (5))$

9.2 Die reelle \exp -Funktion

Satz 3 a) $\exp(x) > 0, x \in \mathbb{R}$

9 Die Exponentialfunktion

- $b) \exp \uparrow (streng)$
- c) exp ist eine unbeschränkte Funktion
- d) $\exp(q) = e^q$, $q \in \mathbb{Q}$ (Wir schreiben anstelle von $\exp(z)$ auch e^z)
- e) Für jede Zahl $k \in \mathbb{N}$ gilt: $\lim_{n \to \infty} n^k \exp(-n) = 0$.

9.3 Die trigonometrischen Funktionen sin, cos

1.) $\exp(\bar{z}) = \overline{\exp(z)}, \ z \in \mathbb{C}. \text{ Satz 3 d}) \Rightarrow \overline{e^{ix}} = e^{-ix} \text{ für } x \in \mathbb{R}. (5) \Rightarrow |e^{ix}| = 1, \ x \in \mathbb{R}.$

Satz 4 $F\ddot{u}r \ x \in \mathbb{R}$ gilt

$$\left(\operatorname{Re}\left(e^{ix}\right)\right)^{2} + \left(\operatorname{Im}\left(e^{ix}\right)\right)^{2} = 1.$$

Bemerkung $|e^{iz}| = e^{-\mathrm{Im}(z)}, \ z \in \mathbb{C}$

2.)

$$\cos(z) := \sum_{k=0}^{\infty} \frac{1}{(2k)!} (-1)^k z^{2k} = 1 - \frac{z^2}{2!} + - \dots$$
 (6)

$$\sin(z) := \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} (-1)^k z^{2k+1} = z - \frac{z^3}{3!} + c \dots$$
 (7)

Es gilt: Die Reihen in (6), (7) sind für jedes $z \in \mathbb{C}$ absolut konvergent: Der Definitionsbereich von sin und cos ist ganz \mathbb{C} . Es gilt (Umordnen der absolut konvergenten Reihe e^{iz}):

$$e^{iz} = \cos(z) + i\sin(z), \quad z \in \mathbb{C}$$
 (8)

3.) (Folgerungen aus 2.))

1)
$$\cos(z) = \cos(-z)$$
, $\cos(0) = 1$
 $\sin(z) = -\sin(-z)$, $\sin(0) = 0$

2)
$$|\sin(z) - z| \le 2|z|^3$$
, $|z| \le 1$
 $|\cos(z) - 1| \le 2|z|^2$, $|z| \le 1$

3)
$$((8) \Rightarrow)$$

$$cos(z) = \frac{1}{2} (e^{iz} + e^{-iz})
sin(z) = \frac{1}{2i} (e^{iz} - e^{-iz}), z \in \mathbb{C}$$
(9)

 \Rightarrow

$$\cos^2(z) + \sin^2(z) = 1, \ z \in \mathbb{C}$$
(10)

Mit (9) und (4) erhält man Additionstheoreme wie etwa

$$\sin(z+w) = \sin(z)\cos(w) + \cos(z)\sin(w)$$
$$\cos(z+w) = \cos(z)\cos(w) - \sin(z)\sin(w)$$

und hiermit

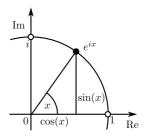
$$\cos(z) - \cos(w) = -2\sin\frac{z+w}{2}\sin\frac{z-w}{2}$$

$$\sin(z) - \sin(w) = 2\cos\frac{z+w}{2}\sin\frac{z-w}{2}$$
(11)

4.) Für $x \in \mathbb{R}$ folgt (mit (8)) $e^{ix} = \cos x + i \sin x$, also

$$\operatorname{Re}(e^{ix}) = \cos(x), \operatorname{Im}(e^{ix}) = \sin(x).$$

Mit $|e^{ix}| = 1$ $(x \in \mathbb{R})$ findet man $\cos(x)$, $\sin(x)$ am Einheitskreis der komplexen z-Ebene:



10 Stetigkeit

10.1 Definition

Es sei D eine Menge in $\mathbb R$ oder in $\mathbb C$ und $f:D\longrightarrow \mathbb C$ eine Funktion. f heißt stetig in $p\in D$, wenn es zu jedem $\varepsilon>0$ eine Zahl $\delta=\delta(\varepsilon,p)>0$ so gibt, dass aus $x\in D$ und $|x-p|<\delta$ folgt:

$$|f(x) - f(p)| < \varepsilon.$$

Die Funktion heißt stetig (auf D), wenn sie in jedem Punkt $p \in D$ stetig ist.

Formal sight das so aus: (Erinnerung $U_{\delta}(p)$, 6.3)

$$f \text{ ist stetig in } p \in D \iff \bigvee_{\varepsilon > 0} \exists \bigvee_{\delta > 0} \bigvee_{x \in U_{\delta}(p) \cap D} |f(x) - f(p)| < \varepsilon$$
 (1)

 \Longrightarrow

$$f \text{ ist in } p \in D \text{ nicht stetig} \iff \exists_{\varepsilon > 0} \forall_{\delta > 0} \exists_{x \in U_{\delta}(p) \cap D} |f(x) - f(p)| \ge \varepsilon$$
 (2)

Satz 1 (Stetigkeit = Folgenstetigkeit)

$$f: D \longrightarrow \mathbb{C}$$
 ist in $p \in D$ stetig \iff für jede Folge $(x_n), x_n \in D$
 $mit \ x_n \to p \ (n \to \infty)$
 $gilt \ f(x_n) \to f(p) \ (n \to \infty)$

(Es gilt, wenn f in $\lim_{n\to\infty} x_n$ stetig ist: $\lim_{n\to\infty} f(x_n) = f(\lim_{n\to\infty} x_n)$.)

zur Begründung:

 \Rightarrow ": Hier verwendet man (1)

"

": Hier argumentiert man am besten indirekt mit (2) und $\delta = \frac{1}{n}$ und zugehörigen x_n .

10.2 Beispiele

- 1) f(z) = c (konst) ist auf \mathbb{C} stetig (δ kann beliebig gewählt werden)
- 2) f(z) = z ist auf \mathbb{C} stetig (Wähle z.B. $\delta = \varepsilon$)
- 3) $f(z) = \exp(z)$ ist in z = 0 stetig. Verwende 9.1, (3).
 - $f(z) = \exp(z)$ ist in $z = p \in \mathbb{C}$ stetig. Verwende Satz 2, Kap 9
- 4) $f(z) = \sin(z)$ und $f(z) = \cos(z)$ sind in allen $z \in \mathbb{C}$ stetig (Verwende 9.3 3.2), 9.3 (11))
- 5) abs(z) := |z| ist stetig in jedem $z \in \mathbb{C}$

10.3 Zum Rechnen mit stetigen Funktionen

Satz 2 Es sei $f: D \longrightarrow \mathbb{C}$ stetig in $p \in D$. Es gelte $f(p) \neq 0$. Dann gibt es ein $\delta > 0$ mit: es gilt $f(z) \neq 0$ für alle $z \in D$ mit $|z - p| < \delta$.

(Setze $\varepsilon = \frac{1}{2}|f(p)|$ in der ε - δ -Definition der Stetigkeit in p. Mit einem zugehörigen δ gilt dann $|f(z)| > \frac{1}{2}|f(p)|$ für $|z - p| < \delta$.)

Satz 3 (siehe 7.4/ Satz 6 und hier Satz 1) $f,g:D\longrightarrow\mathbb{C}$ seien in $p\in D$ stetige Funktionen. Es sei $\lambda\in\mathbb{C}$. Dann sind die Funktionen f+g, fg, λf in p stetig. Ist $g(p)\neq 0$, so ist $\frac{f}{g}:\{z\in D\mid g(z)\neq 0\}\longrightarrow\mathbb{C}$ in p stetig.

Satz 4 Es sind $f: G \longrightarrow \mathbb{C}$ und $g: D \longrightarrow \mathbb{C}$ mit $f(G) \subset D$ gegeben. Ist f in $p \in G$ und g in f(p) stetig, so ist $g \circ f$ in p stetig.

Beispiele 1) Mit f ist $|f| := abs \circ f$ stetig

- 2) Mit $q(z) = z^2$ sind $\exp \circ q$ und $q \circ \exp$ stetig.
- 3) Jedes Polynom $p(z) = \sum_{k=0}^{n} a_k z^k$ ist stetig in allen $z \in \mathbb{C}$.

10.4 Grundlegende Sätze zu Stetigkeit

In diesem Abschnitt ist D stets das abgeschlossene beschränkte Intervall $[a,b] = \{x \mid a \le x \le b\}$. C⁰([a,b]) bezeichnet die Menge der auf [a,b] definierten und auf [a,b] stetigen Funktionen.

Satz 5 (Nullstellensatz von Bolzano) Für $f \in C^0([a,b])$ gelte f(a)f(b) < 0. Dann gibt es ein $x_0 \in (a,b)$ mit $f(x_0) = 0$.

(Begründung: Intervallschachtelung, Bisektionsverfahren)

Folgerung 1 (Der Zwischenwertsatz) Für $c \in \mathbb{R}$ und $f \in C^0([a,b])$ sei (f(a) - c)(f(b) - c) < 0 erfüllt. Dann gibt es ein $x_0 \in (a,b)$ mit $f(x_0) = c$.

(Satz 5 für
$$f(x) \rightarrow f(x) - c$$
)

Folgerung 2 Es sei $f \in C^0([a,b])$ streng monoton wachsend (fallend). Dann ist $f : [a,b] \longrightarrow [f(a),f(b)]$ $([a,b] \longrightarrow [f(b),f(a)])$ bijektiv.

Anwendung Für $\alpha > 0$ und $n \in \mathbb{N}$ hat die Gleichung $x^n = \alpha$ genau eine positive Lösung $x_0 := \sqrt[n]{\alpha}$.

Satz 6 $f \in C^0([a,b])$ sei streng monoton wachsend. f^{-1} ist dann auf [f(a), f(b)] stetig und streng monoton wachsend.

Beispiel Diskussion von $f(x) = x^k$ $(k \in \mathbb{N})$ für $x \in \mathbb{R}$ samt Umkehrfunktion (k ungerade)/ Umkehrfunktionen (k gerade)

Satz 7 Es sei $f \in C^0([a,b])$. Dann ist f beschränkt: Es gibt eine Zahl k > 0 mit

$$|f(x)| \le k \text{ für } a \le x \le b.$$

Weiter gibt es $x_0, x_1 \in [a, b]$ mit

$$f(x_0) \le f(x) \le f(x_1)$$
 für $a \le x \le b$.

$$(f(x_0) = \min\{f(x) \mid a < x < b\}, f(x_1) = \max\{f(x) \mid a < x < b\})$$

Der Satz ist falsch in offenen, halboffenen oder unbeschränkten Intervallen.

10.5 Stetige Fortsetzung

Es sei f auf $D\setminus\{p\}$ stetig. Für jede Folge (x_n) , $x_n\in D$ mit $x_n\to p$ gelte $\lim_{n\to\infty}f(x_n)=A$. (Hierfür haben wir schon geschrieben: $\lim_{x\to p}f(x)=A$) Es sei $A\neq f(p)$. Dann ist f in p unstetig. Die Funktion

$$g: D \longrightarrow \mathbb{C} \text{ mit } g(x) := \begin{cases} f(x), & x \neq p, \\ A, & x = p \end{cases}$$

ist stetig auf D und stimmt auf $D \setminus \{p\}$ mit f überein. g heißt stetige Fortsetzung von f auf D. Die Unstetigkeit von f in p ist hebbar.

10 Stetigkeit

Beispiele 1) $f(x) = \frac{x+x^3}{x}$, $x \neq 0$: $g(x) = 1 + x^2$

2)
$$f(x) = \frac{\sqrt{x-1}}{x-1}, \ x \neq 1, x > 0: g(x) = \frac{1}{1+\sqrt{x}}$$

3) $f(x) = \frac{|x|}{x}$, $x \neq 0$: f lässt sich nicht stetig nach 0 fortsetzen.

11 Potenzreihen

11.1 Grundlegende Definitionen

 (a_n) sei eine Zahlenfolge. Der Ausdruck $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ heißt $Potenzreihe\ um\ z_0$.

Beispiele

$$\sum_{k=0}^{\infty} z^k \left(= \frac{1}{1-z} \right), \quad (z_0 = 0)$$

$$\sum_{k=0}^{\infty} \frac{1}{k!} (z-1)^k \left(= \exp(z-1) \right), \quad (z_0 = 1)$$

$$\sum_{k=0}^{\infty} (-1)^k \frac{1}{(2k+1)!} (z-z_0)^{2k+1} \left(= \sin(z)\cos(z_0) - \cos(z)\sin(z_0) \right)$$

Mittels der Substitution $z \longrightarrow \zeta := z - z_0$ kann z_0 zu Null transformiert werden, so dass wir o.B.d.A. ¹

$$\sum_{k=0}^{\infty} a_k z^k = a_0 + a_1 z + a_2 z^2 + \dots = \lim_{n \to \infty} p_n(z)$$
 (P)

mit $p_n(z) = \sum_{k=0}^{\infty} a_k z^k$ untersuchen.

Satz 1 a) Es sei $w \in \mathbb{C}$, $w \neq 0$. Wenn $\sum_{k=0}^{\infty} a_k w^k$ konvergent ist, dann sind die folgenden Reihen für alle $z \in \mathbb{C}$ mit |z| < |w| absolut konvergent:

$$\sum_{k=0}^{\infty} a_k z^k, \ \sum_{k=1}^{\infty} k a_k z^{k-1}, \ \sum_{k=2}^{\infty} k (k-1) a_k z^{k-2}, \ \dots$$

b) Ist (P) für $z = \zeta$ divergent, so ist (P) für alle $z \in \mathbb{C}$ mit $|z| > |\zeta|$ divergent.

Beispiel $\sum_{k=0}^{\infty} (-1)^k \frac{1}{k+1} z^k$ ist abolut konvergent für |z| < 1 und divergent für |z| > 1.

¹o.B.d.A. = ohne Beschränkung der Allgemeinheit, d.h. wir betrachten zunächst nur einen (einfacheren) Spezialfall, auf den man jedoch den allgemeinen Fall zurückführen kann.

11.2 Der Konvergenzradius. Der Konvergenzbereich einer Potenzreihe

$$R := \sup\{|z - z_0| \mid \sum_{k=0}^{\infty} a_k (z - z_0)^k \text{ ist konvergent } \}$$

heißt Konvergenzradius der Reihe $\sum_{k=0}^{\infty} a_k (z-z_0)^k$.

Es gelten (Umformulierung von Satz 1 und Def von R): Für $|z-z_0| < R$ ist die Reihe absolut konvergent, für $|z-z_0| > R$ liegt Divergenz vor. Ob die Reihe für z mit $|z-z_0| = R$ konvergiert, muss extra untersucht werden.

Bemerkungen, Beispiele 1) Im Fall $R = \infty$ liegt für jedes z absolute Konvergenz vor, im Fall R = 0 nur für $z = z_0$.

- 2) Der Konvergenzbereich ist im Komplexen der Kreis $\{z \mid |z-z_0| < R\}$, im Reellen das Intervall $\{x \mid |x-x_0| < R\} = \{x \mid x_0 R < x < x_0 + R\} = (x_0 R, x_0 + R)$
- 3) $\sum_{k=0}^{\infty} k! z^k, \ R = 0$
- 4) $\sum_{k=0}^{\infty} \frac{z^k}{k!}, \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)}, R = \infty$
- 5) $\sum_{k=0}^{\infty} z^k$, $\sum_{k=1}^{\infty} \frac{z^k}{k}$, $\sum_{1}^{\infty} \frac{z^k}{k^2}$, R = 1. Das Verhalten für |z| = 1 ist unterschiedlich.

Satz 2 Es liegt (P): $\sum_{k=0}^{\infty} a_k z^k$ mit $a_k \neq 0$ für $k \geq k_0$ vor. Es gilt

$$R = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right|$$

(wobei $R = \infty$ zugelassen ist), falls der lim existiert.

Bemerkung Dies ist eine einfache Anwendung des Quotientenkriteriums. Wendet man analog das Wurzelkriterium an, so erhält man: Existiert $\lim_{k\to\infty} \sqrt[k]{|a_k|} = \alpha$, so ist $R = \frac{1}{\alpha}$ (mit R = 0 für $\alpha = \infty$ und $R = \infty$ für $\alpha = 0$).

Beispiele 1)
$$\sum_{k=2}^{\infty} \frac{2^{2k+2}}{\sqrt{k-1}} (z-z_0)^k$$
, $R = \frac{1}{4}$

2)
$$\sum_{k=0}^{\infty} \frac{k^2}{2^k} z^k$$
, $R=2$

11.3 Der Identitätssatz

Satz 3 R sei der Konvergenzradius der Reihe $\sum_{k=0}^{\infty} a_k z^k$. Für z mit |z| < R wird dann durch $\sum_{k=0}^{\infty} a_k z^k$ die Funktion p:

$$p(z) = \sum_{k=0}^{\infty} a_k z^k, \ |z| < R$$

definiert. p ist in jedem z mit |z| < R stetig.

Satz 4 (Identitätssatz) Es sei $f(z) = \sum_{k=0}^{\infty} a_k z^k$ für |z| < R gegeben. Es existiere eine Folge (z_j) mit $0 < |z_j| < R$, $\lim_{j \to \infty} z_j = 0$ und $f(z_j) = 0$ für alle j. Dann gelten:

$$a_k = 0, \ k \in \mathbb{N} \cup \{0\}$$

(oder f = 0).

Anwendung 1) Aus $\sum_{k=0}^{\infty} c_k z^k = \sum_{k=0}^{\infty} b_k z^k$ für |z| < r folgt $c_k = b_k$ für $k \in \mathbb{N} \cup \{0\}$. (Koeffizientenvergleich)

- 2) Wird f durch eine Potenzreihe in |z| < R gegeben: $f(z) = \sum_{k=0}^{\infty} a_k z^k$, so folgt aus f(z) = f(-z) (aus f(z) = -f(-z)) $a_{2l+1} = 0$, $l = 0, 1, \ldots$ ($a_{2l} = 0, l = 0, 1, \ldots$)
- 3) Es sei $f(z) = \sum_{k=0}^{\infty} a_k z^k$ für |z| < R gegeben. Es sei $a_0(=f(0)) \neq 0$. Dann erhält man formal eine Potenzreihendarstellung um 0 für $\frac{1}{f(z)}$ so: $\frac{1}{f(z)} = \sum_{k=0}^{\infty} b_k z^k$. Aus

$$1 = f(z) \sum_{k=0}^{\infty} b_k z^k = \sum_{k=0}^{\infty} \left(\sum_{l=0}^{k} a_{k-l} b_l \right) z^k$$

folgen für die b_i die Rekursionsfomeln

$$b_0 = \frac{1}{a_0}, \ b_k = -\frac{1}{a_0} \sum_{l=0}^{k-1} a_{k-l} b_l \ (k = 1, 2, \ldots)$$

(Testen Sie das mit $f(z) = e^z$, f(z) = 1 - z).

12 Die elementaren Funktionen

12.1

Kümmern Sie sich mit der Literatur und durch die Übungen um die Exponentialfunktion $(a^x$ für a > 0) und die Umkehrfunktion $(\log_a(x), x > 0 \ (a \neq 1)),$

um die Hyperbelfunktionen $\sinh(x)$, $\cosh(x)$, $\tanh(x)$, $\coth(x)$ und deren Umkehrfunktionen (den sog. Areafunktionen) – z.B. ist $\operatorname{arsinh}(x)$ (Area-Sinus-Hyperbolicus) die Auflösung der Gleichung

$$\sinh(y) = x = \frac{1}{2} (e^y - e^{-y})$$

nach y

und um die trigonometrischen Funktionen sin, cos, tan, cot und deren Umkehrungen (arcsin, arccos, ..., die *Arcusfunktionen*). Z.B. ist der Sinus auf dem Intervall $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ injektiv, also zu einem arcsin umkehrbar:

$$y = \arcsin(x), -1 \le x \le 1 \Longleftrightarrow x = \sin y, \ \frac{\pi}{2} \le y \le \frac{3\pi}{2}$$

12.2 Die Zahl π

Satz 1 $y = \cos(x)$ hat im Intervall (0,2) genau eine Nullstelle x_0 .

Definition $\pi := 2x_0$

zur Begründung: Es gilt $\cos 2 < -\frac{1}{3} < 0$ (Satz 9, S. 40). Wegen $\cos(0) = 1 > 0$ und da \cos auf [0, 2] stetig ist, gibt es nach dem Zwischenwertsatz in (0, 2) eine Nullstelle des Cosinus. Dass es nur eine gibt, folgt aus der strengen Monotonie des \cos im Intervall [0, 2]. Die erhält man mit $\cos x_2 - \cos x_1 = -2\sin\frac{x_1+x_2}{2}\sin\frac{x_2-x_1}{2}$ (9.3, (11)) und mit $\sin(x) \ge \frac{x}{3}$, $0 \le x \le 2$ (Satz 9, S. 40).

Folgerungen

12 Die elementaren Funktionen

$$\sin \frac{\pi}{2} = 1, \qquad \cos k\pi = (-1)^k \ (k \in \mathbb{Z}),$$

$$e^{i\pi k} = (-1)^k \ (k \in \mathbb{Z}), \qquad \sin \frac{\pi}{2} (2k+1) = (-1)^k \ (k \in \mathbb{Z}).$$

$$e^{i\frac{\pi}{2}(2k+1)} = i(-1)^k \ (k \in \mathbb{Z}),$$

- Satz 2 1) $e^{z+2\pi i} = e^z, z \in \mathbb{C}$
 - 2) sin, cos sind 2π -periodisch

Satz 3 (Begründen Sie selbst)

$$e^z = 1 \iff z = 2k\pi i \ (k \in \mathbb{Z})$$

Übung: Verwenden Sie Satz 3, um alle Nullstellen der komplexen Funktionen sin, cos, sinh, cosh zu berechnen, also die Gleichungen

$$\sin(z) = 0$$
, $\cos(z) = 0$, $\sinh(z) = 0$, $\cosh(z) = 0$

zu lösen.

13 Grundlagen der Differential- (DR) und Integralrechnung (IR)

13.1 Das bestimmte Integral $\int_a^b f(x) \, \mathrm{d}x$ für eine auf dem abgeschlossenen und beschränkten Intervall [a,b] definierte beschränkte Funktion f.

Eine Zerlegung Z von [a, b] ist eine Punktmenge $\{x_0, x_1, \dots, x_n\}$ mit

$$a = x_0, \ x_j < x_{j+1}, \ x_n = b.$$

Beispiele 1) $x_k = a + \frac{k}{n}(b-a), k = 0, 1, ..., n$

2)
$$(0 < a < b)$$
: $x_k = a \left(\frac{b}{a}\right)^{\frac{k}{n}}, \ k = 0, 1, \dots, n$

 $||Z|| := \max\{x_k - x_{k-1} \mid k = 1, \dots, n\}$ heißt Feinheit der Zerlegung Z.

Bezeichne mit I_k das k-te Teilintervall von Z:

$$I_k = \{x \mid x_{k-1} \le x \le x_k\}, \ k = 1, 2, \dots, n.$$

Setze:

$$m_k := \inf\{f(x) \mid x \in I_k\}, \quad M_k := \sup\{f(x) \mid x \in I_k\}, \quad \xi_k \in I_k.$$

Die Ausdrücke

$$\omega(f, Z) := \sum_{k=1}^{n} m_k (x_k - x_{k-1}),$$

$$\sigma(f, Z) := \sum_{k=1}^{n} f(\xi_k) (x_k - x_{k-1}),$$

$$\Omega(f, Z) := \sum_{k=1}^{n} M_k (x_k - x_{k-1})$$

heißen Riemannsche Unter-/ Zwischen-/ Obersumme zur Zerlegung Z. Es gilt

$$\omega(f, Z) < \sigma(f, Z) < \Omega(f, Z).$$

13 Grundlagen der Differential- (DR) und Integralrechnung (IR)

Für zwei Zerlegungen Z, \tilde{Z} gilt stets

$$\omega(f,Z) \le \Omega(f,\tilde{Z}).$$

Gilt für Zerlegungen $Z, Z': Z \subset Z'$, so heißt Z' Verfeinerung von Z. Es gilt dann:

$$\omega(f, Z) \le \omega(f, Z') \le \Omega(f, Z') \le \Omega(f, Z).$$

Definition Existiert $s \in \mathbb{R}$ und zu jedem $\varepsilon > 0$ ein $\delta(\varepsilon) > 0$ derart, dass aus $||Z|| < \delta$ bei beliebiger Wahl der Zwischenpunkte ξ_k

$$|\sigma(f,Z)-s|<\varepsilon$$

folgt, so schreiben wir $s = \lim_{\|Z\| \to 0} \sigma(f, Z)$. Dieser Grenzwert wird durch $\int_a^b f(x) dx$ bezeichnet und das bestimmte Integral von f über [a, b] genannt. Die Menge aller über [a, b] integrierbaren beschränkter Funktionen f wird durch I[a, b] bezeichnet.

Es gilt

$$f\in {\rm I}[a,b]\Longleftrightarrow {\rm zu}$$
 jedem $\varepsilon>0$ gibt es eine
$${\rm Zerlegung}\ Z\ {\rm von}\ [a,b]\ {\rm derart,\ dass}$$

$$\Omega(f,Z)-\omega(f,Z)<\varepsilon\ {\rm gilt.}$$

Beispiele, Bemerkungen 1) [a, b] = [0, 1]. Für

$$f(x) := \begin{cases} 1, & x \in [0, 1] \setminus \mathbb{Q}, \\ 0, & x \in [0, 1] \cap \mathbb{Q} \end{cases}$$

gilt für jede Zerlegung Z von [0,1]: w(f,Z) = 0, $\Omega(f,Z) = 1$, so dass $f \notin I[0,1]$.

2) Für

$$f(x) = \begin{cases} 0, & x \neq c, \\ 1, & x = c \end{cases} \quad (c \in [a, b]), \ x \in [a, b],$$

 $gilt \int_a^b f(x) dx = 0$. Für jede Zerlegung Z gilt w(f, Z) = 0, $0 < \Omega(f, Z) \le 2||Z||$.

3) $f(x) = \begin{cases} 1, & x \neq c, \\ 0, & x = c \end{cases} \quad a \le x \le b, \ c \in [a, b].$

Es gilt $\int_a^b f(x) dx = b - a$. Für jede Zerlegung Z gelten $\Omega(f, Z) = b - a$, $\omega(f, Z) \ge b - a - 2||Z||$, also $\Omega(f, Z) - \omega(f, Z) \le 2||Z||$.

4) Für $f \in I[a,b]$ und $f(x) \ge 0$, $a \le x \le b$ wird der Flächeninhalt I(G) von $G = \{(x,y) \mid a \le x \le b, \ 0 \le y \le f(x)\}$ durch $\int_a^b f(x) dx$ definiert.

Satz 1 (Stetige Funktionen sind integrierbar) a $C^0[a,b] \subset I[a,b]$

b) Ist f auf [a,b] monoton und beschränkt, so gilt $f \in I[a,b]$.

Satz 2 $F\ddot{u}r f \in I[a,b]$ gilt

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \frac{b-a}{n} \sum_{k=1}^{n} f\left(a + k \frac{b-a}{n}\right).$$

Satz 3 Für $f \in I[a,b]$ mit 0 < a < b und $q = \left(\frac{b}{a}\right)^{\frac{1}{n}}$ gilt

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} a(q-1) \sum_{k=1}^{n} f(aq^{k-1}) q^{k-1}$$

(Zu Satz 2,3 vergleiche Beispiele 1,2) zu Beginn dieses Abschnitts 13.1)

Beispiele (zu Satz 2)

$$f(x) = c \text{ (konst)}, a \le x \le b$$

$$f(x) = x$$

$$f(x) = e^{cx} \text{ (c konst, } \ne 0)$$

$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k} = \int_{1}^{2} \frac{dx}{x}$$

Beispiele (zu Satz 3)

$$f(x) = x^p \ (p \in \mathbb{N})$$
$$f(x) = \frac{1}{x}$$

13.2 Eigenschaften von $\int_a^b f(x) dx$

(I) (Vereinbarung):

$$\int_{a}^{b} f(x) dx := -\int_{b}^{a} f(x) dx, \int_{a}^{a} f(x) dx := 0$$

(II) $f,g\in {\rm I}[a,b],\ \lambda,\varrho\in\mathbb{C}$: Dann gilt $\lambda f+\varrho g\in {\rm I}[a,b]$ und

$$\int_a^b (\lambda f(x) + \varrho g(x)) \, dx = \lambda \int_a^b f(x) \, dx + \varrho \int_a^b g(x) \, dx \quad \text{(Linearität des Integrals)}$$

13 Grundlagen der Differential- (DR) und Integralrechnung (IR)

Beispiele $F\ddot{U}r f: [a,b] \longrightarrow \mathbb{C}$ wird definiert:

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} (\operatorname{Re} f)(x) dx + i \int_{a}^{b} (\operatorname{Im} f)(x) dx.$$

Hiermit:

$$\int_{a}^{b} \cos x \, dx = \int_{a}^{b} \frac{1}{2} \left(e^{ix} + e^{-ix} \right) \, dx = \sin b - \sin a,$$
$$\int_{a}^{b} \sin x \, dx = \cos a - \cos b$$

(III) Für $f \in I[a, b]$ und $\alpha, \beta, \gamma \in [a, b]$ gilt

$$\int_{\alpha}^{\beta} f(x) dx + \int_{\beta}^{\gamma} f(x) dx = \int_{\alpha}^{\gamma} f(x) dx.$$

(IV) Aus $f, g \in I[a, b]$ und $f(x) \leq g(x), a \leq x \leq b$, folgt

$$\int_{a}^{b} f(x) \, \mathrm{d}x \le \int_{a}^{b} g(x) \, \mathrm{d}x.$$

(V) Aus $f \in I[a,b]$ folgt $|f| \in I[a,b]$. Für $f \in C^0[a,b]$ hat man

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x \right| \le \int_{a}^{b} |f(x)| \, \mathrm{d}x \le ||f||_{\infty} |b - a|.^{1}$$

Satz 4 Es seien $f_1, f_2 \in C^0[a, b]$ mit $f_1(x) \le f_2(x), a \le x \le b$.

$$G := \{(x, y) \mid f_1(x) \le y \le f_2(x), \ a \le x \le b\}.$$

Es gilt $I(G) = \int_a^b (f_2(x) - f_1(x)) dx$.

13.3 Der Mittelwertsatz der Integralrechnung (MWSIR)

Satz 5 (MWSIR) $f,g \in C^0[a,b], \ f(x) \ge 0 \ f\"ur \ a \le x \le b.$ Es gilt: Es gibt $ein \ \xi \in (a,b)$ mit

$$\int_a^b f(x)g(x) dx = g(\xi) \int_a^b f(x) dx.$$

¹Für eine (reell- oder komplexwertige) Funktion f, die auf einer Teilmenge D von \mathbb{R} oder \mathbb{C} definiert ist, setzt man $||f||_{\infty} := \sup\{|f(x)| \mid x \in D\}.$

Bemerkungen 1) Es genügt vorauszusetzen, dass f(x) in [a,b] das Vorzeichen nicht wechselt. (Begründung?)

- 2) Jedes $\xi \in (a,b)$ hat die Form $a + \vartheta(b-a)$ mit einer Zahl $\vartheta \in (0,1)$.
- 3) Der Fall f = 1:

$$\int_{a}^{b} g(x) \, \mathrm{d}x = g(\xi)(b-a)$$

wird häufig als Mittelwertsatz bezeichnet und Satz 5 oben als "verallgemeinerter Mittelwertsatz".

13.4 Die Ableitung

1) $f:(a,b)\longrightarrow \mathbb{C}$ heißt in $x_0\in I$ diffbar, wenn der Grenzwert

$$\lim_{h \to 0} \frac{1}{h} \left(f(x_0 + h) - f(x_0) \right) \left(= \lim_{\substack{x \to x_0 \\ x \in I}} \frac{f(x) - f(x_0)}{x - x_0} \right)$$

existiert. Dieser Grenzwert heißt die erste Ableitung von f in x_0 . Er wird durch $(Df)(x_0)$ oder $f'(x_0)$ bezeichnet. f heißt auf I differenzierbar (diff'bar), wenn f in jedem $x \in I$ diff'bar ist. In diesem Fall wird die Funktion $x \mapsto f'(x) : I \to \mathbb{C}$ durch f' bezeichnet.

f ist auf I j-mal diff'bar $(j \in \mathbb{N})$, falls $f'(x), f''(x), \ldots, f^{(j)}(x)$ für jedes $x \in I$ existieren. Hierbei ist

$$f^{(j)}(x) := \left(f^{(j-1)}\right)'(x) \ (j=1,2,\ldots).$$

Die Existenz von $f'(x_0)$ bedeutet, dass der Graph von f in $(x_0, f(x_0))$ eine Tangente t_{f,x_0} besitzt mit der Steigung $f'(x_0)$:

$$t_{f,x_0}(x) = f(x_0) + f'(x_0)(x - x_0), \ x \in \mathbb{R}.$$

 $f'(x_0)$ ist die Steigung der Kurve y = f(x) in $(x_0, f(x_0))$.

2) Satz 6 (Umformulierung obiger Definition) a) Ist f auf (a,b) = I definiert und in $x_0 \in I$ diff bar, dann gibt es eine in x_0 stetige Funktion f^* , für die

$$f(x) - f(x_0) = f^*(x)(x - x_0), \ x \in I, \tag{6.1}$$

erfüllt ist. Es gilt $f^*(x_0) = f'(x_0)$.

b) Gibt es eine in x_0 stetige Funktion f^* , die (6.1) erfüllt, dann ist f in x_0 diff bar mit $f'(x_0) = f^*(x_0)$.

13 Grundlagen der Differential- (DR) und Integralrechnung (IR)

Bemerkungen, Beispiele 1.) Ist f in x_0 diff bar, so ist f in x_0 stetig.

- 2.) f(x) = |x| ist in 0 stetig, in 0 aber nicht diff'bar.
- 3.) $f(x) = x^n$, n = 1, 2: $f'(x) = nx^{n-1}$
- 4.) $f(x) = e^{cx}$ $(c \in \mathbb{C}, konst), f'(x) = ce^{cx}$

13.5 Ableitungsregeln

Satz 7 $f, g: (a, b) \longrightarrow \mathbb{C}$ seien in $x_0 \in (a, b)$ diffbar, $\alpha, \beta \in \mathbb{C}$. Dann sind $\alpha f + \beta g$, fg und, falls $g(x_0) \neq 0$, $\frac{f}{g}$ in x_0 diff bar, und man hat:

(1)
$$(\alpha f + \beta g)'(x_0) = \alpha f'(x_0) + \beta g'(x_0)$$

(2)
$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

(3)
$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - g'(x_0)f(x_0)}{g^2(x_0)}$$

mit dem Spezialfall: $\left(\frac{1}{g}\right)'(x_0) = -\frac{g'(x_0)}{g^2(x_0)}$.

Beispiele zu(1): $f(x) = \cos(x) = \frac{1}{2} (e^{ix} + e^{ix})$. Mit Beispiel 4.) oben sieht man:

$$f'(x) = -\sin x, \ f''(x) = -\cos x, \dots$$

zu (2): Mit Beispiel 3.) oben als Induktionsanfang sieht man für $f(x) = x^n$, $n \in \mathbb{N} \cup \{0\}$:

$$f'(x) = nx^{n-1}$$

mittels vollständiger Induktion.

zu (3): Es gilt
$$f(x) = x^n$$
: $f'(x) = nx^{n-1}$ für $n \in \mathbb{Z}$.

Satz 8 (Kettenregel) Es seien f auf I = (a, b) und g auf f(I) definiert. Es sei $x_0 \in I$ derart, dass $f(x_0)$ innerer Punkt von f(I) ist. Ist f in x_0 und g in $f(x_0)$ diff'bar, so ist $g \circ f$ in x_0 diff'bar mit

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$

Beispiele

$$h(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0 \end{cases}$$

ist in jedem $x \in \mathbb{R}$ diffbar:

$$h'(x) = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x}, & x \neq 0, \\ 0, & x = 0 \end{cases}$$

h' ist in 0 unstetig.

Definition $n \in \mathbb{N}$: $h \in \mathbb{C}^n(I)$ (n-mal auf I stetig diff'bar) : $\iff h^{(j)}, j = 0, 1, \dots, n$ existieren und sind auf I stetig.

$$C^{\infty}(I) := \bigcap_{n \in \mathbb{N} \cup \{0\}} C^{n}(I).$$

Beispiele $f(x) = e^x$, $\cos x$, $\sin x$, $\sinh x$, ... $\sin d$ aus $C^{\infty}(\mathbb{R})$.

Satz 9 (Ableitung der Umkehrfunktion) x = f(y) sei für $y \in I$ definiert, stetig, bijektiv und in $y_0 \in I$ diff'bar mit $f'(y_0) \neq 0$. Dann ist die Umkehrfunktion $g : f(I) \longrightarrow I$, y = g(x), in $x_0 = f(y_0)$ diff'bar mit

$$g'(x_0) = \frac{1}{f'(g(x_0))} \quad \left(g'(f(y_0)) = \frac{1}{f'(y_0)}\right).$$

Beispiele 1) $f(x) = \ln x \ (x \neq 0)$: $f'(x) = \frac{1}{x}$

2) Es sei f diffbar auf I und $f(x) \neq 0$, $x \in I$. Für

$$h(x) := \ln |f(x)|$$

gilt:

$$h'(x) = \frac{f'(x)}{f(x)} \quad (x \in I).$$

3) $h(x) = |x|^{\alpha} \ (x \neq 0, \ \alpha \in \mathbb{R}). \ h'(x) = \operatorname{sign}(x)\alpha |x|^{\alpha - 1}.^{2}$ $\alpha = \frac{1}{2}, \ x > 0: h(x) = \sqrt{x}, \ h'(x) = \frac{1}{2\sqrt{x}}.$

13.6 Extremwerte. MWSDR (Mittelwertsatz der Differentialrechnung)

Definition $I \subset \mathbb{R}$ sei ein Intervall. $f: I \longrightarrow \mathbb{R}$ hat in $x_0 \in I$

$${}^{2}\text{sign}(x) = \begin{cases} 1, & x > 0, \\ -1, & x < 0 \end{cases}$$

- 13 Grundlagen der Differential- (DR) und Integralrechnung (IR)
 - a) ein lokales Maximum, falls es eine Umgebung³ $U \subset I$ von x_0 gibt mit

$$f(x) \le f(x_0) \ \forall x \in U$$

b) ein Maximum, falls

$$f(x) \le f(x_0) \ \forall x \in I$$

gilt

- c) ein (lokales) Minimum, falls -f in x_0 ein (lokales) Maximum hat.
- d) Ein Maximum oder Minimum ist ein Extremwert von f

Satz 10 $f:(a,b) \longrightarrow \mathbb{R}$ habe in $x_0 \in (a,b)$ einen lokalen Extremwert und sei in x_0 diff'bar. Dann gilt:

$$f'(x_0) = 0.$$

Bemerkung 1) Um ein Max. oder Min. einer Funktion f auf [a, b] zu bestimmen, sind drei Arten von Punkten zu betrachten:

- (1) Die Punkte $x \in (a,b)$ mit f'(x) = 0.
- (2) Die Randpunkte a und b.
- (3) Die Punkte $x \in (a,b)$, in denen f nicht differenzierbar ist.
- 2) Die Umkehrung von Satz 10 ist i.A. falsch: Für $f(x) = x^3$ auf $-1 \le x \le 1$ gilt f'(0) = 0. f hat in 0 aber weder ein lokales Maximum, noch ein lokales Minimum.

Satz 11 (von Rolle) Es sei f auf [a,b] stetig und auf (a,b) diff'bar. Es gelte f(a) = f(b). Dann gibt es ein $\xi \in (a,b)$ mit

$$f'(\xi) = 0.$$

Satz 12 (Mittelwertsatz der Differentialrechnung, MWSDR) g, f seien auf [a, b] stetig und auf (a, b) diff bar. Dann gibt es eine Zahl $\vartheta \in (0, 1)$ mit

$$(f(b) - f(a)) g'(a + \vartheta(b - a)) = (g(b) - g(a)) f'(a + \vartheta(b - a)).$$

Satz 13 (MSWSDR mit g(x) = x) f sei auf[a, b] stetig und auf(a, b) diffbar. Dann gibt es $ein \xi \in (a, b)$ mit

$$f(b) = f(a) + f'(\xi)(b - a).$$

Bemerkung Es seien x und $x+h \in [a,b]$. Dann gilt mit einem ξ zwischen x und x+h:

$$f(x+h) = f(x) + f'(\xi)h.$$

³Eine Teilmenge U von \mathbb{R} oder \mathbb{C} heißt Umgebung eines Punktes x_0 , falls es eine Zahl $\varepsilon > 0$ gibt mit $U = U_{\varepsilon}(x_0)$ (im Sinne von 4.3 oder 6.3)

Folgerung: Satz 14 Es sei f auf dem Intervall I definiert und dort diff'bar. Es gelten:

a)
$$f' > 0$$
 auf $I \Longrightarrow f \uparrow (streng)$
 $f' < 0$ auf $I \Longrightarrow f \downarrow (streng)$

b)
$$f' \ge 0$$
 auf $I \iff f \uparrow$
 $f' \le 0$ auf $I \iff f \downarrow$

c) f' = 0 auf $I \iff f = const$ auf I.

Beispiele 1) f, g seien auf [a, b] diff bar. Aus $f'(x) \le g'(x)$, $a \le x \le b$ folgt:

$$f(x) - f(a) \le g(x) - g(a), \ a \le x \le b.$$

2) Es sei $c \in \mathbb{C}$ gegeben. Jede diff'bare Funktion $f : \mathbb{R} \longrightarrow \mathbb{C}$, die

$$f'(x) = cf(x), \ x \in \mathbb{R},$$

erfüllt, hat die Form $f(x) = \alpha e^{cx}$, $x \in \mathbb{R}$ mit einer Konstanten $\alpha \in \mathbb{C}$.

13.7 Der Hauptsatz der Differential-Integralrechnung

I sei Intervall in \mathbb{R} und $f:I\longrightarrow\mathbb{R}$ eine gegebene Funktion. $F:I\longrightarrow\mathbb{R}$ heißt $Stamm-funktion\ von\ f$, wenn F auf I diff'bar ist und auf I die Gleichung

$$F' = f$$

erfüllt.

Satz 15 (Hauptsatz) Es seien $f \in C^0[a,b]$ und $c \in [a,b]$. Dann gelten:

- 1) $F_c: [a,b] \longrightarrow \mathbb{R}, \ F_c(x) := \int_c^x f(t) \, \mathrm{d}t \ \text{ist Stammfunktion von } f.$
- 2) Ist F eine Stammfunktion von f, so gibt es eine Konstante k mit $F(x) = F_c(x) + k$, $x \in [a, b]$.
- 3) Ist F Stammfunktion von f, so gilt

$$\int_{a}^{b} f(x) dx = F(b) - F(a) \left(=: F(x)|_{x=a}^{b} \right).$$

 $\{F: I \longrightarrow \mathbb{R} \mid F \text{ ist Stammfunktion von } f\} = \{F_c + k \mid k \text{ ist beliebige Konstante}\}$ heißt das unbestimmte Integral von f, was häufig durch $\int f(x) dx$ bezeichnet wird. Wir schreiben hierfür $\int^x f(t) dt$.

13.8 Integrationsregeln (Partielle Integration. Substitutionsregel)

Wegen

$$\int_{c}^{x} f(t) dt = F(x) \iff F'(x) = f(x)$$

erhält man aus jeder Ableitungsregel eine Integrationsregel:

Satz 16 (Partielle Integration) (\Leftarrow Produktregel) Es seien $u, v \in C^1[a, b]$. Es gilt:

$$\int_{a}^{x} u(t)v'(t) dt = u(t)v(t)|_{t=a}^{x} - \int_{a}^{x} u'(t)v(t) dt, \ a \le x \le b$$

Beispiel

$$\int_{a}^{x} f(t) dt = xf(x) - af(a) - \int_{a}^{x} tf'(t) dt$$

hierzu

$$\int_{a}^{x} \sqrt{1 - t^2} \, \mathrm{d}t = \frac{1}{2} \left(x \sqrt{1 - x^2} + \arcsin(x) \right) - \underbrace{\frac{1}{2} \left(a \sqrt{1 - a^2} + \arcsin a \right)}_{+konst}$$

$$\left(\int^x \sqrt{1-t^2} \, \mathrm{d}t = \frac{1}{2} \left(x \sqrt{1-x^2} + \arcsin(x) \right) \right)$$

Satz 17 (Substitutionsregel) (\Leftarrow Kettenregel) $f:[c,d] \longrightarrow \mathbb{R}$ sei stetig, $g:[a,b] \longrightarrow [c,d]$ sei stetig diff'bar. Es gilt:

$$\int_{g(a)}^{g(x)} f(\tau) d\tau = \int_{a}^{x} f(g(t))g'(t) dt, \ a \le x \le b.$$

Beispiele 1) $\int_a^x \frac{g'(t)}{g(t)} dt = \ln \left| \frac{g(x)}{g(x)} \right|$, $\int_a^x \tan(t) dt = -\ln |\cos(x)|$.

2)
$$\int_{-1}^{1} \sqrt{1-\tau^2} d\tau$$
 (Substitution: $\tau = \sin t$) = $\frac{\pi}{2}$

3)
$$\int^x \cos^2(t) dt = \frac{1}{2} (\sin x \cos x + x)$$

Beispiel $f:[a,b] \longrightarrow [f(a),f(b)]$ sei stetig, bijektiv. Es gilt:

$$\int_{a}^{b} f(x) dx + \int_{f(a)}^{f(b)} f^{-1}(x) dx = bf(b) - af(a).$$

14 Taylorsatz. Hinreichende Bedingungen für Extremwerte. Taylorreihen.

14.1 Satz von Taylor

Satz 1 (Taylorsatz) Es sei I ein Intervall und $x, x_0 \in I$. Es sei $f \in \mathbb{C}^{n+1}(I)$ $(n = 0, 1, 2, \ldots)$. Dann gilt

$$f(x) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(x_0) (x - x_0)^k + R_{n+1}(x)$$

mit

$$R_{n+1}(x) = \int_{x_0}^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt = f^{(n+1)}(\xi) \frac{(x-x_0)^{n+1}}{(n+1)!}$$

mit einer Zahl ξ zwischen x und x_0 .

 $T_n(f,x_0)(x) := \sum_{k=0}^n \frac{1}{k!} f^{(k)}(x_0)(x-x_0)^k$ heißt n-tes Taylorpolynom zu f und x_0 .

14.2 Hinreichende Bedingungen für Extremwerte

Satz 2 Es sei $f \in \mathbb{C}^{n+1}[a,b]$ und $x_0 \in (a,b)$. Es seien $f^{(j)}(x_0) = 0$ für j = 1, 2, ..., n-1 und $f^{(n)}(x_0) \neq 0$ erfüllt. Dann gelten:

Ist n ungerade, so besitzt f in x_0 keinen lokalen Extremwert.

Ist n gerade, so liegt im Fall
$$\begin{cases} f^{(n)}(x_0) > 0 \\ f^{(n)}(x_0) < 0 \end{cases}$$
 in x_0 ein lokales $\begin{cases} Minimum \\ Maximum \end{cases}$

14 Taylorsatz. Hinreichende Bedingungen für Extremwerte. Taylorreihen.

14.3 Taylorreihe

Satz 3 Gegeben ist die Potenzreihe $\sum_{k=0}^{\infty} a_k (x-x_0)^k$ mit dem Konvergenzradius r. $I := \{x \mid |x-x_0| < r\}$. Die durch

$$f(x) := \sum_{k=0}^{\infty} a_k (x - x_0)^k, \ x \in I,$$

definierte Funktion hat die Eigenschaften:

$$a) f \in C^{\infty}(I)$$

b)
$$f^{(j)}(x) = \sum_{k=1}^{\infty} k(k-1) \dots (k-j+1) a_k (x-x_0)^{k-j}, \ j=0,1,\dots, \ x \in I$$

c)
$$a_k = \frac{1}{k!} f^{(k)}(x_0) \ (k = 0, 1, \ldots)$$

d)
$$\int_{x_0}^x f(t) dt = \sum_{k=0}^{\infty} \frac{a_k}{k+1} (x - x_0)^{k+1}, \ x \in I$$

Es sei $f \in C^{\infty}(I)$, $x_0 \in I$. Die Reihe

$$\lim_{n \to \infty} T_n(f, x_0) = \sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}(x_0) (x - x_0)^k =: T(f, x_0)(x)$$

heißt die Taylorreihe von f um x_0

Es gilt: Jede Potenzreihe ist die Taylorreihe der durch die Potenzreihe gegebenen Funktion f:

$$\sum_{k=0}^{\infty} a_k (x - x_0)^k =: f(x) \Longrightarrow \sum_{k=0}^{\infty} a_k (x - x_0)^k = T(f, x_0)$$

Beispiele 1) $\sum_{k=0}^{\infty} (-1)^k x^{2k} = \frac{1}{1+x^2}$, |x| < 1. Es gelten:

$$\frac{1}{(2k)!} D^{2k} \left(\frac{1}{1+x^2} \right) \Big|_{x=0} = (-1)^k$$

$$\frac{1}{(2k+1)!} D^{2k+1} \left(\frac{1}{1+x^2} \right) \Big|_{x=0} = 0$$

$$, \quad k = 0, 1, 2, \dots$$

2) Die Binomische Reihe Es sei $\alpha \in \mathbb{R} \setminus \mathbb{N}$. $\sum_{k=0}^{\infty} {\alpha \choose k} x^k$ ist die Taylorreihe von $(1+x)^{\alpha}$ für |x| < 1.

$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} {\alpha \choose k} x^k \tag{*}$$

Das sieht man so: Für $f(x) := \sum_{k=0}^{\infty} {\alpha \choose k} x^k$ ist $I = \{x \mid |x| < 1\}$. Es gilt

$$\begin{cases} (1+x)f'(x) = \alpha f(x), & |x| < 1, \\ f(0) = 1 \end{cases}.$$

 $\implies f(x) = (1+x)^{\alpha}$. Für $\alpha = n \in \mathbb{N}$ bricht die Reihe wegen $\binom{n}{k} = 0$ für k > n ab. (*) ist in diesem Fall der Binomische Lehrsatz (Satz 4) aus 5.4.

14.4 Entwicklung einer Funktion in eine Potenzreihe

die dann die Taylorreihe der Funktion zum gewählten Entwicklungspunkt ist.

Satz 4 Es sei $f \in C^{\infty}[a,b]$ und $x_0 \in (a,b)$. Dann gilt $f(x) = T(f,x_0)$ genau für die $x \in [a,b]$, für die $R_{n+1}(x) \to 0$ $(n \to \infty)$ gilt.

Dies ist z.B. dann der Fall für alle $x \in [a,b]$, wenn es Konstanten A, B so gibt, dass $|f^{(n)}(x)| \le AB^n$ für alle $x \in [a,b]$ und alle n gilt.

Soll eine Funktion f um x_0 in eine Potenzreihe entwickelt werden, so kann man für $f \in \mathbb{C}^{\infty}$ so vorgehen:

1) Berechne $(T(f,x_0))(x)$. Berechne die x, für die $R_{n+1}(x) \to 0 \ (n \to \infty)$ gilt. Für diese x folgt

$$f(x) = T(f, x_0)(x) \tag{*}$$

Ist $f \in C^{\infty}(I)$, so ist der Bereich, für den (*) richtig ist i.A. eine Teilmenge von I. oder

2) Verwende bekannte Reihen, wie etwa die geometrische oder die Exponential-Reihe.

Beispiele 1) Für

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0, \\ 0, & x = 0 \end{cases},$$

gilt: $f \in C^{\infty}(\mathbb{R}), \ f^{(j)}(0) = 0 \ \forall j. \ Also$

$$T(f,0)(x) = 0 \neq e^{-\frac{1}{x^2}}, \ x \neq 0.$$

f ist um 0 nicht in eine Potenzreihe entwickelbar.

2)
$$f(x) = \int_0^x e^{-t^2} dt = \sum_{k=0}^{\infty} (-1)^k \frac{1}{2k+1} \frac{1}{k!} x^{2k+1}$$

- 14 Taylorsatz. Hinreichende Bedingungen für Extremwerte. Taylorreihen.
 - 3) $f(x) = \arctan x$. Entwickle $f'(x) = \frac{1}{1+x^2}$ in eine Reihe um 0 (14.3, Beispiel 1). Bilde $\int_0^x (der \ Reihe)$:

$$\arctan(x) = \int_0^x \frac{1}{1+t^2} \, \mathrm{d}t = \dots$$

4) $f(x) = \ln(1+x)$ soll um 0 entwickelt werden. Man findet leicht: $\frac{1}{n!}f^{(n)}(0) = (-1)^{n+1}\frac{1}{n}, \ n=1,2,\dots$

$$\implies (T(\ln(1+x),0))(x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^k \quad (r=1, |x|<1).$$

Nach Satz 4 gilt $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^k = \ln(1+x)$ für die x aus $-1 < x \le 1$, für die $R_{n+1}(x) \to 0$ $(n \to \infty)$. Durch Abschätzen findet man leicht für $0 \le x \le 1$:

$$|R_{n+1}(x)| \le \frac{1}{n+1} \to 0 \ (n \to \infty).$$

Durch Differentiation sieht man für -1 < x < 1, dass $D\left(\sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^k}{k}\right) = \frac{1}{1+x}$ gilt. Also

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^k = \ln(1+x)$$

 $f\ddot{u}r - 1 < x < 1, \ insgesamt \ also \ f\ddot{u}r - 1 < x \leq 1.$

Bemerkung Es sei $x_0 > 0$. Es soll die 200. Ableitung von $\ln(x)$ an der Stelle x_0 berechnet werden.

Entwickle $f(x) = \ln(x)$ um x_0 : $\sum_{k=0}^{\infty} a_k (x - x_0)^k$. Es gilt

$$a_{200} = \frac{1}{200!} f^{(200)}(x_0).$$

$$\ln(x) = \ln(x_0 + x - x_0) = \ln x_0 \left(1 + \frac{x - x_0}{x_0} \right)$$
$$= \ln(x_0) + \ln \left(1 + \frac{x - x_0}{x_0} \right)$$
$$= \ln(x_0) + \sum_{k=1}^{\infty} \frac{1}{k} (-1)^{k+1} \frac{1}{x_0^k} (x - x_0)^k$$

(die letzte Gleichheit folgt aus dem vorhergehenden Beispiel) gültig für $-1 < \frac{x-x_0}{x_0} \le 1 \Longrightarrow 0 < x \le 2x_0$.

15 Unbestimmte Ausdrücke. Die Regeln von de L'Hospital

15.1 Die Ausdrücke $\left(\frac{0}{0}\right)$, $\left(\frac{\infty}{\infty}\right)$.

Satz 1 (de L'Hospital) Es seien f, g auf (a, b) definierte und auf (a, b) differenzierbare Funktionen. Für a < x < b gelte: $g(x) \neq 0$ und $g'(x) \neq 0$. Es seien erfüllt

1. Fall:
$$f(x) \longrightarrow 0$$
, $g(x) \longrightarrow 0$ für $x \to b-$

2. Fall:
$$f(x) \longrightarrow \infty$$
, $g(x) \longrightarrow \infty$ für $x \to b-$

Für beide Fälle gilt:

Existiert $\lim_{x\to b^-} \frac{f'(x)}{g'(x)} = L(\in \mathbb{R} \cup \{-\infty, +\infty\})$, so existiert auch $\lim_{x\to b^-} \frac{f(x)}{g(x)} = l$, und es ist l = L.

Analog für $x \to a+$; $a = -\infty$ und $b = +\infty$ sind zugelassen.

Bemerkung Die anderen unbestimmten Ausdrücke

$$\infty \cdot 0$$
, $\infty - \infty$, 0^0 , ∞^0 , 1^∞

lassen sich auf $\frac{0}{0}$ (1.Fall oben) und $\frac{\infty}{\infty}$ (2.Fall oben) zurückführen.

Unter $\infty \cdot 0$ ist gemeint: $\lim_{x\to b} f(x)g(x)$, wenn $\lim_{x\to b} f(x) = \infty$ und $\lim_{x\to b} g(x) = 0$ gegeben sind. Analog sind die anderen Ausdrücke zu verstehen.

Beispiele 1) $(\alpha > 0) \lim_{x\to 0+} x^{(x^{\alpha})} = 1$

2)
$$\lim_{x\to\infty} \frac{\ln(1+e^x)}{\sqrt{1+x^2}} = 1$$

3)
$$\lim_{x \to \infty} \frac{x}{\sqrt{1+x^2}} = 1$$

4)
$$\lim_{x\to 0+} \frac{e^{-\frac{1}{x}}}{x} = 0$$

16 Uneigentliche Integrale

16.1 Definitionen

1. Es sei f auf [a,b) definiert $(b \in \mathbb{R} \cup \{\infty\})$ und für jedes $\beta \in (a,b)$ über $[a,\beta]$ integrierbar:

$$\int_{a}^{b} f(x) dx := \lim_{\beta \to b^{-}} \int_{a}^{\beta} f(x) dx, \tag{1}$$

falls dieser Grenzwert existiert.

2. Es sei f auf (a, b] definiert $(a \in \mathbb{R} \cup \{-\infty\})$ und für jedes $\alpha \in (a, b)$ über $[\alpha, b]$ integrierbar:

$$\int_{a}^{b} f(x) dx := \lim_{\alpha \to a+} \int_{\alpha}^{b} f(x) dx,$$
(2)

falls dieser Grenzwert existiert.

3. Es sei f auf (a, b) definiert $(a \in \mathbb{R} \cup \{-\infty\}, b \in \mathbb{R} \cup \{+\infty\})$ und für alle $\alpha, \beta \in (a, b)$ mit $\alpha < \beta$ über $[\alpha, \beta]$ integrierbar. Es sei $c \in (a, b)$ beliebig. Existieren die Integrale

$$\int_{a}^{c} f(x) dx \text{ (im Sinne von 2.) und}$$

$$\int_{c}^{b} f(x) dx \text{ (im Sinne von 1.),}$$

so wird definiert:

$$\int_{a}^{b} f(x) \, \mathrm{d}x := \int_{a}^{c} f(x) \, \mathrm{d}x + \int_{c}^{b} f(x) \, \mathrm{d}x. \tag{3}$$

4. Es sei a < c < b, und f sei auf $[a,b] \setminus \{c\}$ definiert. Existieren die Integrale $\int_a^c f(x) \, \mathrm{d}x$ (1.) und $\int_c^b f(x) \, \mathrm{d}x$ (2.), so wird definiert:

$$\int_{a}^{b} f(x) dx := \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$
 (4)

16 Uneigentliche Integrale

Existieren oben in (1), (2), (3), (4) die Grenzwerte rechts, so sagen wir:

Das (uneigentliche) Integral $\int_a^b f(x) \, \mathrm{d}x$ existiert oder konvergiert.

Andernfalls heißt $\int_a^b f(x) dx$ divergent.

16.2 Beispiele

1) $\int_1^\infty \frac{dx}{x^s} = \frac{1}{s-1}, \ s > 1.$

 $\int_1^\infty \frac{\mathrm{d}x}{x^s}$ ist für $s \le 1$ divergent.

2) $\int_0^1 \frac{\mathrm{d}x}{x^s} = \frac{1}{1-s}, \ s < 1.$

Für $s \ge 1$ ist $\int_0^1 \frac{\mathrm{d}x}{x^s}$ divergent.

- 3) $\int_0^\infty \frac{\mathrm{d}x}{x^s}$ ist für kein $s \in \mathbb{R}$ konvergent
- $4) \int_{-\infty}^{\infty} \frac{\mathrm{d}x}{1+x^2} = \pi$
- 5) $\int_{-1}^{+1} \frac{\mathrm{d}x}{x}$ ist divergent
- 6) $\int_{-1}^{+1} \ln|x| \, \mathrm{d}x = -2$

16.3 Majoranten- Minorantenkriterium. Absolute Konvergenz. Integralkriterium.

Satz 1 f, g seien für jedes $\beta \in (a, b)$ über $[a, \beta]$ integrabel. Es gelte

$$0 < f(x) < q(x), x \in [a, b).$$

Dann hat man:

- 1) Aus der Konvergenz von $\int_a^b g(x) dx$ folgt die von $\int_a^b f(x) dx$.
- 2) Aus der Divergenz von $\int_a^b f(x) dx$ folgt die Divergenz von $\int_a^b g(x) dx$.

Beispiele 1) $\int_0^\infty e^{-x^2} dx$ ist konvergent, da $0 \le e^{-x^2} \le e^{-x}$ für $x \ge 1$ gilt. (oder da $0 < e^{-x^2} \le x^{-2}$ für $x \ge 1$ gilt)

16.3 Majoranten- Minorantenkriterium. Absolute Konvergenz. Integralkriterium.

2) Gammafunktion

$$\Gamma(x) := \int_0^\infty t^{x-1} e^{-t} \, \mathrm{d}t$$

ist für x > 0 konvergent (also definiert).

Denn: Betrachte

$$J_1 = \int_0^1 t^{x-1} e^{-t} dt \text{ und } J_2 = \int_1^\infty t^{x-1} e^{-t} dt$$

 J_1 konvergiert wegen $0 \le t^{x-1}e^{-t} \le t^{x-1}$ genau für x > 0 nach 16.2 Beispiel 2).

 J_2 konvergiert für alle $x \in \mathbb{R}$ wegen $0 < t^{x-1}e^{-t} \le k!t^{-2}$ für genügend großes $k \in \mathbb{N}$.

Bemerkung Es gilt $\Gamma(n+1) = n!$, n = 0, 1, ...

Definition Ist $\int_a^b |f(x)| dx$ konvergent, so heißt $\int_a^b f(x) dx$ konvergent.

Satz 2 Ist $\int_a^b f(x) dx$ absolut konvergent, so ist $\int_a^b f(x) dx$ konvergent.

Aber: Aus der Konvergenz von $\int_a^b f(x) dx$ folgt nicht die Konvergenz von $\int_a^b |f(x)| dx$.

Beispiel $\int_0^\infty \frac{\sin x}{x} dx$ existiert:

Vorbemerkung: $\int_1^\infty \frac{\cos x}{x^2} dx$ existiert, da wegen

$$0 \le \frac{|\cos x|}{x^2} \le \frac{1}{x^2}$$

 $\int_{1}^{\infty} \frac{\cos x}{x^2} dx \ absolut \ konvergent \ ist.$

$$\int_0^\infty \frac{\sin x}{x} \, \mathrm{d}x = \int_0^1 \frac{\sin x}{x} \, \mathrm{d}x + \int_1^\infty \frac{\sin x}{x} \, \mathrm{d}x.$$

 $Zu \lim_{\beta \to \infty} \int_1^\beta \frac{\sin x}{x} \, \mathrm{d}x$:

$$\int_{1}^{\beta} \frac{\sin x}{x} dx \stackrel{p.L.}{=} -\frac{1}{x} \cos x \Big|_{1}^{\beta} - \int_{1}^{\beta} \frac{\cos x}{x^{2}} dx$$

also existiert (mit der Vorbemerkung) $\lim_{\beta \to \infty} \int_1^\beta \frac{\sin x}{x} dx$.

16 Uneigentliche Integrale

 $\int_0^\infty \frac{|\sin x|}{x} dx$ konvergiert nicht:

$$\int_0^{n\pi} \frac{|\sin x|}{x} dx = \sum_{k=1}^n \int_{(k-1)\pi}^{k\pi} \frac{|\sin x|}{x} dx$$
$$\geq \sum_{k=1}^n \frac{1}{k\pi} \int_{(k-1)\pi}^{k\pi} |\sin x| dx$$
$$= \frac{2}{\pi} \sum_{k=1}^n \frac{1}{k} \to \infty \ (n \to \infty).$$

Satz 3 (Integralkriterium) Es sei $f \in C^0[1,\infty)$, $f(x) \ge 0, 1 \le x < \infty$, f monoton fallend. Dann gilt:

$$\sum_{k=1}^{\infty} f(k) \text{ ist konvergent} \iff \int_{1}^{\infty} f(x) dx \text{ ist konvergent.}$$

Das Ergebnis liest man ab aus:

$$\sum_{k=2}^{n+1} f(k) \le \int_1^{n+1} f(x) \, \mathrm{d}x \le \sum_{k=1}^n f(k) \le f(1) + \int_1^n f(x) \, \mathrm{d}x$$

Beispiele 1) Für $f(t) = \frac{1}{t^s}$, s > 1, sind die Vor. von Satz 3 erfüllt und $\int_1^\infty \frac{\mathrm{d}t}{t^s}$ ist konvergent. Somit gilt: $\sum_{k=1}^\infty \frac{1}{k^s}$ ist für s > 1 konvergent. Ebenso folgt aus den Ergebnissen für $\int_1^\infty \frac{\mathrm{d}t}{t^s}$, dass $\sum_{k=1}^\infty \frac{1}{k^s}$ für $s \leq 1$ divergent ist. Aus der Ungleichungskette oben folgt $(n \to \infty)$

$$\frac{1}{s-1} < \sum_{k=1}^{\infty} \frac{1}{k^s} < \frac{s}{s-1} \quad (s>1)$$

2) Wendet man die Ungleichungen auf $f(t) = \frac{1}{t}$ an, so erhält man:

$$\ln(n+1) < \sum_{k=1}^{n} \frac{1}{k} < 1 + \ln(n).$$