

Höhere Mathematik II für die Fachrichtung Physik Modulprüfung

Aufgabe 1 ((7 + 4) + 9 = 20 Punkte).

- (a) Es seien $\|\cdot\|_a$ und $\|\cdot\|_b$ Normen auf einem \mathbb{K} -Vektorraum V.
 - (i) Zeigen Sie, dass $\|\cdot\|$, definiert für alle $v \in V$ durch $\|v\| \coloneqq \|v\|_a + \|v\|_b$, eine Norm ist.
 - (ii) Zeigen Sie, dass $\|\cdot\|$, definiert für alle $v\in V$ durch $\|v\|:=\|v\|_a-\|v\|_b$, im Allgemeinen *keine* Norm ist
- (b) Für welche $\alpha \in \mathbb{C}$ ist die Matrix

$$A_{\alpha} := \begin{pmatrix} \alpha - 1 & \alpha + 1 & 0 \\ 0 & \alpha & \alpha - 1 \\ \alpha & \alpha - 1 & 0 \end{pmatrix}$$

invertierbar?

Aufgabe 2 (3 + (8 + 3) + 6 = 20 Punkte).

- (a) Sei $y \in \mathbb{R}$. Die Translation $\tau_y : C_{\text{per}}(\mathbb{R}, \mathbb{C}) \to C_{\text{per}}(\mathbb{R}, \mathbb{C})$ sei für alle $x \in \mathbb{R}$ definiert durch $\tau_v(f)(x) = f(x y)$. Zeigen Sie, dass $\widehat{\tau_v f}(k) = e^{-iky} \hat{f}(k)$ für alle $k \in \mathbb{N}_0$.
- (b) Es sei

$$f: [-\pi, \pi], \ x \mapsto \begin{cases} -1 & x \in [-\pi, 0), \\ 1 + \frac{x}{\pi} & x \in [0, \pi]. \end{cases}$$

- (i) Berechnen Sie die (komplexe) Fourierreihe von f.
- (ii) Für welche $x \in [-\pi, \pi]$ konvergiert die Fourierreihe von f gegen f?
- (c) Berechnen Sie das Integral

$$\int_0^1 \left(\int_v^1 \exp\left(-\frac{x^2}{2}\right) dx \right) dy.$$

Hinweis: Vertauschen Sie die Integrationsreihenfolge.

Aufgabe 3 ((3 + 5 + 5) + (5 + 2) = 20 Punkte).

(a) Es sei

$$f: \mathbb{R}^2 \to \mathbb{R}, \ (x,y) \mapsto \begin{cases} \sqrt[4]{|xy|} \frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0). \end{cases}$$

- (i) Untersuchen Sie f auf Stetigkeit.
- (ii) Untersuchen Sie, für welche $v \in \mathbb{R}^2 \setminus \{(0,0)\}$ die Richtungsableitung $\frac{\partial f}{\partial v}(0,0)$ existiert und berechnen Sie diese gegebenenfalls.
- (iii) Untersuchen Sie, ob f differenzierbar ist.
- (b) Es seien

$$\gamma: [0,1] \to \mathbb{R}^3, \ t \mapsto \begin{pmatrix} t^2 \\ t-1 \\ 2t \end{pmatrix}$$

und

$$v: \mathbb{R}^3 \to \mathbb{R}^3, (x, y, z) \mapsto \begin{pmatrix} y^2 \\ 2xy + 2y + 3ze^{yz} \\ 3ye^{yz} \end{pmatrix}.$$

- (i) Besitzt v eine Stammfunktion? Geben Sie eine solche Stammfunktion an und zeigen Sie, dass sie eine ist, sofern sie existiert.
- (ii) Berechnen Sie $\int_{\gamma} v(x, y, z) \cdot ds$.

Aufgabe 4 (5 + 4 + (3 + 4) + 4 = 20 Punkte).

- (a) Für alle $z \in \mathbb{C}$ schreiben wir wie üblich z = x + iy für eindeutig bestimmte $x, y \in \mathbb{R}$. Es sei $f: (-1,1)^2 \to \mathbb{C}, (x+iy) \mapsto x \arcsin y + iy \arcsin x$. Untersuchen Sie, in welchen Punkten $x+iy \in \mathbb{C}$ die Funktion f komplex differenzierbar ist.
- (b) Es sei $f: \mathbb{C} \to \mathbb{C}$ holomorph mit f(0) = 0. Zeigen Sie, dass die Singularität der Abbildung $\mathbb{C} \setminus \{0\} \to \mathbb{C}, z \mapsto f(z)/z$ in 0 hebbar ist.
- (c) (i) Es sei

$$\gamma: [0,2\pi] \to \mathbb{C}, t \mapsto 2e^{it}.$$

Berechnen Sie das Integral

$$\int_{\gamma} \frac{\cosh(z-1) - 1}{z - 1} \mathrm{d}z.$$

Hinweis: Sie können verwenden, dass die Abbildung cosh : $\mathbb{C} \to \mathbb{C}$, $z \mapsto 1/2(e^z + e^{-z})$ holomorph ist.

(ii) Es sei

$$\gamma: [0, 2\pi] \to \mathbb{C}, t \mapsto \begin{cases} 2e^{it} & t \in [0, \pi), \\ \frac{4}{\pi}t - 6 & t \in [\pi, 2\pi]. \end{cases}$$

Berechnen Sie das Integral

$$\int_{\gamma} \frac{\sin z}{(z^2+1)^2} \mathrm{d}z.$$

(d) Es sei $f: \mathbb{C} \to \mathbb{C}$ holomorph mit Re $f \leq C$ für eine Konstante $C \in \mathbb{R}_+$. Zeigen Sie, dass f konstant ist.

Hinweis: Betrachten Sie $g := \exp \circ f$.